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Outline

o Remaining behavioral-notation and
o (Half-line) dissipativity definition and results

o Dissipativity-preserving model-order reduction
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Half-line dissipativity: ¥ = T € R¥X¥

o Recall a behavior 8 € £7 . was called X-dissipative if
/'wTE'wdt >0 forallweBnNID.
R

o Call B dissipative on R_ if for all weBND and for all T

T
/ wT Swdt > 0.

—o0
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o Recall a behavior 8 € £7 . was called X-dissipative if

/'wTE'wdt >0 forallweBnNID.
R

Call 8 dissipative on R_ if for all w e BN®D and for all T

T ¢ 9
T (‘bounded from below?)
/ w” Xwdt >0 (like physical storage)

—o0

and on R if [° wTSwdt > 0

dissipative < 3 storage function Qg (w)

dissipative on R_ < 3 storage function Qg (w) > 0
<0

dissipative on Ry < 3 storage function Qg (w)
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Stability and half-line dissipativity

When supply rate 3 equals v2uTu — yTy and
for system with input v and output y

(Case of maximal input cardinality: mn(8) = o4(X))

transfer matrix is stable

o dissipativity on R_ & (no poles in CRHP)
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Stability and half-line dissipativity

When supply rate 3 equals v2uTu — yTy and
for system with input v and output y
(Case of maximal input cardinality: mn(8) = o4(X))
o dissipativity on R_ <> transfer matrix is stable
p y - (no poles in CRHP)
o B is Y-dissipative on R_ & B1= is —S-dissipative on R
Dissipativity on R_ < maximum storage function
Qu,. . (w) >0 (i.e. Kmax > 0)
(Qu,... (w): ‘required supply’)
Dissipativity on R} < minimum storage function
Qq;min (w) § 0 (i.e. Kmin § 0)
(Qu,,, (w): ‘available storage’)
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Kernel/image ‘dimensions’

Assume B € £7_ .

R(%)w =0

(Full row rank R(£)) and image representation w = M(%)é
e WLOG, choose M (&) such that M () is full column rank

for all A € C.
(£ is ‘observable’ from w, also M is called ‘right-prime?)

° R(§) = [P(§) Q(&)] with det(P(£)) # 0 and w = (y, u),
then transfer matrix from u to y is G(s) = —P(s)71Q(s).

has minimal kernel representation

o Number of rows in R = number of outputs

o Number of columns in M = number of inputs
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McMillan degree

Again assume controllable 8, and R is left-prime and M is
right-prime

e Corresponding to w = (y, u), also partition

M@ = (8] 66 = =P Q) = Y (U )

(left /right (polynomial) coprime factorization of G(s))

o Amongst all maximal nonsingular minors P in
R(&) = [P(&) Q(&)], find one with maximum
determinantal degree: n(®8): McMillan degree

o Ensures G(s) is proper: det U(s) has same degree, and is
also maximum

o n(B): least number of ‘states’ (defined using a
‘concatenability’ axiom)

BELUR LECTURE 14 6/13



Few more ‘convenient’ representations

Interested in w-behavior: manifest behavior 8 C €°° (R, R"):
kernel representations
but conveniently

o image representations: ‘free’ £ generates all trajectories

o state representations: state x ‘being equal’ allows
concatenation of trajectories

e powerful/efficient /accurate manipulation of constant
matrices: (E, A, B,C, D)
E%w—l—Fw—i—Gw:Oand

E:B = Ax + Bw,, N
wg = Cx + Dw;
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Interested in w-behavior: manifest behavior 8 C €°° (R, R"):
kernel representations
but conveniently
o image representations: ‘free’ £ generates all trajectories
o state representations: state x ‘being equal’ allows
concatenation of trajectories
e powerful/efficient /accurate manipulation of constant
matrices: (E, A, B,C, D)
E%w—l—Fw—i—Gw:Oand

E:B = Ax + Bw,,
wg = Cx + Dw;

(last one: i/s/o representation)

) &< transfer matrix w; — ws is proper
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Output nulling and driving variable (state)
representations

Interested in w only.
Dummy variables: « and d (with additional properties)

x+ Bd and w = Cx+ Dd (driving variable (d.v.)),

[ ]
x =
&= Az + Bw and 0= Cz+ Dw (output nulling (o0.n.)),

Just like B = ker R( ;) & B = image R(_%)T’
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Output nulling and driving variable (state)
representations

Interested in w only.
Dummy variables: « and d (with additional properties)

