
Hamiltonian matrix, orthogonal complements
Notes for lecture 12 (May 19th, 2014)

This lecture contains link between Hamiltonian matrix, ARE and (so-called) stationary tra-

jectories. We will also define the ‘orthogonal complement’ of a behavior.
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1 Lossless systems, orthogonal complement

In the case of dissipativity, the storage function is not unique, in general. (Note that non-

uniqueness of the storage function is not due to our choice of expressing the storage function in

terms of different variables.) There is a special case1 of dissipativity when the storage function is

unique: lossless.

Consider Σ = ΣT ∈ Rw×w. A system B ∈ Lw
cont is called Σ-lossless if∫ ∞

−∞
wTΣw dt = 0 for all w ∈ B ∩D.

Theorem 1.1 Let B ∈ Lw
cont and suppose Σ = ΣT ∈ Rw×w. Suppose w = M( d

dt
)` is an image

representation for B. Then, the following are equivalent.

• B is Σ-lossless.

• M(−ξ)TΣM(ξ) satisfies M(−ξ)TΣM(ξ) = 0.

• There exists a storage function QΨ(w) such that

d

dt
QΨ(w) = wTΣw for all w ∈ B. (1)

1Note that there are dissipative and non-lossless systems which can have a unique storage function: uniqueness

of storage function only ensures non-strictness of the dissipativity, it does not ensure losslessness.
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•
∫ t2
t1
wTΣw dt is ‘path-independent’: i.e. the value of the integral depends only on values of w

(and its derivatives) at t1 and t2, and does not depend on which trajectory in B w assumes

between t1 and t2.

Closely related to lossless is the notion of an orthogonal complement of a controllable behavior.

Given a controllable behavior B ∈ Lw
cont and a symmetric, nonsingular matrix Σ ∈ Rw×w, the Σ-

orthogonal complement of B, (denoted by B⊥Σ), is the set of all the trajectories v ∈ C∞(R,Rw)

such that
∫∞
−∞ v

TΣw dt = 0 for all w ∈ B ∩D.

When Σ = I, the Σ-orthogonal complement B⊥Σ is written as just B⊥.

2 Euler Lagrange equation

We briefly link the differential equations ∂Φ′( d
dt

)` = 0 with the EL equation (for the simplified

case). Consider minimizing or maximizing a performance functional
∫
V (`, ˙̀) dt, with y uncon-

strained, and C∞. Then the optimum trajectories y∗ satisfy

∂V

∂`
− d

dt

∂V

∂ ˙̀
= 0.

Of course, we are dealing with a situation simplified in many ways.

3 Hamiltonian matrix

A matrix H ∈ Rn×n is called a Hamiltonian matrix if H is similar to −HT . Hamiltonian matrices

arise in different contexts; in our context, they are closely related to kernel of ∂Φ′( d
dt

). For

example, roots of ∂Φ′(ξ) and eigenvalues of H are the same (counted with multiplicity).

Recall that for lossless systems, ∂Φ′(ξ) was identically zero. (Vaguely) motivated by this,

think of kernel of ∂Φ′( d
dt

) as ‘lossless trajectories’.

For finite dimensional vector spaces, if V ⊆ Rn is Σ-non-negative, then V∩V⊥Σ is a subspace

of Rn which is Σ-neutral. (A subspace V is called Σ-neutral if vTΣv = 0 for all v ∈ V; neutral is

same as lossless. See [GLR05] for an elaborate treatment on indefinite linear algebra.)

We will see that B ∩ B⊥Σ , when autonomous, has a state representation that is a Hamil-

tonian matrix (as the state transition matrix). The link between ARE and ‘the corresponding’

Hamiltonian matrix is due to the following fact (that is best verified oneself).

Fact 3.1 ([TSH02, Section 13.4]) Let F, S, T ∈ Rn×n with S and T are symmetric. Due to[
X −I

] [ F T

−S −F T

][
I

X

]
= F TX +XF +XTX + S and

[
X −I

] [ I
X

]
= 0,

we note that solutions to the ARE F TX + XF + XTX + S = 0 are linked2 to n-dimensional

2 We used that X is symmetric. Also, an n-dimensional invariant subspace (say image of

[
X1

X2

]
) of H requires

to have its top n × n block X1 invertible, for this subspace to yield an ARE solution. In most ARE studies, this

invertibility is a key step.
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invariant subspaces of the 2n × 2n matrix (say H) in the above equation. H is defined as the

Hamiltonian matrix corresponding to this ARE.

