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Abstract

In this paper we study control by interconnection of linear
differential systems. We give necessary and sufficient con-
ditions for regular implementability of a given linear differ-
ential system. We formulate the problems of stabilization
and pole placement as problems of finding suitable, reg-
ularly implementable sub-behaviors of the manifest plant
behavior. The problem formulations and their resolutions
are completely representation free, and specified in terms
of the system dynamics only. Control is viewed as regular
interconnection. A controller is a system that copstrains
the plant behavior through a distinguished set of variables,
namely, the control variables. The issue of implementation
of a controller in the feedback configuration and its relation
to regularity of interconnection is addressed. Freedom of
disturbances in a plant and regular interconnection with a
controller also turn out to be inter-related.

Keywords: Behaviors, regular implementability, stabiliza-
tion, pole placement, interconnection, controller implemen-
tation.

1 Introduction and notation

In this paper we discuss the issuc of stabilization of lin-
ear dynamical systems. The problem is studied in the
behavioral context and control is viewed as interconnec-
tion. This view of treating control problems has been
used before in, for example, {15], [7), [3] and [2], iz an
H, control context in [4], [3}, [1], [9]. 10}, [11], [12]
and [13], for adaptive control in [8], and for distributed
systems in [6]. In contrast to [15] where the problems of
stabilization and polc placement were considercd for the
casc that all system variables are available for intercon-
neetion (the so-called full information case), we work in
the gencrality that we are allowed to use only some of
the system variables for the purpose of interconnection.
These variables are called the control variables. Re-
stricting oneself to using only the control variables for
interconnection introduces the issue of implementebility
into the control problem, sce [12] and [8]. In the con-
text of stabilization, an important role is played by the
notion of regular implementability. We establish neces-
sary and sufficicnt conditions for a given behavior to be
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regularly implementable (section 2). This result is then
applicd to solve the problems of stabilization and pole
placement by interconnection (section 3). The general
problem formulation reduces to some important special
cases. Section 4 contains the case of filtering. Imple-
mentation of a controller in a feedback configuration
plays a very prominent role in control theory. This issuc
is addressed in section 5. Finally, in section 6 we give a
motivation for the fact that in our problem formulations
we restrict ourselves to regular interconnections.

We first discuss some of the notation to be used in this
paper, and review some basic facts from the behavioral
approach. We use the standard notation B® for the n-
dimensional real Euclidean space. Often, the notation
R* is used if w denotes a typical elemcent of that vec-
tor space, or a typical function taking its valuc in that
vector space. The ring of (one-variable) polynomials
with real coefficients in the indeterminate £ is denoted
by R[¢]. B™*™[¢] denotes the set of matrices with n,
rows and n, columns in which cach entry is an clement
of R[¢]. We use the notation R**® when the number of
rows is unspecified.

In this paper, we deal with lincar time-invariant differ-
ential systems, in short, lincar differential systems. A
linear differcntial system is defined as a dynamical sys-
tem whose behavior B is equal to the sct of solutions of
a sct of higher order, linear, constant cocfficient differen-
tial cquations. More precisely, there exists a polynomial
matrix B € R***[¢} such that

B = {we LP(RR") | R(L)w =0}

Here, £°¢(R, B¥) denotes the space of locally integrable
functions from R to R¥, and R(adg)w = 0 is understood
to hold in the distributional sense. The set of lincar
differential systems with manifest variable w taking its

value in R is denoted by £°.

