Hamiltonian matrix, orthogonal complements Notes for lecture 12 (May 19th, 2014)

This lecture contains link between Hamiltonian matrix, ARE and (so-called) stationary trajectories. We will also define the 'orthogonal complement' of a behavior.

Contents

1	Lossless systems, orthogonal complement	1
2	Euler Lagrange equation	2
3	Hamiltonian matrix	2
4	Minimal dissipation trajectories	3
5	Strict dissipativity	3
6	Autonomous systems	5
7	LMI, ARE and Hamiltonian matrix H	5

1 Lossless systems, orthogonal complement

In the case of dissipativity, the storage function is not unique, in general. (Note that nonuniqueness of the storage function is *not* due to our choice of expressing the storage function in terms of different variables.) There is a special case¹ of dissipativity when the storage function is unique: lossless.

Consider $\Sigma = \Sigma^T \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}$. A system $\mathfrak{B} \in \mathfrak{L}_{\mathrm{cont}}^{\mathsf{w}}$ is called Σ -lossless if

$$\int_{-\infty}^{\infty} w^T \Sigma w \, \mathrm{d}t = 0 \text{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

Theorem 1.1 Let $\mathfrak{B} \in \mathfrak{L}_{cont}^{w}$ and suppose $\Sigma = \Sigma^{T} \in \mathbb{R}^{w \times w}$. Suppose $w = M(\frac{d}{dt})\ell$ is an image representation for \mathfrak{B} . Then, the following are equivalent.

- \mathfrak{B} is Σ -lossless.
- $M(-\xi)^T \Sigma M(\xi)$ satisfies $M(-\xi)^T \Sigma M(\xi) = 0$.
- There exists a storage function $Q_{\Psi}(w)$ such that

$$\frac{\mathrm{d}}{\mathrm{d}t}Q_{\Psi}(w) = w^T \Sigma w \text{ for all } w \in \mathfrak{B}.$$
(1)

¹Note that there are dissipative and non-lossless systems which can have a unique storage function: uniqueness of storage function only ensures non-strictness of the dissipativity, it does not ensure losslessness.

• $\int_{t_1}^{t_2} w^T \Sigma w \, dt$ is 'path-independent': i.e. the value of the integral depends only on values of w (and its derivatives) at t_1 and t_2 , and does not depend on which trajectory in \mathfrak{B} w assumes between t_1 and t_2 .

Closely related to lossless is the notion of an orthogonal complement of a controllable behavior. Given a controllable behavior $\mathfrak{B} \in \mathfrak{L}^{\mathsf{w}}_{\text{cont}}$ and a symmetric, nonsingular matrix $\Sigma \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}$, the Σ orthogonal complement of \mathfrak{B} , (denoted by $\mathfrak{B}^{\perp_{\Sigma}}$), is the set of all the trajectories $v \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}})$ such that $\int_{-\infty}^{\infty} v^T \Sigma w \, dt = 0$ for all $w \in \mathfrak{B} \cap \mathfrak{D}$.

When $\Sigma = I$, the Σ -orthogonal complement $\mathfrak{B}^{\perp_{\Sigma}}$ is written as just \mathfrak{B}^{\perp} .

2 Euler Lagrange equation

We briefly link the differential equations $\partial \Phi'(\frac{d}{dt})\ell = 0$ with the EL equation (for the simplified case). Consider minimizing or maximizing a performance functional $\int V(\ell, \dot{\ell}) dt$, with y unconstrained, and \mathfrak{C}^{∞} . Then the optimum trajectories y^* satisfy

$$\frac{\partial V}{\partial \ell} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial V}{\partial \dot{\ell}} = 0.$$

Of course, we are dealing with a situation simplified in many ways.

3 Hamiltonian matrix

A matrix $H \in \mathbb{R}^{n \times n}$ is called a Hamiltonian matrix if H is similar to $-H^T$. Hamiltonian matrices arise in different contexts; in our context, they are closely related to kernel of $\partial \Phi'(\frac{d}{dt})$. For example, roots of $\partial \Phi'(\xi)$ and eigenvalues of H are the same (counted with multiplicity).

Recall that for lossless systems, $\partial \Phi'(\xi)$ was identically zero. (Vaguely) motivated by this, think of kernel of $\partial \Phi'(\frac{d}{dt})$ as 'lossless trajectories'.