Further, verify that

H

[
I

X

]
=

[
I

X

]
(F + TX).

Thus, if H has no eigenvalues on the imaginary axis, choosing ‘the’ n-dimensional invariant

subspace corresponding to all OLHP eigenvalues gives an X (assuming invertibility of X1 as

mentioned in Footnote 2) that is stabilizing: this is due to F + TX being Hurwitz.

4 Minimal dissipation trajectories

One of the passivity preserving model order reduction methods proposed in [Ant05, Sor05] turns

out to ‘retain’ (a lower dimensional subspace of) the set of trajectories of minimal dissipation

([MTR09]).

Consider a nonsingular Σ = ΣT ∈ Rw×w and suppose B ∈ Lw
cont is Σ-dissipative. As proposed

in [MTR09], for a w ∈ B, consider the change Jw(δ) in dissipation3 (about w) if w is changed to

w + δ, for δ ∈ B ∩D:

Jw(δ) :=

∫ ∞
−∞

(Q∆(w + δ)−Q∆(w)) dt.

A trajectory w ∈ B is said to be a trajectory of minimal dissipation if Jw(δ) > 0 for all δ ∈ B∩D.

Any small change in w causes increase of net dissipated energy: in that sense, these are local

minima (see [MTR09, page 177].)

The link between the set of trajectories (in a Σ-dissipative behavior B) of minimal dissipation

(denoted by B∗) and B⊥Σ is [MTR09, Theorem 3.4], which states B∗ = B ∩B⊥Σ . Notice that

B ∩B⊥Σ is just the set of those trajectories w = M( d
dt

)`, where `, is no longer free/generic, but

in fact, satisfies ∂Φ′( d
dt

)` = 0.

5 Strict dissipativity

Quite unfortunately, the lossless case is not handled by the ARE/ARI. The ARE and the ARI

are best suited for ‘strict dissipativity’, which is a kind of opposite to losslessness. Consider

Σ = ΣT ∈ Rw×w. A system B ∈ Lw
cont is called strictly Σ-dissipative if there exists an ε > 0 such

that ∫ ∞
−∞

wTΣw dt > ε

∫ ∞
−∞

wTw dt for all w ∈ B ∩D.

3A dissipation function Q∆(w) (a function of time, that depends on the trajectory w) is defined as the amount

of supplied power that didn’t go into storing energy, i.e. Q∆(w) := wT Σw − d
dtQΨ(w). Since storage functions

are not unique, we speak of a dissipation function Q∆ corresponding to a storage function QΨ. Inspite of this

dependence on QΨ, along compactly supported trajectories, the ‘net power’ dissipated depends only on w: for more

details, see [WT98].
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General concerns: lossless part in B: moreover, lossless part is non-autonomous. In the LMI

(corresponding to dissipativity), one needs to take the Schur complement with respect to the

‘lower right’ block: which ought to be sign-definite: only then the LMI yields the ARI/ARE.

This in turn allows defining the Hamiltonian matrix.

Strict dissipativity lays to rest any concerns about singularity of the above lower-right block.

(Of course, strict dissipativity at just ‘the ∞ frequency’ is good enough: [KBAR14].)

Theorem 5.1 Assume B ∈ Lw
cont and Σ ∈ Rw×w is symmetric and nonsingular. Suppose B is

strictly Σ-dissipative. Then,

1. B ∩B⊥Σ is autonomous. n(B ∩B⊥Σ) = 2n(B).

2. The ARE exists.

3. The Hamiltonian matrix exists.

Dissipation at the∞ frequency is denoted by the matrix P in the matrices in the last section.

In order to obtain the Hamiltonian matrix as indicated there, some more development relating

B and B⊥Σ is required. Key property is that B ∩B⊥Σ has a state transition matrix exactly the

Hamiltonian matrix H: this will be elaborated in this pdf-file by 20th May, 2pm.