We make a clear distinction between the behavior as
defined as the space of all solutions of a set of {dif-
ferential) cquations, and the set of cquations itself. A
set of equations in terms of which the behavior is de-
fined, is called a representation of the behavior. Let
R € R&*¥[£] be a polynomial matrix. If a behavior B
is represented by R(a‘it-)w = 0 then we call this a kernel
representation of *B. Further, a kernel representation is
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said to be minimal if cvery other kernel representation
of B has at least g rows. A given kernel representation,
R(‘f—t)w = 0, is minimal if and only if the polynomial
matrix R has full row rank. Wo speak of a system as
the behavior B, one of whose representations is given
by R(%)w = 0 or just Rw = 0. The ‘&’ is often sup-
pressed to cnhance readability. We will also encounter
behaviors B with manifest variable w, that arc repre-
sented by equations of the form R{$)w = M($)¢, in
which an auxiliary, latent variable € appears. Here, R
and M arc polynomial matrices with the same number
of rows. Through such an equation, we can consider
the subspace of all w € L°¢(R, R*) for which there ex-
ists an £ € LI°°(R, R} such that the equation holds. A
technical detail is that, by itself, this subspace is not
an clement of £%, because it is not a closed subspace
(closed in the topology of L1°°{R, R¥)). Thercfore, we
call R{($)w = M($)€ a latent variable representation
of B if

8= {w c LllocUR'Rv) ' J¢c L!lOC(R’Rl)
such that R( S )w = M(3)e}elore

where the closure is taken in the £°° topology. Then,
by the elimination theorem (see {7], chapter 6, in par-
ticular, theorem 6.2.6), B € £°.

The space of functions that are infinitely often differ-
cntiable with domain R and co-domain RY, is denoted
by €°(R,R*). Let B € £ be represented by the ker-
nel representation R(;'—t)w = 0 with rank{R) < w (which
also means that it is under-detcrmined). Then some
components of w = (wy,ws,...,wy) are unconstrained
by the requirement w € ‘B. These components are
termed as inputs or arc said to be free (in the €
scnse, for the purpose of this paper). The maximum
number of such components is called the input cardinal-
ity of B (denoted as n{*B)). Once m(*8) free components
are chosen, the remaining v — m{®8) components are
determined up to a finite dimcensional affine subspace of
(R, Ry—=(B) ). These are called outputs, and the num-
ber of outputs is denoted by p(B). Thus, possibly after
permutation of components, w € B can be partitioned
as w = (u,y), with the m(B) components of u as inputs,
and the p(*B) components of y as outputs. We say that
{u,y) is an input/output partition of w € *B, with input
4 and output y. The input/output structurc of B € £¥
is reflected in its kernel representations as follows. Sup-
pose R(d%—)w = 0 is a minimal kernel representation of
‘B. Partition R = [Q P), and accordingly w = {w;,ws).
Then w = (w1,w2) is an ifo partition (with input w
and output we) if and only if P is squarc and nonsin-
gular. In gencral, there exist many input/output par-
titions, but the integers m{®8) and p(B) arc invariants
associated with a behavior. It can be verified that p(%8)
is equal to the rank of the polynomial matrix in any (not
neeessarily minimal) kernel representation of B (for de-
tails sce [7])-

A behavior whose input cardinality is equal to 0 is called
autonomous. An autonomous bchavior '8 is said to be
stable, if for all w € B we have w(t) - 0 ast — co.
In the context of stability, we often need to describe
regions of the complex plane €. 'We denote the closed
right-half of the complex plane by C* and the open
left-half complex plane by €. A polynomial matrix
R € R**¥[¢] is called Hurwitz if rank(R({\)) = v for all
AeCt. If B € £° is represented by R(;—t)w = 0 then
B is stable if and only if R is Hurwitz.

For autonomous behaviors, we also speak about poles
of the behavior. Let B € £¥ be autonomous. Then
there exists an R € R**¥[£] such that *B is represented
minimally by R(3)w = 0. We can choose R such that
det(R) is a monic polynomial. This monic polynomial is
denoted by X o and is called the characteristic polyno-
mial of B. It can be shown that X 3 depends only on
B, and not on the polynomial matrix R we used to de-
fine X - The poles of B are defined as the roots of X .
Note that X =1 if and only if ‘B = 0. A behavior is
stable if and only if all its poles are in C~.

Finally, we review the concept of controllability in the
context of the behavioral approach. A behavior B ¢
£7 is controllable if for all wy,we € B, there exists a
T > 0and aw € B such that w(t) = wn(t) fort <0
and w(t + T) = wy(t) for £ > 0. A weaker notion is
stabilizability, which is defined as follows. A behavior
B is stabilizable if for all w; € B, there exists a w € B
such that w{t) = w(t) for t < 0, and w(t) — 0 as
t — 00. Thus every trajectory in a stabilizable behavior
B, can be steered to 0, asymptotically.