For finite dimensional vector spaces, if $\mathfrak{V} \subseteq \mathbb{R}^n$ is Σ -non-negative, then $\mathfrak{V} \cap \mathfrak{V}^{\perp_{\Sigma}}$ is a subspace of \mathbb{R}^n which is Σ -neutral. (A subspace \mathfrak{V} is called Σ -neutral if $v^T \Sigma v = 0$ for all $v \in \mathfrak{V}$; neutral is same as lossless. See [GLR05] for an elaborate treatment on indefinite linear algebra.)

We will see that $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$, when autonomous, has a state representation that is a Hamiltonian matrix (as the state transition matrix). The link between ARE and 'the corresponding' Hamiltonian matrix is due to the following fact (that is best verified oneself).

Fact 3.1 ([TSH02, Section 13.4]) Let $F, S, T \in \mathbb{R}^{n \times n}$ with S and T are symmetric. Due to

$$\begin{bmatrix} X & -I \end{bmatrix} \begin{bmatrix} F & T \\ -S & -F^T \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = F^T X + XF + XTX + S \quad and \quad \begin{bmatrix} X & -I \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = 0,$$

we note that solutions to the ARE $F^TX + XF + XTX + S = 0$ are linked² to *n*-dimensional

² We used that X is symmetric. Also, an n-dimensional invariant subspace (say image of $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$) of H requires to have its top $n \times n$ block X_1 invertible, for this subspace to yield an ARE solution. In most ARE studies, this invertibility is a key step.

invariant subspaces of the $2n \times 2n$ matrix (say H) in the above equation. H is defined as the Hamiltonian matrix corresponding to this ARE.

Further, verify that

$$H\begin{bmatrix}I\\X\end{bmatrix} = \begin{bmatrix}I\\X\end{bmatrix}(F+TX).$$

Thus, if H has no eigenvalues on the imaginary axis, choosing 'the' **n**-dimensional invariant subspace corresponding to all OLHP eigenvalues gives an X (assuming invertibility of X_1 as mentioned in Footnote 2) that is stabilizing: this is due to F + TX being Hurwitz.

4 Minimal dissipation trajectories

One of the passivity preserving model order reduction methods proposed in [Ant05, Sor05] turns out to 'retain' (a lower dimensional subspace of) the set of trajectories of minimal dissipation ([MTR09]).

Consider a nonsingular $\Sigma = \Sigma^T \in \mathbb{R}^{w \times w}$ and suppose $\mathfrak{B} \in \mathfrak{L}_{\text{cont}}^w$ is Σ -dissipative. As proposed in [MTR09], for a $w \in \mathfrak{B}$, consider the *change* $J_w(\delta)$ in dissipation³ (about w) if w is changed to $w + \delta$, for $\delta \in \mathfrak{B} \cap \mathfrak{D}$:

$$J_w(\delta) := \int_{-\infty}^{\infty} (Q_\Delta(w+\delta) - Q_\Delta(w)) \,\mathrm{d}t.$$

A trajectory $w \in \mathfrak{B}$ is said to be a *trajectory of minimal dissipation* if $J_w(\delta) \ge 0$ for all $\delta \in \mathfrak{B} \cap \mathfrak{D}$. Any small change in w causes *increase* of net dissipated energy: in that sense, these are local minima (see [MTR09, page 177].)

The link between the set of trajectories (in a Σ -dissipative behavior \mathfrak{B}) of minimal dissipation (denoted by \mathfrak{B}^*) and $\mathfrak{B}^{\perp_{\Sigma}}$ is [MTR09, Theorem 3.4], which states $\mathfrak{B}^* = \mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$. Notice that $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is just the set of those trajectories $w = M(\frac{d}{dt})\ell$, where ℓ , is no longer free/generic, but in fact, satisfies $\partial \Phi'(\frac{d}{dt})\ell = 0$.

5 Strict dissipativity

Quite unfortunately, the lossless case is not handled by the ARE/ARI. The ARE and the ARI are best suited for 'strict dissipativity', which is a kind of opposite to losslessness. Consider $\Sigma = \Sigma^T \in \mathbb{R}^{w \times w}$. A system $\mathfrak{B} \in \mathfrak{L}^{w}_{\text{cont}}$ is called *strictly* Σ -dissipative if there exists an $\epsilon > 0$ such that

$$\int_{-\infty}^{\infty} w^T \Sigma w \, \mathrm{d}t \ge \epsilon \int_{-\infty}^{\infty} w^T w \, \mathrm{d}t \text{ for all } w \in \mathfrak{B} \cap \mathfrak{D}.$$

³A dissipation function $Q_{\Delta}(w)$ (a function of time, that depends on the trajectory w) is defined as the amount of supplied power that didn't go into storing energy, i.e. $Q_{\Delta}(w) := w^T \Sigma w - \frac{\mathrm{d}}{\mathrm{d}t} Q_{\Psi}(w)$. Since storage functions are not unique, we speak of a dissipation function Q_{Δ} corresponding to a storage function Q_{Ψ} . Inspite of this dependence on Q_{Ψ} , along compactly supported trajectories, the 'net power' dissipated depends only on w: for more details, see [WT98].