The two statements within 1 above can be viewed as regular interconnection and regular

feedback interconnection (see [Wil97, JPKB13]) between the ‘plant’ B and the ‘controller’ B⊥Σ

(defined next). Study of these interconnections seems inessential to pursue model-order reduction,

and hence we do not pursue further here.

(In Lecture 11, we began with an exercise, which we continue with now.)

Exercise 5.2 Consider the system d
dt
x = 3x+ 2u and the performance cost

∫∞
0

(4x2 +u2) dt. Let

the initial condition be x(0) = 4.

• Find all stationary trajectories B∗ in B using the Euler-Lagrange equation.

• Find B∗ as the set of trajectories of ‘minimal dissipation’ (as B ∩B⊥Σ).

• Check if a first order representation of B∗ results in a Hamiltonian matrix H.

• Compare H with the one linked to the corresponding ARE, and use H to obtain the stabi-

lizing ARE solution (Kmin, in our case).

Exercise 5.3 Consider the following circuit.

Figure 1: RC circuit

Let the capacitance C be 1 F and the resistances R2 and RC be equal

to 3 Ω and 1 Ω respectively. Find the minimum energy required at

the port to charge the capacitor to 4 V (from initially discharged

state). Also find the maximum energy one can extract out from the

port if the capacitor is initially charged to 4 V. Why is it reasonable

that the actual energy stored is ‘exactly in between’ the maximum

and the minimum storage functions?
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6 Autonomous systems

This section contains briefly about autonomous systems to the extent we need for model order

reduction. A behavior B ∈ Lw is called autonomous if

whenever w1, w2 ∈ B satisfy w1(t) = w2(t)⇒ w1 = w2.

Theorem 6.1 Let B ∈ Lw have minimal kernel representation R( d
dt

)w = 0. Then, the following

are equivalent.

1. B is autonomous.

2. R(ξ) is square and nonsingular.

3. B is finite dimensional as a vector space over R.

4. B is a finite linear combination of only4 exponentials, i.e., assuming for simplicity5 det (R)

has only real distinct roots λ1, . . . , λN , with N = deg det R:

w ∈ B⇔ w =
N∑
i=1

aivie
λit for ai ∈ R and vi ∈ Rw\0.

Excepting the (trivial) case when B = {0}, which is both controllable and autonomous, in general,

autonomous means uncontrollable. In fact, autonomous means, not just uncontrollable, but in

fact, controllable-part equal to zero. For this course, we stick to just controllable behaviors B for

the purpose of model-order reduction, but B∩B⊥Σ will be autonomous (under strict dissipativity

assumptions, etc.: as mentioned in Theorem 5.1).

7 LMI, ARE and Hamiltonian matrix H

For three key supply rates xTQx + uTRu (the LQ problem), uTy (passivity) and γ2uTu − yTy
(L∞ norm at most γ), we list the LMI, ARE and Hamiltonian matrix. In each case, assume
d
dt
x = Ax + Bu and y = Cx + Du is a minimal state space realization (i.e. controllable and

observable realization). The LMI can be obtained by xTKx as a storage function. The ARE is

obtained by taking Schur complement w.r.t. the lower right block (say, P , the one corresponding

to uTPu) and the Hamiltonian matrix is constructed from the ARE as elaborated in [TSH02,

Section 13.4].

4In ‘exponential functions’, we allow sinusoids and cosinusoids (due to complex exponents) and also polynomial

combination of exponentials (when repeated roots).
5Real roots ensures no sinusoids/cosinusoids, and distinct ensures no polynomials required: see [PW98] for the

general autonomous case.
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(Some signs might not be correct. Please read critically. -Madhu)

Supply

rate
LMI

P (the dissipation

at ∞ frequency)
H[

Q 0

0 R

] [
ATK+KA−Q KB

BTK −R

]
R

[
A Q

BTR−1B −AT

]
[

0 I

I 0

] [
ATK+KA KB−CT

BTK−C −(D+DT )

]
(D +DT )

[
A−BP−1C BP−1BT

−CTP−1C −(A−BP−1C)T

]
[
γ2I 0

0 −I

] [
ATK+KA+CTC KB+CTD
DTC+BTK DTD−γ2I

]
(γ2I −DTD)

[
A+BP−1DTC BP−1BT

−CTP−1C −(A+BP−1DTC)T

]
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