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Outline

More analogies with indefinite linear algebra

Lossless systems, orthogonal complement, dual/adjoint
systems

Hamiltonian matrices, trajectories of minimal dissipation

Remaining behavioral-notation

Dissipativity-preserving model-order reduction
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Subspaces of Rw

Consider subspace V ⊂ Rw and
symmetric and nonsingular Σ ∈ Rw×w

(Think initially Σ = diag (1, 1, 1, . . . ,−1,−1,−1, . . . ).)

V is Σ-non-negative ⇒ dim(V) 6 σ+(Σ)

V is Σ-neutral ⇒ Σ is indefinite (unless V = 0)

V ∩ V⊥ = 0

V⊕ V⊥ = Rw and dim(V) + dim(V⊥) = w

V⊥Σ = (ΣV)⊥ = Σ−1V⊥

V is strictly Σ-non-negative ⇔ V is Σ-positive

Suppose dim(V) = σ+(Σ) (then dim(V⊥Σ) = σ−(Σ))

V is Σ-positive ⇔ V⊥ is -Σ−1-positive ⇔ V⊥Σ is -Σ-positive

V is Σ-neutral ≡ B is Σ-lossless
all-pass, ∂Φ′(ξ) = 0
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For behaviors B ⊂ C∞(R,Rw)

The orthogonal complement of B (in C∞(R,Rw)): B⊥

Adjoint system, dual system, co-state dynamics
(Dual Riccati: for the dual system)
Suppose Σ ∈ Rw×w is symmetric and nonsingular. B⊥Σ just
‘normalization’ w.r.t. Σ.

Number of inputs of B (i.e. m(B)): column rank of
M(ξ) (Image representation w = M( d

dt
)`)

B is Σ-dissipative ⇒ m(B) 6 σ+(Σ)

B + B⊥ = C∞(R,Rw), though not direct sum

B ∩B⊥ 6= {0}, the intersection is ‘thin’

Intersection is autonomous, i.e. finite dimensional

B ∩B⊥∩D= {0}
Intersection has dynamics d

dt
x = Hx, for a Hamiltonian

matrix H.

(H is called Hamiltonian if HT ∼ −H)

Intersection: central role in model-order reduction
(dissipativity preserving)
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Lossless and orthogonality

B1 and B2 (both controllable) are Σ-orthogonal :⇔∫
R
wT

1 Σw2dt = 0 for all w1 ∈ B1, w2 ∈ B2 ∩D.

B1 ⊥Σ B2 ⇔ B1 ×B2 is lossless with respect to

[
0 Σ
Σ 0

]

Note: the Cartesian product B1 ×B2 ⊆ C∞(R,R2w),
(w1, w2) ∈ B1 ×B2 ⇔ w1 ∈ B1 and w2 ∈ B2.

In general, m(B1) + m(B2) 6 w
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B ∩B⊥Σ =: B∗

More generally, B ∩B⊥Σ =: B∗

B∗: trajectories in B of ‘minimal dissipation’
(Minh, Trentelman & Rapisarda: MCSS 2009)

Retain a lower dimension of B∗ into the reduced order
model

Restriction on B (to B∗) can also be achieved by forcing
` to satisfy equations (instead of free/generic):

w = M(
d

dt
)` and ∂Φ′(

d

dt
)` = 0.

(In general, view additional laws as a controller:
feedback? controller)

Is intersection autonomous? Is det ∂Φ′(ξ) ≡ 0?

Belur Lecture 13 6/11



B ∩B⊥Σ =: B∗

More generally, B ∩B⊥Σ =: B∗

B∗: trajectories in B of ‘minimal dissipation’
(Minh, Trentelman & Rapisarda: MCSS 2009)

Retain a lower dimension of B∗ into the reduced order
model

Restriction on B (to B∗) can also be achieved by forcing
` to satisfy equations (instead of free/generic):

w = M(
d

dt
)` and ∂Φ′(

d

dt
)` = 0.

