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Abstract 

In this paper we study control by interconnection of linear 
differential systems. We give necessary and sufficient con- 
ditions for regular implementability of a given linear differ- 
ential system. We formulate the problems of stabilization 
and pole placement as problems of finding suitable, reg- 
ularly implementable sub-behaviors of the manifest plant 
behavior. The problem formulations and their resolutions 
are completely representation free, and specified in t e r m  
of the system dynamics only. Control is viewed ag regular 
interconnection. A controller is a system that constrains 
the plant behavior through a distinguished set of variables, 
namely, the control variables. The issue of implementation 
of a controller in the feedback configuration and its relation 
to regularity of interconnection is addressed. Freedom of 
disturbances in a plant and regular interconnection with a 
controller also turn out to be inter-related. 

Keywords: Behaviors, regular implementability, stabiliza- 
tion, pole placement, interconnection: controller implemen- 
tation. 

1 Introduction and notation 

In this paper wc discuss thc issuc of stabilization of lin- 
ear dynamical systems. The problem is studied in the 
behavioral context and control is vicwcd as interconncc- 
tion. This vicw of treating control problems has bccn 
uscd before in, for cxamplc, 1151, [7], [3] and [Z], in an 
H ,  control context in [4], [ 5 ] ,  [l], [O], [lo], [ l l ] ,  [12] 
and [13], for adaptive control in [SI, and for distributcd 
systcms in [6 ] .  In contrast to [I51 where thc problems of 
stabilization and polc placcment were considered for thc 
casc that all systcm variables are available for intcrcon- 
ncction (the sc-called full information case), we work in 
thc generality that wc arc allowcd to usc only some of 
the systcm variablcs for the purpose of interconncction. 
Thcsc variablcs are called the control variables. Rc- 
stricting oncsclf to using only thc control variables for 
intcrconncction introduces the issuc of implementability 
into the control problcm, sec [12] and [SI. In the con- 
text of stabilization, an important rolc is playcd by the 
notion of regular implementability. We establish ncccs- 
sary and sufficient conditions for a given behavior to be 

rcgularly implementable (section 2). This result is then 
applicd to  solve the problems of stabilization and polc 
placement by intcrconncction (section 3). The general 
problem formulation reduccs to some important special 
cases. Section 4 contains the case of filtering. Imple- 
mentation of a controller in a feedback configuration 
plays a very prominent rolc in control thcory. This issuc 
is addrcsscd in section 5 .  Finally, in section 6 wc give a 
motivation for the fact that in our problem formulations 
we restrict ourselves to rcgular intcrconncctions. 

We first discuss some of the notation to be uscd in this 
paper, and review some basic facts from the bchavioral 
approach. We use the standard notation Rn for the n- 
dimensional rcal Euclidcan space. Oftcn, the notation 
R" is uscd if w denotes a typical clcmcnt of that vcc- 
tor spacc, or a typical function taking its valuc in that 
vector spacc. The ring of (one-variable) polynomials 
with real coefficients in the indeterminate is dcnotcd 
by R[4. Rnl ""'[e] denotes the set of matrices with nl 
rows and n2 columns in which cach cntry is an clcmcnt 
of R[c]. We use the notation R'""' whcn the numbcr of 
rows is unspecified. 

In this papcr, we deal with lincar time-invariant diffcr- 
entia1 systems, in short, linear diffcrcntial systems. A 
lincar diffcrcntial systcm is dcfincd as a dynamical sys- 
tem whose behavior 5 is equal to the set of solutions of 
a sct of higher order, linear, constant cocfficicnt diffcrcn- 
tial cquations. More precisely, thcrc cxists a polynomial 
matrix R E R*""[c] such that 

5 = {w E LY(R,R') I R($,w = 0 )  

Hcre, L p ( R ,  R') denotes thc spacc of locally intcgrablc 
functions from R to R", and R(%)w = 0 is understood 
to  hold in the distributional sense. Thc set of lincar 
diffcrcntial systems with manifest variable w taking its 
valuc in Rw is denoted by 2". 

