Hamiltonian matrix, orthogonal complements
Notes for lecture 12 (May 19th, 2014)
This lecture contains link between Hamiltonian matrix, ARE and (so-called) stationary tra-

jectories. We will also define the ‘orthogonal complement’ of a behavior.
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1 Lossless systems, orthogonal complement

In the case of dissipativity, the storage function is not unique, in general. (Note that non-
uniqueness of the storage function is not due to our choice of expressing the storage function in
terms of different variables.) There is a special case' of dissipativity when the storage function is

unique: lossless.
Consider ¥ = X7 € R™¥, A system B € £¥ . is called Y-lossless if

cont

/ w!'Ywdt =0 for all w e BND.

[e.o]

Theorem 1.1 Let B € £¥

cont

and suppose ¥ = X1 € R¥¥. Suppose w = M(%)K is an image
representation for B. Then, the following are equivalent.

o B is Y-lossless.
o M(—&)TEM(E) satisfies M(—&)TSM(€) = 0.

o There exists a storage function Qg(w) such that

%Q\p(w) = w!Sw for all w € B. (1)

INote that there are dissipative and non-lossless systems which can have a unique storage function: uniqueness
of storage function only ensures non-strictness of the dissipativity, it does not ensure losslessness.



. fttf w?Swdt is ‘path-independent’: i.e. the value of the integral depends only on values of w
(and its derivatives) at t1 and tay, and does not depend on which trajectory in B w assumes

between t; and ts.

Closely related to lossless is the notion of an orthogonal complement of a controllable behavior.
Given a controllable behavior 8 € £¥ . and a symmetric, nonsingular matrix ¥ € R"¥ the X-
orthogonal complement of B, (denoted by B1=), is the set of all the trajectories v € €*°(R,RY)
such that [7°_v"Swdt =0 for all w € BND.

When ¥ = I, the Y-orthogonal complement B> is written as just B,

2 Euler Lagrange equation

We briefly link the differential equations 0@’ (%)ﬁ = 0 with the EL equation (for the simplified
case). Consider minimizing or maximizing a performance functional [ V(¥, f) dt, with y uncon-

strained, and €. Then the optimum trajectories y* satisfy

oV _dov _

or At oi

Of course, we are dealing with a situation simplified in many ways.

3 Hamiltonian matrix

A matrix H € R*® is called a Hamiltonian matrix if H is similar to —H?. Hamiltonian matrices
arise in different contexts; in our context, they are closely related to kernel of 9%'(<). For
example, roots of 9P'(£) and eigenvalues of H are the same (counted with multiplicity).

Recall that for lossless systems, 0®'({) was identically zero. (Vaguely) motivated by this,
think of kernel of 99'(-$) as ‘lossless trajectories’.

For finite dimensional vector spaces, if 0 C R® is Y-non-negative, then 2 NV is a subspace
of R® which is Y-neutral. (A subspace U is called Y-neutral if v73v = 0 for all v € U; neutral is
same as lossless. See [GLRO05] for an elaborate treatment on indefinite linear algebra.)

We will see that B N B+, when autonomous, has a state representation that is a Hamil-
tonian matrix (as the state transition matrix). The link between ARE and ‘the corresponding’

Hamiltonian matrix is due to the following fact (that is best verified oneself).

Fact 3.1 ([TSH02, Section 13.4]) Let F, S, T € R™™ with S and T are symmetric. Due to

F T
—S§ —FT

1

=0,
X

x

I
—FTX 4+ XF+XTX+S and [X —J] [X

we note that solutions to the ARE FTX + XF + XTX + S = 0 are linked® to n-dimensional

X
2 We used that X is symmetric. Also, an n-dimensional invariant subspace (say image of Xl ) of H requires
2

to have its top n x n block X; invertible, for this subspace to yield an ARE solution. In most ARE studies, this
invertibility is a key step.



invariant subspaces of the 2n X 2n matriz (say H) in the above equation. H is defined as the
Hamiltonian matriz corresponding to this ARE.

Further, verify that
1
X

Thus, if H has no eigenvalues on the imaginary axis, choosing ‘the’ n-dimensional invariant

Nrarx).

subspace corresponding to all OLHP eigenvalues gives an X (assuming invertibility of X, as
mentioned in Footnote 2) that is stabilizing: this is due to F' + TX being Hurwitz.

4 Minimal dissipation trajectories

One of the passivity preserving model order reduction methods proposed in [Ant05, Sor05] turns
out to ‘retain’ (a lower dimensional subspace of) the set of trajectories of minimal dissipation
([MTRO09]).

Consider a nonsingular ¥ = X7 € R"*¥ and suppose B € £* . is Y-dissipative. As proposed
in [MTRO09], for a w € B, consider the change J,,(9) in dissipation® (about w) if w is changed to
w+ 9, for ) € BND:

T (6) = /oo (Qa(w +8) — Qa(w)) dt.

A trajectory w € *B is said to be a trajectory of minimal dissipation if J,,(5) = 0 for all 6 € BND.
Any small change in w causes increase of net dissipated energy: in that sense, these are local
minima (see [MTRO09, page 177].)

The link between the set of trajectories (in a X-dissipative behavior 98) of minimal dissipation
(denoted by B*) and B+= is [MTR09, Theorem 3.4], which states B* = B N BL=. Notice that
B N B> is just the set of those trajectories w = M (%)6, where £, is no longer free/generic, but
in fact, satisfies 909'()¢ = 0.