Often, we encounter behaviors 8 € £* that are neither
autonomous nor controllable. The controllable part of
a behavior B is defined as the largest controllable sub-
behavior of B. This is denoted by Beont. A given B €
£¥ can always be decomposed as B = Beone © Baue,
where Bone 15 the (unique) controllable part of B, and
Baue is a (non-uniquc) autonomous sub-béhavior of 8.
For details we refer to [7].

We also deal with systems in which the signal space
comes as a product space, with the first component
viewed as an observed, and the seccond as a to-be-
deduced variable. We talk about observability (in such
systems). Given B € £ with manifest variable
w = (wr,ws), wy is said to be oebservable from wun
if (wy,wh), (wr,wy) € B implics wj = wy. Let
Ri(&)w; + Ra(5)wz = 0 be a kernel representation of
8. Then obscrvability of we from w; is equivalent to
R2()) having full column rank for all A € €. The
weaker notion of detectability is defined along similar
lines. Given B € £9%% s is said to be detectable from
wy if (wiy, wh),(wy, wh) € B implies wh (8) —wf (2) — 0 as
t -+ cc. In the above kernel representation, detectabil-
ity of we from w; is equivalent to Ro{)) having full
column rank for all A € Ct. For details, sce [7].
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2 Regular implementability

Suppose we have a plant to be controlled, with two types
of variables. In the given plant, the variables whose tra-
jectorics we intend to shape (called the to-be-controlled
variables), are denoted by w. These to-be-controlled
variables can be controlled through a sct of conirol vari-
ables ¢, over which we can “attach” a controller. These
are the variables, that can be measured and/or actu-
ated upon. Often we have some common components
in w and ¢. We formulate the problem, however, for the
general case, in which we have access to just the control
variables c.

Before the controller acts, there are two behaviors of the
plant that are rclevant: Py (called the full plant behav-
ior) that formalizes the dynamics of the variables w and
¢, and the behavior P {called the manifest plant behav-
ior) that formalizes the dynamics of the to-be-controlled
variables w only. Thus

Prn = {(w,¢) € LY(R,R™) | (w,¢)

satisfies the plant equations },
P = {w € LI’°(R,R") | 3 ¢ such that

(w,¢) € Prun}o™e .

In this paper, we assume that the plant is a lincar dif-
ferential system, i.e. Pray € £%7¢. The particular repre-
sentation by which it is given, is immaterial to us. The
manifest plant behavior P is obtained by climinating ¢
from Pp,n, so, by the climination theorem, F € £¥.

A controlier restricts the trajectories that ¢ can assume
and is described by a controller behavior € € L*:

€={c € LI°(R,R°) | c satisfies the controller equations}.
The full controlled behavier K is obtained by taking

the interconnection of Pr,; and € through the variable
¢ and is defined as:

Kiant = {{w, ) | (w,e) € Pray and ¢ € €}.

CONTROLLER [}

w

Figure 1: The plant and controller after interconnection

The manifest controlled behavior X is obtained from
Krun by climinating ¢ and is defined as:

K = {w |3 ce € such that {w,c} € Prn}™ . (1)

In that case we say that X is implemented by €, or
€ implements X through ¢. A given X € £7 is called
implementable with respect to Pryy by interconnection
through ¢, if there exists a controller € € £°, such that
X is implemented by €. If it is clear from the context,

we often suppress the specifications *w.r.t. Pra’ and
‘through ¢'. An important issue is the question which
I € £* arc implementable, i.c. for which X € £¥ there
cxists a controller € € £° such that (1) holds. A crucial
concept to answer this question is the notion of hidden
behavior: the hidden behavior N is the behavior consist-
ing of the plant trajectories that occur when the control
variables are zero:

N = {we LP(R,R*) | (w,0) € Pan}-

We have access to only the control variables ¢ - hence
the notion of N being hidden from the control variables.