We make a clear distinction bctwccn the behavior as 
dcfincd as the space of all solutions of a set of (dif- 
fcrential) cquations, and the sct of cquations itself. A 
sct of cquations in tcrms of which thc behavior is dc- 
fincd. is callcd a reoresentation of the bchavior. Let - 
R E kx'[(] be a polynomial matrix. If a behavior 5 
is rcprcsentcd by R ( $ b  = 0 then Wc call this a kerncl 
rcprcscntation of 5. Further, a kernel rcprescntation is 
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said to he minimal if every other kernel rcprcsentation 
of 23 has a t  least g rows. A given kernel representation, 
R ( $ ) w  = 0, is minimal if and only if the polynomial 
matrix R has full row rank. Wc spcak of a system as 
the behavior 5, onc of whosc representations is given 
by R(&)w = 0 or just Rw = 0. The '&' is often sup- 
pressed to enhance readability. We will also encounter 
behaviors 23 with manifest variable w, that arc repre- 
sented by equations of the form R(&)w = M(&)E, in 
which an auxiliary, latent variable E appears. Here, R 
and M arc polynomial matrices with the same number 
of rows. Through such an equalion, we can consider 
the subspace of all w E .Cy($ a") for which there cx- 
ists an E E Cy(W,R') such that the equation holds. A 
technical detail is that, by itself, this subspacc is not 
an element of E", because it is not a closed subspace 
(closed in the topology of Cp(R,R')). Therefore, wc 
call R($)w  = M(&)! a latent variable reprcscntation 
of 23 if 

23 = {w E C:"'($P') I 3 E E .cp($W1) 
such that R ( g ) w  = M ( ~ ) E } " ' o s " " r e  

where the closurc is takcn in the C p  topology. Then, 
by the elimination thcorcm (sec [7], chapter 6, in par- 
ticular, thcorcm 6.2.6), 23 E C". 

The space of functions that are infinitely oftcn differ- 
cntiahlc with domain W and crrdomain W", is dcnotcd 
by P ( R ,  R"). Let 23 E 13' be represented by the kcr- 
ne1 representation R(%)w = 0 with rank(R) < U (which 
also means that it is under-determined). Then some 
components of w = (w1, wz, . . . ,tu.) are unconstrained 
by thc rcquircmcnt w E 23. These components arc 
termed as inputs or arc said to be f . e e  (in the Cm 
sense, for the purposc of this paper). Thc maximum 
number of such components is callcd the input cardinal- 
ity of 23 (denoted as m(23)). Oncc m(B) free components 
arc chosen, the remaining w - m(23) components arc 
dctcrmincd up to a finite dimensional affine subspace of 
e-($ These arc callcd outputs, and the num- 
her of outputs is denoted by ~ ( 2 3 ) .  Thus, possibly after 
permutation of components, w E 23 can he partitioned 
as w = (U, y), with the m(23)  components of U as inputs, 
and the p(23) components of y as outputs. We say that 
( U ,  y)  is an input/output partition of w E 23, with input 
U and output y. The inputloutput structure of 5 E 13" 
is reflected in its kernel reprcscntations as follows. Sup- 
pose R(&)w = 0 is a minimal kernel representation of 
23. Partition R = [Q PI, and accordingly w = (w1,w~). 
Then w = (w1,wz) is an i/o partition (with input w1 
and output wz) if and only if P is squarc and nonsin- 
gular. In gcncral, there exist many inputloutput par- 
titions, but the integers m(23) and p(23) arc invariants 
associated with a behavior. It can bc vcrificd that p(23) 
is equal to thc rank of thc polynomial matrix in any (not 
ncccssarily minimal) kernel rcprcscntation of 23 (for de- 
tails scc [7]). 

A hchavior whosc input cardinality is equal to 0 is called 
autonomous. An autonomous bchavior 23 is said to be 
stablc, if for all w E 23 we have w(t )  + 0 as t --t M. 