General concerns: lossless part in \mathfrak{B} : moreover, lossless part is non-autonomous. In the LMI (corresponding to dissipativity), one needs to take the Schur complement with respect to the 'lower right' block: which ought to be sign-*definite*: only then the LMI yields the ARI/ARE. This in turn allows defining the Hamiltonian matrix.

Strict dissipativity lays to rest any concerns about singularity of the above lower-right block. (Of course, strict dissipativity at just 'the ∞ frequency' is good enough: [KBAR14].)

Theorem 5.1 Assume $\mathfrak{B} \in \mathfrak{L}_{cont}^{w}$ and $\Sigma \in \mathbb{R}^{w \times w}$ is symmetric and nonsingular. Suppose \mathfrak{B} is strictly Σ -dissipative. Then,

- 1. $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ is autonomous. $\mathbf{n}(\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}) = 2\mathbf{n}(\mathfrak{B}).$
- 2. The ARE exists.
- 3. The Hamiltonian matrix exists.

Dissipation at the ∞ frequency is denoted by the matrix P in the matrices in the last section. In order to obtain the Hamiltonian matrix as indicated there, some more development relating \mathfrak{B} and $\mathfrak{B}^{\perp_{\Sigma}}$ is required. Key property is that $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ has a state transition matrix exactly the Hamiltonian matrix H: this will be elaborated in this pdf-file by 20th May, 2pm.

The two statements within 1 above can be viewed as regular interconnection and regular feedback interconnection (see [Wil97, JPKB13]) between the 'plant' \mathfrak{B} and the 'controller' $\mathfrak{B}^{\perp_{\Sigma}}$ (defined next). Study of these interconnections seems inessential to pursue model-order reduction, and hence we do not pursue further here.

(In Lecture 11, we began with an exercise, which we continue with now.)

Exercise 5.2 Consider the system $\frac{d}{dt}x = 3x + 2u$ and the performance cost $\int_0^\infty (4x^2 + u^2) dt$. Let the initial condition be x(0) = 4.

- Find all stationary trajectories \mathfrak{B}^* in \mathfrak{B} using the Euler-Lagrange equation.
- Find \mathfrak{B}^* as the set of trajectories of 'minimal dissipation' (as $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$).
- Check if a first order representation of \mathfrak{B}^* results in a Hamiltonian matrix H.
- Compare H with the one linked to the corresponding ARE, and use H to obtain the stabilizing ARE solution (K_{\min} , in our case).

Exercise 5.3 Consider the following circuit.

Figure 1: RC circuit

Let the capacitance C be 1 F and the resistances R_2 and R_C be equal to 3 Ω and 1 Ω respectively. Find the minimum energy required at the port to charge the capacitor to 4 V (from initially discharged state). Also find the maximum energy one can extract out from the port if the capacitor is initially charged to 4 V. Why is it reasonable that the *actual* energy stored is 'exactly in between' the maximum and the minimum storage functions?

6 Autonomous systems

This section contains briefly about autonomous systems to the extent we need for model order reduction. A behavior $\mathfrak{B} \in \mathfrak{L}^{w}$ is called autonomous if

whenever $w_1, w_2 \in \mathfrak{B}$ satisfy $w_1(t) = w_2(t) \Rightarrow w_1 = w_2$.

Theorem 6.1 Let $\mathfrak{B} \in \mathfrak{L}^{w}$ have minimal kernel representation $R(\frac{d}{dt})w = 0$. Then, the following are equivalent.

- 1. \mathfrak{B} is autonomous.
- 2. $R(\xi)$ is square and nonsingular.
- 3. \mathfrak{B} is finite dimensional as a vector space over \mathbb{R} .
- 4. \mathfrak{B} is a finite linear combination of only⁴ exponentials, i.e., assuming for simplicity⁵ det (R) has only real distinct roots $\lambda_1, \ldots, \lambda_N$, with $N = \deg \det R$:

$$w \in \mathfrak{B} \Leftrightarrow w = \sum_{i=1}^{N} a_i v_i e^{\lambda_i} t \text{ for } a_i \in \mathbb{R} \text{ and } v_i \in \mathbb{R}^w \backslash 0.$$

Excepting the (trivial) case when $\mathfrak{B} = \{0\}$, which is both controllable and autonomous, in general, autonomous means uncontrollable. In fact, autonomous means, not just uncontrollable, but in fact, controllable-part equal to zero. For this course, we stick to just controllable behaviors \mathfrak{B} for the purpose of model-order reduction, but $\mathfrak{B} \cap \mathfrak{B}^{\perp_{\Sigma}}$ will be autonomous (under strict dissipativity assumptions, etc.: as mentioned in Theorem 5.1).

