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Outline

Behavioral view

Input/output models

Kernel representation
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State space, transfer functions, behavioral approach

We have had input/output models (transfer function)

Then, we have state space

And now, behavioral approach

Are they ‘competing’?
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Multiple views can only help

Figure: Source unknown, shared by Waghulde
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Brief comparisons

Input/output classification of variables often un-natural.
(Resistor, capacitor, spring, mass, damper)

System ≡ signal processor: input/output ideal

Causality also helps classify
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Key advantages of behavioral viewpoint

Causality: relevant when time is the independent
variable

For control of PDEs, behavioral viewpoint yielded
controllability definition
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Key advantages of i/o viewpoint

Low-pass filter, band-pass filter (Bode plots)

Bode plot helps calculate gain/phase margins

Recall: Nyquist plot helps understand gain/phase
margins
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Dissipativity

Energy exchange not necessarily linked to input/output
classification

Dissipativity studies: since early 1970s

Behavioral approach: ∼ 1987

Riccati equations: easier to follow

Key work by Megretski and Rantzer on Integral
Quadratic Constraints
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Throughout these lectures:
m: number of inputs, p: number of outputs
w: number of ‘manifest’ variables: typically m + p

n: (minimum) number of states (McMillan degree)

G(s) ∈ Rp×m(s), G(s) = P (s)−1Q(s) = V (s)U(s)−1

with P,Q,U, V ∈ R•×•[s]. More precisely, P,Q ∈ Rp×•[s] and
U, V ∈ R•×m[s].
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A ‘system’ is nothing but the set of trajectories that the
system allows.

The system ‘behavior’ is the set of allowed trajectories,
i.e. those that the system laws allow. Suppose the
system variables are w.

B := {w ∈ C∞(R,Rw) | w satisfies the system laws }.

C∞: trajectory is infinitely often differentiable:
primarily for convenience.

Some notions do depend on the signal space used. L1
loc is

another frequently used space: this includes step, ramp
and other such signals.

For dissipativity-preserving model order reduction, C∞

is fine.
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Consider again a set of differential equations R( d
dt

)w = 0.
‘Elementary row operations’ on R do not change the set of
solutions.

Interchange two rows of R: premultiply R by (more
generally) a permutation matrix

Multiply an equation by a nonzero constant: premultiply
R by diagonal nonsingular constant matrix

Differentiate an equation and add to another equation:
premultiply by matrix P which has just one entry (say
(i, j)-th entry) different from the identity matrix:
P (i, j) = p(ξ), i 6= j.
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Any number and sequence of above three types of operations
do not change the set of solutions/system-behavior.
‘Sequence’ here refers to product of the corresponding
matrices.
A matrix U(ξ) ∈ Rp×p[ξ] is called unimodular if its
determinant is a nonzero constant.

Theorem

Let U ∈ Rp×p[ξ]. Then the following are equivalent.

U is unimodular.

U can be written as a (non-unique) product of elementary
matrices.

The inverse of U exists and is (not just rational, but in fact)
polynomial
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Other topics covered in Lecture 9

We also saw

the Smith canonical form of a polynomial matrix

(normal) rank of a polynomial matrix

unimodular completion (of a wide, nonsquare matrix)
and its special case: Bezout identity

Input/output partitions
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