In the context of stability, wc oftcn nccd to describe 
regions of the complex plane C. We denote the closed 
right-half of the complex planc by U? and the opcn 
left-half complex plane by C-. A polynomial matrix 
R E W""[(] is called Hurwitz if rank(R(X)) = U for all 
X E U?. If 23 E C' is represented by R(&)w = 0 then 
23 is stable if and only if R is Hurwitz. 

For autonomous behaviors, we also spcak about poles 
of the behavior. Let 23 E 13' bc autonomous. Then 
there exists an R E PX"[<] such that 23 is represented 
minimally by R(&)w = 0. We can choose R such that 
dct(R) is a monic polynomial. This monic polynomial is 
denoted by X g  and is called the characteristic polyno- 
mial of 23. It can be shown that X s  depends only on 
23, and not on the polynomial matrix R we used to de- 
fine xs. The poles of 23 are defined as the roots of 2%.  
Note that X g  = 1 if and only if 23 = 0. A behavior is 
stable if and only if all its poles arc in C-. 

Finally, we review the concept of controllability in the 
context of the behavioral approach. A behavior 23 E 
2" is controllable if for all wl,wz E 23, there exists a 
T 2 0 and a w E 23 such that w ( t )  = w l ( t )  for t < 0 
and w ( t  + 7') = w z ( t )  for t 2 0. A weaker notion is 
stabilizability, which is defined as follows. A behavior 
23 is stabilizablc if for all w1 E 23, there exists a w E 23 
such that w ( t )  = w l ( t )  for t < 0, and w ( t )  --t 0 as 
t + 03. Thus every trajcctory in a stahilizable behavior 
23, can be steered to 0, asymptotically. 

Oftcn, we encounter hchaviors 23 E 13" that are neither 
autonomous nor controllable. The controllable part of 
a hchavior 23 is defined as the largest controllable sub- 
behavior of 23. This is denoted by 2323,,,,. A given 23 E 
13" can always he decomposed as 23 = 233,,.t B,,,, 
where BCont is the (unique) controllable part of 23, and 
BaUt is a (non-unique) autonomous sub-behavior of 23. 
For details we refer to (71. 

We also deal with systcms in which the signal space 
comes as a product spacc, with the first component 
viewed as an observed, and the second as a &be- 
dcduccd variable. We talk about observability (in such 
systcms). Given 23 E 13'~+'~ with rnanifcst variable 
w = (wl,wz), w2 is said to be obseruabie from wl 
if (wl,wO;), (w1,w;I) E 23 implics wi = w;I. Let 
Rl (&)wl  + R * ( ~ ) w z  = 0 be a kernel representation of 
23. Then observability of w2 from w1 is equivalent to 
&(A) having full column rank for all X E C. The 
weaker notion of detectability is defined along similar 
lines. Given 23 E 13"'+", 202 is said to he detectable from 
wt if ( ~ ~ , ~ O ; ) , ( W I , W ; )  E 'Bimpliesw:(t)-wi(t) + O a s  
t + 00. In the above kernel representation, dctcctabil- 
ity of wz from w1 is equivalent to &(A) having full 
column rank for all X E a?. For details, sec [7]. 



2 Regular implementability 

Suppose we have a plant t o  be controlled, with two types 
of variables. In the given plant, the variables whose tra- 
jcctorics we intend to  shape (called the to-be-controlled 
uoriobles), arc denoted by w. These to-be-controlled 
variables can be controlled through a sct of control vari- 
ables e, over which wc can "attach" a controllcr. These 
are the variables, that  can be measured and/or actu- 
ated upon. Often wc have some common components 
in w and c. Wc formulate the problem, howcver, for the 
general case, in which wc have access to  just the control 
variables e. 