7 LMI, ARE and Hamiltonian matrix H

For three key supply rates $x^TQx + u^TRu$ (the LQ problem), u^Ty (passivity) and $\gamma^2 u^T u - y^T y$ (\mathcal{L}_{∞} norm at most γ), we list the LMI, ARE and Hamiltonian matrix. In each case, assume $\frac{d}{dt}x = Ax + Bu$ and y = Cx + Du is a minimal state space realization (i.e. controllable and observable realization). The LMI can be obtained by x^TKx as a storage function. The ARE is obtained by taking Schur complement w.r.t. the lower right block (say, P, the one corresponding to u^TPu) and the Hamiltonian matrix is constructed from the ARE as elaborated in [TSH02, Section 13.4].

 $^{^{4}}$ In 'exponential functions', we allow sinusoids and cosinusoids (due to complex exponents) and also polynomial combination of exponentials (when repeated roots).

⁵Real roots ensures no sinusoids/cosinusoids, and distinct ensures no polynomials required: see [PW98] for the general autonomous case.

(Some signs might not be correct. Please read critically. -Madhu)

Supply
rateLMIP (the dissipation
at
$$\infty$$
 frequency)H $\begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix}$ $\begin{bmatrix} A^T K + KA - Q \ KB \\ B^T K & -R \end{bmatrix}$ R $\begin{bmatrix} A & Q \\ B^T R^{-1}B & -A^T \end{bmatrix}$ $\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}$ $\begin{bmatrix} A^T K + KA \ KB - C^T \\ B^T K - C & -(D + D^T) \end{bmatrix}$ $(D + D^T)$ $\begin{bmatrix} A - BP^{-1}C \ BP^{-1}B^T \\ -C^T P^{-1}C & -(A - BP^{-1}C)^T \end{bmatrix}$ $\begin{bmatrix} \gamma^2 I & 0 \\ 0 & -I \end{bmatrix}$ $\begin{bmatrix} A^T K + KA + C^T C \ KB + C^T D \\ D^T C + B^T K \ D^T D - \gamma^2 I \end{bmatrix}$ $(\gamma^2 I - D^T D)$ $\begin{bmatrix} A + BP^{-1}D^T C \ -C^T P^{-1}C \ -(A + BP^{-1}D^T C)^T \end{bmatrix}$

References

- [Ant05] A. Antoulas. A new result on passivity preserving model reduction. Systems & Control Letters, 54:361–374, 2005.
- [GLR05] I. Gohberg, P. Lancaster, and L. Rodman. Indefinite Linear Algebra and Applications. Birkhauser, Basel, 2005.
- [JPKB13] S. C. Jugade, D. Pal, R.K. Kalaimani, and M.N. Belur. Stationary trajectories, singular hamiltonian systems and ill-posed interconnection. In *Proceedings of the IEEE European Control Conference (ECC)*, pages 1740–1745, Zurich, Switzerland, 2013.
- [KBAR14] S. Karikalan, M. N. Belur, C. D. Athalye, and R. A. Razak. Uncontrollable dissipative systems: observability and embeddability. *International Journal of Control*, 87(1):101–119, 2014.
- [MTR09] H. B. Minh, H. L. Trentelman, and P. Rapisarda. Dissipativity preserving model reduction by retention of trajectories of minimal dissipation. *Mathematics of Control*, *Signals and Systems*, 21(3):171–201, 2009.
- [PW98] J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems Theory: a Behavioral Approach. Springer-Verlag, New York, 1998.
- [Sor05] D. C. Sorensen. Passivity preserving model reduction via interpolation of spectral zeros. Systems & Control Letters, 54:347–360, 2005.
- [TSH02] H.L. Trentelman, A. A. Stoorvogel, and M. Hautus. Control theory for linear systems. In Communications and Control Engineering Series. Springer, 2002.
- [Wil97] J.C. Willems. On interconnections, control and feedback. *IEEE Transactions on Automatic Control*, 42:326–339, 1997.

[WT98] J.C. Willems and H.L. Trentelman. On quadratic differential forms. SIAM Journal on Control and Optimization, 36:1703–1749, 1998.