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Outline

Remaining behavioral-notation and

(Half-line) dissipativity definition and results

Dissipativity-preserving model-order reduction
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Half-line dissipativity: Σ = ΣT ∈ Rw×w

Recall a behavior B ∈ Lw
cont was called Σ-dissipative if∫

R
wT Σwdt > 0 for all w ∈ B ∩D.

Call B dissipative on R− if for all w∈B∩D and for all T∫ T

−∞
wT Σwdt > 0.

(‘bounded from below’)
(like physical storage)

and on R+ if
∫∞
T
wT Σwdt > 0.

dissipative ⇔ ∃ storage function QΨ(w)

dissipative on R− ⇔ ∃ storage function QΨ(w) > 0

dissipative on R+ ⇔ ∃ storage function QΨ(w) 6 0
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Stability and half-line dissipativity

When supply rate Σ equals γ2uTu− yTy and
for system with input u and output y
(Case of maximal input cardinality: m(B) = σ+(Σ))

dissipativity on R− ⇔
transfer matrix is stable
(no poles in CRHP)

B is Σ-dissipative on R− ⇔ B⊥Σ is −Σ-dissipative on R+

Dissipativity on R− ⇔ maximum storage function
QΨmax(w) > 0 (i.e. Kmax > 0)
(QΨmax(w): ‘required supply’)

Dissipativity on R+ ⇔ minimum storage function
QΨmin(w) 6 0 (i.e. Kmin 6 0)
(QΨmin(w): ‘available storage’)
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Kernel/image ‘dimensions’

Assume B ∈ Lw
cont has minimal kernel representation

R( d
dt

)w = 0

(Full row rank R(ξ)) and image representation w = M( d
dt

)`

WLOG, choose M(ξ) such that M(λ) is full column rank
for all λ ∈ C.
(` is ‘observable’ from w, also M is called ‘right-prime’)

R(ξ) = [P (ξ) Q(ξ)] with det(P (ξ)) 6= 0 and w = (y, u),
then transfer matrix from u to y is G(s) = −P (s)−1Q(s).

Number of rows in R = number of outputs

Number of columns in M = number of inputs
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McMillan degree

Again assume controllable B, and R is left-prime and M is
right-prime

Corresponding to w = (y, u), also partition

M(ξ) =

[
Y (ξ)
U(ξ)

]
, G(s) = −P (s)−1Q(s) = Y (s)U(s)−1

(left/right (polynomial) coprime factorization of G(s))

Amongst all maximal nonsingular minors P in
R(ξ) = [P (ξ) Q(ξ)], find one with maximum
determinantal degree: n(B): McMillan degree

Ensures G(s) is proper: detU(s) has same degree, and is
also maximum

n(B): least number of ‘states’ (defined using a
‘concatenability’ axiom)
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Few more ‘convenient’ representations

Interested in w-behavior: manifest behavior B ⊆ C∞(R,Rw):
kernel representations
but conveniently

image representations: ‘free’ ` generates all trajectories

state representations: state x ‘being equal’ allows
concatenation of trajectories

powerful/efficient/accurate manipulation of constant
matrices: (E,A,B,C,D)

E d
dt
x+ Fx+Gw = 0 and

(
d
dt
x = Ax+Bw1,

w2 = Cx+Dw1

)
⇔ transfer matrix w1 → w2 is proper

(last one: i/s/o representation)
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Output nulling and driving variable (state)
representations

Interested in w only.
Dummy variables: x and d (with additional properties)

•
x = Ax+Bd and w = Cx+Dd (driving variable (d.v.)),
•
x = Ax+Bw and 0 = Cx+Dw (output nulling (o.n.)),

Just like B = kerR( d
dt

) ⇔ B⊥ = image R(− d
dt

)T ,

Can jump between i/s/o representations of B and B⊥

and d.v. representation of B and o.n. of B⊥ (and B⊥Σ)
We seek least number of variables in d, and in x:
‘observability’, ‘trimness’
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Model order reduction

Given B ∈ Lw
cont and symmetric nonsingular Σ ∈ Rw×w

Suppose B is strictly Σ-dissipative on R− and suppose n is
the McMillan degree of B
Choose k < n. Find B̂ ∈ Lw

cont such that

1 B̂ has McMillan degree at most k

2 m(B̂) = m(B)