Beforc thc controllcr acts, there are two bchaviors of the 
plant that  are relevant: ?full (callcd the fullplant behav- 
ior) that formalizes the dynamics of the variables w and 
c, and the behavior 9 (called the manifest plant behav- 
ior) that  formalizes thc dynamics of the to-he-controlled 
variables w only. Thus 

% d l  = {(w,c) E LP($R'+C) I (W,.) 
satisfies the plant equations ), 

(w,c) E ? ~ u l l ~ ' O s u r e  . 
9 = {w E Lp($ R") I 3 c such that 

In this papcr, we assume that the plant is a linear dif- 
ferential system, i.e. ?full 6 2"+'. Thc particular rcpre- 
scntation by which it is givcn, is immaterial to us. The 
manifcst plant bchavior 9 is obtained by eliminating c 
from Frupt,ll, so, by the elimination theorem, P E 2". 

A controllcr restricts the trajcctorics that c can assume 
and is dcscribcd by a controller behavior e E 2': 

e= {e  E Ly(R,  R') I c satisfies the controller equations}, 

The full controlled behavior Xr.ll is obtained by taking 
thc intcrconnection of 9rupr,ll and e through thc variablc 
c and is dcfincd as: 

X~.II = {(w, C) I (w, C) E T F ~ I I  and c E e )  

COSTROLLER 

Figure 1: The plant and controller after interconnection 

The manifest contmlled behovior X is obtained from 
Xr.11 by climinating c and is dcfincd as: 

X = {w 1 3 c E e such that ( w , ~ )  E 9ru~~)c10s"'e ' (1) 

In that case we say that X is implcmentcd hy '2, or 
e implements X through c. A givcn X E 2' is called 
implementable with respect t o  9rU1l b y  interconnection 
through c, if thcrc exists a controllcr '2 E C', such that 
X is implemented by e. If it is clcar from the contcxt, 

wc oftcn supprcss the spccifications 'w.r.t. ?full' and 
'through c'. An important issuc is the question which 
X E 2" arc implemcntablc, i.e. for which X E 2" thcrc 
exists a controller e E P such that (1) holds. A crucial 
concept to  answer this question is thc notion of hiddcn 
bchavior: the hidden behavior N i s  the bchavior consist- 
ing of thc plant trajcctorics that  occur whcn the control 
variables are zero: 

N =  {w E LpyR,R") 1 (w,O) E T'f"ll]. 

We have access to  only the control variables c - hcncc 
thc notion of N being hiddcn from the control variables. 

The following proposition from [12] scttlcs the question 
of implcmcntability for a given X E 2". Wc rcfcr to  this 
proposition as the controllcr implementability thcorcm. 

Proposition 1 : Let !'full E tu+' be a given full plant 
behavior, and let T',N E 2" be the manifest plant behav- 
ior and hidden behavior, respectively. Then X E 2" is 
implementable w.r.t. Yr.11 by interconnection through c 
if and only if 

N C X C P .  

In addition to implcmcntability issues, the hiddcn be- 
havior N plays a rolc in obscrvability and dctcctability 
of ?full. It can be easily seen that, in Tru~i, tu is obscrv- 
able from c if and only if N = 0, and w is detectablc 
from c if and only if N is stable. 

Roughly speaking, for a givcn ?full wc want to  find a 
controller e such that thc manifest controllcd behavior 
X has dcsircd properties. However, we shall rcstrict 
ourselves to e's such that the intcrconnection of 9full  

and e is regular. A motivation for this is provided in 
section 6. The intcrconncction of T'f,ji and e through c 
is called regular if 

P(Xf"I1) = P(9f"Id + P(% 

i.e., if the output cardinalitics of ?full and '2 add up to 
that of Xrull. 