The following proposition from [12] settles the question
of implementability for a given X € £%. We refer to this
proposition as the controller implementability theorem.

Proposition 1 : Let Py € £ be a given full plant
behavior, and let P, N € £¥ be the manifest plant behav-
tor and hidden behavior, respectively. Then X € £¥ is
implementable w.r.t. Pry by interconnection through c
if and only if

NcKc?

In addition to implementability issucs, the hidden be-
havior N plays a rolc in observability and detectability
of Pgan. It can be easily seen that, in Pg,n, w is observ-
able from ¢ if and only if N = 0, and w is detectable
from ¢ if and only if N is stable,

Roughly speaking, for a given Py we want to find a
controller € such that the manifest controlled behavior
X has desired properties. However, we shall restrict
ourselves to €'s such that the interconnection of Pryy
and € is regular. A motivation for this is provided in
scction 6. The interconnection of Pr, and € through ¢
is called regular if

P(Xsun) = p(Prun) + p(€),

i.e., if the output cardinalitics of Pr,y and € add up to
that of Ke.

A given X € £¥ is called regularly éimplementable if there
exists a € € £° such that X is implemented by C, and
if the interconncction of Py and € is reguiar. Simi-
lar to plain implementability, an important question is
under what conditions a given sub-behavior X of P is
regularly implementable. The following theorem is the
main result of this scction, and provides nceessary and
sufficient conditions for this:

Theorem 2 : Let Pry € £, Let P,N € £¥ be the
corresponding manifest plant behavior and hidden be-
hovior respectively. Let Poony be the controllable part of
P. Let X ¢ £°. Then, X is implementable w.r.t. P
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by regqular interconnection through ¢ if and only if the
Jollowing conditions are satisfied:

NCXcCc?
jc+ﬂ)cont:?

The above theorem has two conditions. The first one
is exactly the condition for implementability through ¢
(as in the controller implementability theorem). The
sccond condition formalizes the notion that the au-
tonomous part of P is taken care of by XK. While the au-
tonomous part of P is not unique, Peone 15, This makes
verifying the regular implementability of a given X com-
putable. As a consequence of this theorem, note that
if P is controllable, then X € £° is regularly imple-
mentable if and only if it is implementable.

3 Pole placement and stabilization

In this scction we discuss the problems of pole place-
ment and stabilization. The problem statements and
the theorems involve the behaviors of the plant, etc.
which have been defined in the previous section.

Pole placement problem : Given Pgn € £9F¢, find
conditions under which there exists, and compute, for
every monic 7 € R[¢] a € € £° such that:

e the interconncction of Peyp and € is regular,

o the manifest controlled behavior X has character-
istic polynomial r.

Suppressing the controller € from the problem formula-
tion, the problem can alternatively be stated as:

Given Py, find conditions under which there exists,
and compute, for every monic v € R[¢] a regularly
implementable X € £ such that X o = 7.

When the manifest controlled behavior X is only re-
quired to be stable, we refer to the problem as that of
stabilization.

Stabilization problem : Given Py € £9%<, find con-
ditions for the existence of, and compuic € € £° such
that

e the interconnection of Peyy and € is regular,

o the manifest controlled behavior X is stable.

Again, suppressing the controller € from the formula-
tion, the stabilization problem can be restated as:

Given Py, find conditions for the existence of, and
compute a behavior X € £7 that is stable and regu-
larly implementable.

The main results of this scction arce the following theo-
rems, which establish necessary and sufficient conditions
for pole placcment and stabilization.

Theorem 3 : Let Py € L£°1°. For every monic |
r € R[¢], there exists a regularly implementable X €
£ such that Xoc = r if and only if N =0 and P is
controllable, equivalently, if and only if:

o in Pry, w is observable from c,

o P is controllable.

Theorem 4 : Let P,y € £, There ezists a regu-
larly implementable stable X € £° if and only if N is
stable and P is stabilizable, equivalently, if and only

if:

o in Ppn, w is detectable from ¢,
e P is stabilizable.