& =Ax + Bd and w=Cxz+ Dd (driving variable (d.v.)),
&= Az + Bw and 0= Cz+ Dw (output nulling (o0.n.)),
Just like 9B = ker R( L) < B+ = image R(—%)T,

Can jump between i/s/o representations of B and B~

and d.v. representation of 8 and o.n. of B+ (and B-1=)
We seek least number of variables in d, and in x:
‘observability’, ‘trimness’

BELUR LECTURE 14 8/13



Model order reduction

Given B € £! . and symmetric nonsingular 3 € R"*¥
Suppose B is strictly 3-dissipative on R_ and suppose n is
the McMillan degree of B
Choose k < n. Find 6 € £7_ . such that

@ B has McMillan degree at most k

Q n(B) = n(B)

@ ‘B is also strictly X-dissipative on R_

Q B satisfies (%*)anti_stab C B*
(Fourth point: trajectories in B of minimal dissipation are
retained into B)
B* = M(2L)ker 89'(2L) and
strict dissipativity < no jR roots of det 9®’(£)
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Algorithm

Proposed by Sorensen, SCL 2005, and as interpreted in
Minh, Trentelman & Rapisarda (MCSS, 2009)

w'Sw = uly, w = (u,y)
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Algorithm
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4y = Ax + Bu, and y = Cx 4+ Du for 28, and hence
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Algorithm

Proposed by Sorensen, SCL 2005, and as interpreted in
Minh, Trentelman & Rapisarda (MCSS, 2009)

wSw = uTy, w = (u,y)
E:c = Az + Bu, and y = Cx + Du for 28, and hence
B-L= represented by —z =—-AT24CTu,y = BTz — DTu
(Try 2272 Z uTy)

Interconnecting (& assuming strict passivity = D + DT >0)

[ﬂ =H [ﬂ and [u} =1L {m} with H and L respectively as
z z Yy Yy

A-B(D+D*)"'C  B(D4D™)" BY —(p+DpT)~'Cc  (D+DT)"'BT
—CcT(D+DT)"'c —AT4+CT(D+DT) BT Cc—-D(D+DT)"c D(D+DT)"1BT
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Algorithm: continued

Choose anti-Hurwitz R € R¥** (from ORHP spectral zeros)
and corresponding real X and Y such that

X X
aly) =¥ =
Strict dissipativities = X and Y are both full column rank.
They are ‘part’ of maximal ARE solution (known to be

symmetric), same argument helps XTY € R¥*Xk being
symmetric and positive definite.
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Algorithm: continued

Choose anti-Hurwitz R € R¥** (from ORHP spectral zeros)
and corresponding real X and Y such that

X X
aly) =¥ =
Strict dissipativities = X and Y are both full column rank.
They are ‘part’ of maximal ARE solution (known to be

symmetric), same argument helps XTY € R¥*Xk being
symmetric and positive definite.

Obtain XTY = QS?Q” with QT = Q~', and S diagonal.
Define V := XQS~ ! and W :=YQS 1,

o A:=WTAV,B:=WTB,C :=CV and D := D

o Define reduced order system (fi, B,C, f))

(]
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Some verifications

WTV is identity matrix and

WVT satisfies (WVT)2 = wvT

?? XTY is the largest ARE solution of the reduced system??
Recall: we sought B:

@ B has McMillan degree at most k
Q n(B) = n(B)
@ °*B is strictly ¥-dissipative on R_
Q B satisfies (%*)anti_stab C B*
With X :=Y := SQT (Sorensen, SCL-’05), Minh, et al gets

aly] =[5

Further, LX = LX and LY = LY give (%*)ami_stab C B*
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Pick and Lowner matrices: Antoulas, SCL, 2005

Lagrange interpolating polynomials

o Rational interpolant with degree constraint — ‘Lowner’
matrices

Link with Nevanlinna Pick interpolation problem
Given N pairs (z;,y;) € C2, find p.r. interpolant G(s)
o Pick matrix Il with Il;; defined as

(]

Yi +y; 1 — wyw; 1 — w;w?

and and *J

x; + :c’]" x; + :c’]" 1-— ZiZ]
depending on P.R., B.R. (OLHP), B.R. (|z| = 1), with

1—vy; 1—x;
= and z; :=
1+y; 1+ x;

w; ¢

“Model reduction by interpolating at (some) spectral zeros”
“Pick matrix = minimum energy required across trajectories
in ker A(%)” (QDF, Willems & Trentelman, STAM 1998)
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