A given X E 2" is called regularly implementable if tbcrc 
cxists a e E 2' such that X is implcmcntcd by e, and 
if the intcrconncction of ?full and e is rcgular. Simi- 
lar to  plain implcmcntability, an important qucstion is 
under what conditions a givcn sub-bchavior X of 9 is 
regularly implementablc. The following theorem is thc 
main rcsult of this section, and providcs necessary and 
sufficient conditions for this: 

Theorem 2 : Let !Pfu1, E 2"+'. Let 9 , N  E 2" be the 
corresponding manifest plant behavior and hidden be- 
havior respectively. Let ?,,,, be the eontrollable port of 
?. Let X E 2". Then, X is implementable w.r.t. ?full 
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by regular interconnection through c if and only if the 
following conditions are satisfied: 

X + !PCO"t = 5' 

The abovc theorem has two conditions. The first one 
is exactly the condition for implementability through c 
(as in the controller implementability theorem). The 
second condition formalizes the notion that the au- 
tonomous part of !P is takcn care of by X. While the au- 
tonomous part of !P is not unique, !P,,,, is. This makes 
verifying the regular implementability of a givcn X com- 
putable. As a consequence of this thcorcm, note that 
if 5' is controllahlc, thcn X E 2" is regularly implc- 
mentable if and only if it is implcmcntablc. 

3 Pole placement and stabil ization 

In this section we discuss thc problems of pole placc- 
mcnt and stabilization. Thc problem statements and 
thc theorems involvc the bchaviors of the plant, etc. 
which havc becn defined in thc previous scction. 

Pole placement  problem : Given !Prull E i!"+', find 
conditions under which there exists, and computc, for 
every monic r E we] a e E Cc such that: 

the interconnection of 5'f,ll and C is regular, 

0 thc manifest controlled behavior X has charactcr- 
istic polynomial r.  

Supprcssiug the controller e from the problem formula- 
tion, thc problem can altcrnativcly be stated as: 

Given !Pr,,I, find conditions undcr which there cxists, 
and computc, for cvery monic r E 44 a rcgularly 
implcmcntablc X E 2" such that Xx = r .  

Whcn the manifest controlled behavior 3c is only re- 
quired to bc stable, we refer to the problem as that of 
stabilization. 

Stabil ization problem : Givcn !F'full E e"+', find con- 
ditions for the cxistcncc of, and compute e E such 
that 

thc interconnection of 'J'r.11 and e is regular, 

the manifest controlled bchavior X is stable. 

Again, supprcssing the controllcr e from thc formula- 
tion, the stabilization problem can be restated as: 

Given 5'cullr find conditions for the cxistcncc of, and 
computc a behavior X E 2" that is stable and regu- 
larly implcmcntahlc. 

The main results of this section arc thc following thco- 
rems, which establish ncccssary and sufficient conditions 
for polc placcmcnt and stabilization. 

T h e o r e m  3 : Let ?full 
r E E%[<], there exists a regularly 
2' such that Xx = T if 
controllable, equivalently, if and only if: 

in 'PfuiI, w is observable from c, 
'P is controllable. 

Theorem 4 : Let !?full E PC. There ezists a regu- 
larly implementable stable X E 2' if and only if N is 
stable and !P is stabilizable, equivalently, if and only 
if: 

in !Pfull, w is detectable from c, 
!P is stabilizable. 

Note that, neither in the problem formulations nor in 
the conditions appearing in thcorems 3 and 4 ,  do rcprc- 
scntations of the given plant appear. Indecd, our prob- 
lem formulations and their resolutions are completely 
representation free, and arc formulated purely in terms 
of propcrties of the behawzor !Pruil. Thus, our treatment 
of the polc placemcnt and stabilization problems is gen. 
uincly behavioral. Of course, thcorems 3 and 4 are ap- 
plicable to any particular represcntation of 'J'rull as well. 

In both the stabilization problem and the polc placc 
mcnt problcm, we havc restricted oursclves t o  rcgular 
interconnections. We give an explanation for this in scc- 
tion 6. At this point we note that if in the above prob- 
lem formulations we replacc "regularly implcmcntablc" 
by merely "implementable", thcn in the stabilization 
problem a ncccssary and sufficient condition for thc ex- 
istcncc of X is that N is stablc (equivalently: in ?full, 

'w is dctectable from c). In the pole placcment prob- 
lem, necessary and sufficicnt conditions arc that  N = 0 
(ix., in !Pfuu, w is observable from c)  and that !P is not 
autonomous. 

