
Preliminaries about behaviors
Lecture date: 9th May, 2014. Notes updated on 11th May

We will use behaviors to make ARE study easier. Behavioral techniques help in shifting

from one ‘representation’ to another:

Representation ≡ system equations

Dissipativity (and storage functions) conveniently links: Algebraic Riccati Equations

(ARE) (and ARI), Linear Matrix Inequalities (LMI), Hamiltonian matrix, Stationary tra-

jectories, Euler Lagrange equations, and many more.

Some special cases of dissipativity: passivity, H∞-norm, sector nonlinearity

Different system representations: kernel, image, state-space, transfer function matrix

In transfer function matrix: right-coprime factorization (same as image represenation)

left-coprime factorization (same as kernel represenation modulo controllable)

Throughout these lectures:

m: number of inputs, p: number of outputs

w: number of ‘manifest’ variables: typically m + p

n: (minimum) number of states (McMillan degree)

G(s) ∈ Rp×m(s), G(s) = P (s)−1Q(s) = V (s)U(s)−1

with P,Q, U, V ∈ R•×•[s]. More precisely, P,Q ∈ Rp×•[s] and U, V ∈ R•×m[s].

1 Behavior

A ‘system’ is nothing but the set of trajectories that the system allows. The system

‘behavior’ is the set of allowed trajectories, i.e. those that the system laws allow. Suppose

the system variables are w.

B := {w ∈ C∞(R,Rw) | w satisfies the system laws }.

C∞: trajectory is infinitely often differentiable: primarily for convenience. Some notions

do depend on the signal space used. L1
loc is another frequently used space: this includes

step, ramp and other such signals.

For model order reduction, C∞ is good enough.

Example:

Consider system with transfer function G(s) = s−1
s−8 , with input u and output y. Then,

w =

[
u

y

]
and B = {w ∈ C∞(R,R2) | d

dt
u− u− d

dt
y + 8y = 0}
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Kernel representation: define R(ξ) ∈ R1×2[ξ] by R(ξ) = [ξ−1 8−ξ]. Then, B = ker R( d
dt

),

with signal space being C∞.

All linear time-invariant ‘lumped’ (ordinary) differential equations can be written as

such a set of differential equations R( d
dt

)w = 0, with R(ξ) ∈ Rp×w[ξ]. Note that number of

equations is p (number of rows of R(ξ)) and number of variables is w: number of columns

of R(ξ).

Consider again a set of differential equations R( d
dt

)w = 0.

‘Elementary row operations’ on R do not change the set of solutions.

• Interchange two rows of R: premultiply R by (more generally) a permutation matrix1.

• Multiply an equation by a nonzero constant: premultiply R by diagonal nonsingular

constant matrix

• Differentiate an equation and add to another equation: premultiply by matrix P

which has just one entry (say (i, j)-th entry) different from the identity matrix:

P (i, j) = p(ξ), inj.

Any number and sequence of above three types of operations do not change the set of

solutions/system-behavior. ‘Sequence’ here refers to product of the corresponding matrices.

A matrix U(ξ) ∈ Rp×p[ξ] is called unimodular if its determinant is a nonzero constant.

Theorem 1.1 Let U ∈ Rp×p[ξ]. Then the following are equivalent.

• U is unimodular.

• U can be written as a (non-unique) product of elementary matrices.

• The inverse of U exists and is (not just rational, but in fact) polynomial

In this lecture we also saw the Smith canonical form, (normal) rank of a polynomial

matrix, unimodular completion and its link with the Bezout identity (as a special case).

Exercises will be in the lecture notes of lecture 10.

Suggested reading: [Kai80] for elaborate treatment on polynomial matrices and the

Smith canonical form. Please see [PW98] for behavioral theory and a systematic algorithm

to obtain the Smith canonical form. A relatively concise introduction to behaviors can be

found in research papers, for example, [MTR09, WT98]

1A square matrix P is called a permutation matrix if each row has exactly one entry equal to one, and

rest all zero, and further, each column also satisfies this property.

2



References

[Kai80] T. Kailath. Linear Systems. Englewood Cliffs, Prentice-Hall, 1980.

[MTR09] H. B. Minh, H. L. Trentelman, and P. Rapisarda. Dissipativity preserving model

reduction by retention of trajectories of minimal dissipation. Mathematics of

Control, Signals and Systems, 21(3):171–201, 2009.

[PW98] J.W. Polderman and J.C. Willems. Introduction to Mathematical Systems The-

ory: a Behavioral Approach. Springer-Verlag, New York, 1998.

[WT98] J.C. Willems and H.L. Trentelman. On quadratic differential forms. SIAM

Journal on Control and Optimization, 36:1703–1749, 1998.

3