5 Strict dissipativity

Quite unfortunately, the lossless case is not handled by the ARE/ARI. The ARE and the ARI
are best suited for ‘strict dissipativity’, which is a kind of opposite to losslessness. Consider
Y =3T € R™¥. A system B € £¥ . is called strictly 3S-dissipative if there exists an € > 0 such
that - -

/ w'Swdt > e/ w'wdt for all w € BND.

o0 —00

3A dissipation function Qa (w) (a function of time, that depends on the trajectory w) is defined as the amount
of supplied power that didn’t go into storing energy, i.e. Qa(w) := wl Sw — %Qq,(w). Since storage functions
are not unique, we speak of a dissipation function Qa corresponding to a storage function (Qy. Inspite of this
dependence on Qy, along compactly supported trajectories, the ‘net power’ dissipated depends only on w: for more
details, see [WT98].



General concerns: lossless part in 28: moreover, lossless part is non-autonomous. In the LMI
(corresponding to dissipativity), one needs to take the Schur complement with respect to the
‘lower right” block: which ought to be sign-definite: only then the LMI yields the ARI/ARE.
This in turn allows defining the Hamiltonian matrix.

Strict dissipativity lays to rest any concerns about singularity of the above lower-right block.
(Of course, strict dissipativity at just ‘the oo frequency’ is good enough: [KBAR14].)

Theorem 5.1 Assume B € £¥

cont

and ¥ € R¥Y 45 symmetric and nonsingular. Suppose B is

strictly Y-dissipative. Then,
1. BN B is autonomous. n(B N BL=) = 2n(B).

2. The ARE exists.
3. The Hamiltonian matriz exists.

Dissipation at the oo frequency is denoted by the matrix P in the matrices in the last section.
In order to obtain the Hamiltonian matrix as indicated there, some more development relating
B and B> is required. Key property is that 8 N B> has a state transition matrix exactly the
Hamiltonian matrix H: this will be elaborated in this pdf-file by 20th May, 2pm.

The two statements within 1 above can be viewed as regular interconnection and regular
feedback interconnection (see [Wil97, JPKB13]) between the ‘plant” B and the ‘controller’ B1=
(defined next). Study of these interconnections seems inessential to pursue model-order reduction,
and hence we do not pursue further here.

(In Lecture 11, we began with an exercise, which we continue with now.)

Exercise 5.2 Consider the system %x = 3z + 2u and the performance cost fooo (422 +u?) dt. Let
the initial condition be z(0) = 4.

e Find all stationary trajectories ®8* in B using the Euler-Lagrange equation.
e Find B* as the set of trajectories of ‘minimal dissipation’ (as B N BL=).
e Check if a first order representation of 28* results in a Hamiltonian matrix H.

e Compare H with the one linked to the corresponding ARE, and use H to obtain the stabi-

lizing ARE solution (K, in our case).

Exercise 5.3 Consider the following circuit.

R —/—

Figure 1: RC circuit

Let the capacitance C' be 1 F and the resistances R, and R¢c be equal
to 3 Q and 1 Q respectively. Find the minimum energy required at
the port to charge the capacitor to 4 V (from initially discharged
state). Also find the maximum energy one can extract out from the
port if the capacitor is initially charged to 4 V. Why is it reasonable
that the actual energy stored is ‘exactly in between’ the maximum

and the minimum storage functions?



6 Autonomous systems

This section contains briefly about autonomous systems to the extent we need for model order

reduction. A behavior B € £¥ is called autonomous if
whenever wq, wy € B satisfy wy(t) = we(t) = wy = ws.

Theorem 6.1 Let ‘B € £¥ have minimal kernel representation R(%)w = 0. Then, the following

are equivalent.
1. *B is autonomous.
2. R(§) is square and nonsingular.
3. B s finite dimensional as a vector space over R.

4. B is a finite linear combination of only* exponentials, i.e., assuming for simplicity® det (R)

has only real distinct roots A1, ..., Ay, with N = deg det R:

N
weB & w= Z a;v;e’it for a; € R and v; € R*\0.
i=1

Excepting the (trivial) case when 8 = {0}, which is both controllable and autonomous, in general,
autonomous means uncontrollable. In fact, autonomous means, not just uncontrollable, but in
fact, controllable-part equal to zero. For this course, we stick to just controllable behaviors 25 for
the purpose of model-order reduction, but B NB~= will be autonomous (under strict dissipativity

assumptions, etc.: as mentioned in Theorem 5.1).

7 LMI, ARE and Hamiltonian matrix H

For three key supply rates 7 Qz + u? Ru (the LQ problem), v’y (passivity) and ?u’u — yTy
(Lo norm at most ), we list the LMI, ARE and Hamiltonian matrix. In each case, assume
%x = Az + Bu and y = Cz + Du is a minimal state space realization (i.e. controllable and
observable realization). The LMI can be obtained by z” Kz as a storage function. The ARE is
obtained by taking Schur complement w.r.t. the lower right block (say, P, the one corresponding
to u’ Pu) and the Hamiltonian matrix is constructed from the ARE as elaborated in [TSH02,

Section 13.4].

“4In ‘exponential functions’, we allow sinusoids and cosinusoids (due to complex exponents) and also polynomial

combination of exponentials (when repeated roots).
®Real roots ensures no sinusoids/cosinusoids, and distinct ensures no polynomials required: see [PW98] for the

general autonomous case.



(Some signs might not be correct. Please read critically. -Madhu)
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