Note that, neither in the problem forraulations nor in
the conditions appearing in theorems 3 and 4, do repre-
sentations of the given plant appear. Indeed, our prob-
lem formulations and their resolutions are completcly
representation free, and are formulated purcly in terms
of properties of the behavior Pran. Thus, our treatment
of the pole placement and stabilization problems is gen-
uinely behavioral. Of course, theorems 3 and 4 are ap-
plicable to any particular representation of Py, as well.

In both the stabilization problem and the pole place-
ment problem, we have restricted ourselves to regular
interconnections. We give an explanation for this in sec-
tion 6. At this point we note that if in the above prob-
lem formulations we replace “regularly implementable”
by merely “implementable”, then in the stabilization
problem a necessary and suflicient condition for the ex-
istence of X is that N is stable (equivalently: in Pp,,
w is detectable from ¢). In the pole placcment prob-
lem, necessary and sufficient conditions are that N =0
(i.c., in Pgyu, w is observable from ¢) and that P is not
autonomous.

4 The filtering problem

Our gencral problem formulation of finding a regularly
implementable, stable X € £¥, for a given Pry € £°7¢,
includes also a problem that is, strictly speaking, not a
control problem, but rather a filtering problem.

Consider the set-up of figure 2. The observed plant
Pobs € L£¥TY has two types of variables, w and y.
is a variable that we want to estimete and y is a vari-
able that we measure.

A filteris a system F € £917, with variables (y, w). The

idea is to find a filter F such that in the interconnection
of Pops and F through y (the measured variable),
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to-be-estinated

variables estinmtion
—a— + error
Pow H : €
E H 8
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‘Pobs 1— = ] == — .
(Y Filter ¥ iw
estimate
measure]
variables

Figure 2: Plant and observer configuration

becomes an estimate of w. In order to formalize this,
for a given filter F we define the associated estimation
error behavior & by

& ={ee LP°(R,R*) | 3 w,w,y such that:
('w,y) [ ,Pobsa (y,'lf!) cFande=w— w}closure ] (2)

Here, as before, the ¢losure is taken with respect to the
topology of L1°¢(R, R¥). If £, Pops and F are related via
equation (2}, we say that £ is implemented by the filter
7. Given Pups € £977, a given behavior £ € £¥ is called
smplementable (with respect to Pope) if there exists a
filter F € £°*7 such that & is implemented by F. The
question what €’s arc implementable is answered in the
following lemma. In the following, let N be the hidden
behavior associated with Pops, Le.,

N={w]| (w,0) € Pons}.

Lemma 5 1 Let Pyys € €91, Then we have:

1. The behovior € € £° is wmplementable if and only
ifNcCi.

2. If £ is cutonomous and implementable, it can be
implemented by o filter ¥ € €777 such that, in 5,
y is input and w output.

The problem we want to consider in this section is to
find a filter that makes the estimation error behavior
stable. The following theorem states when such a filter
CXists.

Theorem 6 : Let Py, € £%F7. There exists a filter
F ¢ 97 such that the estimation error £ is stable if
and only if, in Pyps, w is detectable from y. In that case,
there ezists a filter such that the measured variable y is
input and the estimate & is output.

5 Input/output partition

In the classical view of contzol, a controller is, in gen-
cral, considered to be a feedback processor that gencrates
control inputs for the plant on the basis of measured
outputs of the plant. In our set-up, controller behaviors
arc obtained dircctly from the full plant. It is important
to know a priori when such controlled behavior is imple-
mentable by a feedback processor. Results on this have

been obtained in [15], [11] and [12]. We extend these
results here for the problems considered in this paper.

Qur first result states that f X € £¥ is regularly im-
plementable and autonomous (so, in particular, if it is
stable or has prescribed characteristic polynomial), then
for any controller € € £° that implements K there ex-
ists a partition of the control variable ¢ such that the
interconnection of Py, and € is, in fact, a feedback in-
terconncection:

|

Figure 3: Feedback interconnection of P and €

Theorem 7 : Let Py € £%7°. Let X € L be au-
tonomous and regularly implementable through ¢, and
let € € £° be a controller that regularly implements X.
Then, possibly after permuting its comnponents, there ez-
ists a partition of ¢ into ¢ = (y, w1, uz) such thet:

o for {(w,y,21,u2) € Pran, (w1,u2) is input ond (w,y)
is output,

o for (y,u1,uz) € C, (., u2) 1s input and u; s oulpul,

o for (w,y,u1,u2) € Ky, ua is input and (w,y,u;) is
outpul.