(In general, view additional laws as a controller:
feedback? controller)

Is intersection autonomous? Is det ∂Φ′(ξ) ≡ 0?

Belur Lecture 13 6/11



At maximality

Suppose m(B) = σ+(Σ) (then m(B⊥Σ) = σ−(Σ))

• B is Σ-dissipative ⇔ B⊥Σ is -Σ-dissipative

• B is strictly Σ-dissipative ⇔ B⊥Σ is strictly -Σ-dissipative

• B is strictly Σ-dissipative ⇒ ARE has a solution K

• B⊥Σ is strictly -Σ-dissipative ⇒ ‘Dual ARE’ has a solution
P (say)

•With careful state-space basis choice, ARE solutions
−K−1 = Dual ARE solutions P

References:

Section 10 of QDF paper by Willems & Trentelman,
1998, SIAM Journal on Control & Optimization

Proposition 12 of Willems & Trentelman (Part I),
IEEE-TAC, 2002 (Synthesis of dissipative systems)
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Non-strict dissipativity

Σ-lossless ⇔ B ⊆ B⊥Σ

Consider system with proper SISO transfer function
G(s) with no poles in CRHP.

‖G(s)‖H∞ > γ ⇔ dissipative with respect to γ2u2 − y2

(· · · > · · · ⇔ strict · · · , etc.)

‖G(s)‖H∞ = γ ⇔ dissipative with respect to γ2u2 − y2,
but

Either γ2I −DTD is singular (lack of strictness at
infinity frequency) or
there exists ω0 ∈ R such that H∞ norm is attained at ω0.

The former case: the Hamiltonian matrix H does not
exist (singular descriptor system)

The latter case: the Hamiltonian matrix H (exists and)
has eigenvalue at ±jω0.
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Strictness

Compared to just dissipativity, strict dissipativity helps
Suppose B ∈ Lw

cont and B is strictly Σ-dissipativity
⇒ ∂Φ′(jω) > 0 for each ω ∈ R.

The P in uT (P )u within the LMI is invertible.
(Dissipativity at ∞ frequency is strict.)

The strict LMI has a solution: feasibility

The ARE and the Hamiltonian matrix H exist

The strict ARI has a solution and Kmax > Kmin

(Scherer)

In fact, H has no eigenvalues on the imaginary axis

det ∂Φ′(ξ) has no roots on jR
(Note that det ∂Φ′(ξ) = det(ξI −H): spectral zeros)
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Passivity preserving Model order reduction

Many papers in the literature: Feldman, Freund (1995,
1999 IEEE-TAC), Ober (1998, SIAM Con & Opt),
PRIMA

Based on positive real balancing

‘Simultaneous diagonalization’: similarity transformation
or congruence transformation?
A→ S−1AS or P → STPS

Note that for storage xTKx, state space coordinate
transformation due to S means storage zT (STKS)z.

Find coordinate transformation such that max/min of
ARE/Dual-ARE solutions are ‘balanced’
(Simultaneously diagonalized: Antoulas, SIAM 2004
book)

In this course, passivity preserving model reduction by

‘interpolation at spectral zeros’ (Antoulas/Sorensen:
SCL 2005)
preserving trajectories of minimal dissipation (Minh,
Trentelman, Rapisarda: MCSS 2009)
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Problem formulation

Given B ∈ Lw
cont and symmetric nonsingular Σ ∈ Rw×w

Suppose B is strictly Σ-dissipative and suppose n is the
McMillan degree of B
(McMillan degree: model order: minimum number of states)
Choose k < n. Find B̂ ∈ Lw

cont such that

1 B̂ has McMillan degree at most k

2 m(B̂) = m(B)

3 B̂ is also strictly Σ-dissipative

4 B̂ satisfies B̂∗ ⊂ B∗

(Fourth point: trajectories in B of minimal dissipation are
retained into B̂)
(Problem formulation correct except for stability aspect)
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