3 B̂ is also strictly Σ-dissipative on R−
4 B̂ satisfies (B̂∗)anti−stab ⊂ B∗

(Fourth point: trajectories in B of minimal dissipation are
retained into B̂)
B∗ = M( d

dt
) ker ∂Φ′( d

dt
) and

strict dissipativity ⇔ no jR roots of det ∂Φ′(ξ)
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Algorithm

Proposed by Sorensen, SCL 2005, and as interpreted in
Minh, Trentelman & Rapisarda (MCSS, 2009)

wT Σw = uTy, w = (u, y)
d
dt
x = Ax+Bu, and y = Cx+Du for B, and hence

B⊥Σ represented by d
dt
z = −AT z + CTu, y = BT z −DTu

(Try d
dt
xT z

?
= uTy)

Interconnecting (& assuming strict passivity ⇒D +DT >0)[
ẋ
ż

]
= H

[
x
z

]
and

[
u
y

]
= L

[
x
y

]
with H and L respectively as

[
A−B(D+DT )−1C B(D+DT )−1BT

−CT (D+DT )−1C −AT +CT (D+DT )−1BT

]
,
[
−(D+DT )−1C (D+DT )−1BT

C−D(D+DT )−1C D(D+DT )−1BT

]
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ż

]
= H

[
x
z

]
and

[
u
y

]
= L

[
x
y

]
with H and L respectively as

[
A−B(D+DT )−1C B(D+DT )−1BT

−CT (D+DT )−1C −AT +CT (D+DT )−1BT

]
,
[
−(D+DT )−1C (D+DT )−1BT

C−D(D+DT )−1C D(D+DT )−1BT

]

Belur Lecture 14 10/13



Algorithm: continued

Choose anti-Hurwitz R ∈ Rk×k (from ORHP spectral zeros)
and corresponding real X and Y such that

H

[
X
Y

]
=

[
X
Y

]
R.

Strict dissipativities ⇒ X and Y are both full column rank.
They are ‘part’ of maximal ARE solution (known to be
symmetric), same argument helps XTY ∈ Rk×k being
symmetric and positive definite.

Obtain XTY = QS2QT with QT = Q−1, and S diagonal.

Define V := XQS−1 and W := Y QS−1,

Â := W TAV , B̂ := W TB, Ĉ := CV and D̂ := D

Define reduced order system (Â, B̂, Ĉ, D̂).

Belur Lecture 14 11/13



Algorithm: continued

Choose anti-Hurwitz R ∈ Rk×k (from ORHP spectral zeros)
and corresponding real X and Y such that

H

[
X
Y

]
=

[
X
Y

]
R.

Strict dissipativities ⇒ X and Y are both full column rank.
They are ‘part’ of maximal ARE solution (known to be
symmetric), same argument helps XTY ∈ Rk×k being
symmetric and positive definite.

Obtain XTY = QS2QT with QT = Q−1, and S diagonal.

Define V := XQS−1 and W := Y QS−1,
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Some verifications

W TV is identity matrix and
WV T satisfies (WV T )2 = WV T

?? XTY is the largest ARE solution of the reduced system??
Recall: we sought B̂:

1 B̂ has McMillan degree at most k

2 m(B̂) = m(B)

3 B̂ is strictly Σ-dissipative on R−
4 B̂ satisfies (B̂∗)anti−stab ⊂ B∗

With X̂ := Ŷ := SQT (Sorensen, SCL-’05), Minh, et al gets

Ĥ

[
X̂

Ŷ

]
=

[
X̂

Ŷ

]
R

Further, L̂X̂ = LX and L̂Ŷ = LY give (B̂∗)anti−stab ⊂ B∗
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Pick and Löwner matrices: Antoulas, SCL, 2005

Lagrange interpolating polynomials

Rational interpolant with degree constraint → ‘Löwner’
matrices

Link with Nevanlinna Pick interpolation problem

Given N pairs (xi, yi) ∈ C2, find p.r. interpolant G(s)

Pick matrix Π with Πij defined as

yi + y∗j

xi + x∗j
and

1− wiw
∗
j

xi + x∗j
and

1− wiw
∗
j

1− ziz∗j

depending on P.R., B.R. (OLHP), B.R. (|z| = 1), with

wi :=
1− yi
1 + yi

and zi :=
1− xi

1 + xi

“Model reduction by interpolating at (some) spectral zeros”
“Pick matrix ≡ minimum energy required across trajectories
in kerA( d

dt
)” (QDF, Willems & Trentelman, SIAM 1998)
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