As a special case, when Ky, is autonomous, we inter-
pret we as having zero components. Figure 3 depicts
how the control variables are partitioned into inputs and
outputs in order to implement the controller behavior
in a feedback configuration.

The above theorem assigns an input/output partition
without modifying the controller itself. Often, we are
not allowed to choose an input/output partition, be-
cause we are given a priori that some variables are sen-
sors, while others are actuators, Hence, necessarily, the
sensors are plant outputs and should, correspondingly,
be controller inputs. The actuators, then, arc inputs
to the plant. In the following theorem we show that
if our plant Prpn has an a priort given input/output
structurc with respeet to sensors and actuators, and if
K € £¥ is regularly implementable and autonomous,
then X can be regularly implemented by a controller
€ € £° that takes the sensors as input, and actuates
part of the plant actuators. Since Kpyy is again not
nccessarily antonomous, some control variabies remain
frce. These can be interpreted as plant actuators which
are not being used for the control of the to-be-controlled
variables.

3483



Theorem 8 : Let Py, € L¥H7H9 with to-be-controlled
variable w and control variable ¢ = (y,u}. Assume, in
Prant, v s tnput and (w,y) is output. Then, for every
regularly implementable, autonomous X € £¥, there ex-
ist a controller € € £° that implements X through c,
and a partition u = (u1,uy) such that

e in €, (y,uy) is input and uy is output,
o in Ko, up is input and (w,y,u1) is output,

In gencral, the feedback transfer functions obtained in
the above two theorems, are singular. In [15] it has been
argued that many applications of control do not require
the properness condition of the feedback transfer func-
tion and that the properness condition is, nevertheless,
a very important special case.

6 Disturbances and regular interconnection

In section 3 we have formulated the problems of stabi-
lization and pole placement for a given plant Pry with
to-be-controlled variable w and control variable ¢. In
most system models, an unknown external disturbance
variable, d, also occurs. The stabilization problem is
then to find a controller acting on ¢ such that whencver
d(t) =0 (¢ > 0), we have w(t) = 0 {t - o). Typically,
the disturbance d is assumced to be free, in the sense that
every €™ function d is compatible with the equations of
the model. As an example, think of a model of a car sus-
pension system given by Ry (5 )w+Ry(S)e+Ry()d =
0, whcere d is the road profile as a function of time. In
the stabilization problem, one puts d = 0 and solves the
stabilization problem fer the full plant Py, represented
by Rl(%)'w + Rz(g‘—t)c = 0. In doing this, one should
make sure that the stabilizing controller C: C(%)c =0,
when connccted to the actual model, does not put re-
strictions on d. The notion of regular interconnection
capturcs this, as cxplained below:

Consider the full plant behavior Py € £51¢. An ez-
tension of Pryy is a behavior Pt € £¥+e+ (with d an
arbitrary positive integer), with variables {w, ¢, d), such
that o 7 frec in Ppext |

o Pru = {(w,c) | such that (w,c,0) € P}

Thus, ?}’L’I‘ﬁ being an cxtension of Py, formalizes that
Pr.n has cxactly those signals (w, ¢} that are compatible
with the disturbance d = 0 in Pg=5. Of course, a given

full behavior Py, has many extensions.

For a given cxtension PEY and a given controller € € £°,
we define the extended controlled behavior by

KES = {(w, e, d) | (w,c,d) € PE and e € €).

A controller @ shall be acceptable only if the distur-
bancc d remains free in K§5j, for any possible extension
Pext. It turns out that this is guaranteed exactly, by
the regularity of the interconnection of Pryy and €'

Theorem 9 : The following statements are equivalent.

e The interconnection of Pry and € is regular,

e for any ezstension PE of Pran, d is free in XEL.
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