4 The fil tering problem 

Our gencral problem formulation of finding a regularly 
implemcntablc, stable X E i!", for a givcn !Pfull E P+', 
includes also a problem that is, strictly speaking, not a 
control problcm, but rather a filterrng problem. 

Consider thc set-up of figure 2 .  The observed plant 
!Pot,s E i!"+J has two types of variables, w and y. w 
is a variable that wc want t o  estimate and y is a vari- 
able that we measnre. 

A filter is a system 3 E P + Y ,  with variables (y, tb). The 
idca is to find a filtcr 3 such that in the interconnection 
of Yobr and 3 through 1/ (thc measured variable), 6 
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Figure 2: Plant and observer configuration 

becomes an cstimatc of w .  In order to  formalizc this, 
for a given filtcr 3 we define the associated estimation 
error behavior E by 

E = {e E Lp(R,lw") 13 w,l i ,y  such that: 

(w,y) E (y,tb) E 3 and e = w  - 6)cios"re . (2) 

Here, as bcforc, the closure is taken with rcspect to  thc 
topology of Lp($ R"). If E ,  !Pobs and 3 are related via 
equation (Z), we say that E is implemented by the filter 
3. Given E P + r ,  a given behavior E E C' is callcd 
implementable (with respect to ?obs) if there cxists a 
filter 3 E C"+Y such that E is implemented by 3. The 
question what E's arc implementable is answercd in thc 
following Icmma. In thc following, lct N be the hiddcn 
behavior associatcd with ?obobsi i.e., 

N = {W I ( W , o )  E Tabs) 

Lemma 5 : Let E C"+r. Then we have: 

1. The behavior E E C" is implemenlable if and only 

2. If E is autonomous and implementable, rt con be 
implemented by a filter 3 E C"+r such that, in 3, 
y is input and 6 output. 

i f N c  E .  

The problem we want to consider in this section is to  
find a filtcr that makes the estimation error behavior 
stable. The following thcorcm statcs whcn such a filtcr 
cxists. 

Theorem 6 : Let Yobs E C"? There ezists a filter 
3 E C"+r such that the estimation emor E is stable i f  
and only if, in w is detectable from y. In that case, 
there ezists a filter such that the measured variable y is 
input and the estimate w is output. 

5 Input f output partition 

In thc classical view of control, a controllcr is, in gcn- 
cral, considcrcd to bc a feedback processor that gcncratcs 
control inputs for thc plant on the basis of measured 
outputs of the plant. In our set-up, controllcr bchaviors 
arc obtaincd dircctly from thc full plant. It is important 
to know a priori whcn such controllcd behavior is implc- 
mcntahlc by a fccdback proccssor. Rcsults on this havc 

becn obtaincd in [15], 1111 and 1121. Wc cxtcnd thcse 
rcsults hcrc for tbc problcms considcrcd in this papcr. 

Our first result statcs that  if X E 2" is regularly im- 
plcrncntablc and autonomous (so, in particular, if i t  is 
stablc or has prcscribed characteristic polynomial), thcn 
for any controllcr e E F that  implcmeuts X thcrc cx- 
ists a partition of the control variable c such that thc 
intcrconncction of !Prupr,ll and e is, in fact, a fccdhack in- 
terconncction: 

Figure 3: Feedback intcrconncction of 5' and t' 

T h e o r e m  7 : Let 5'fUlpr,l E Cv+c. Let X E be au- 
tonomous and regularly implementable through c, and 
let e E C" be a controller that regularly implements X .  
Then, possibly after pennuling its components, there ez- 
ists a partition of e into c = (y,ul ,uz) such that: 

for ( W , Y , U I , U Z )  E ?ruii, (111,212) is input and (w,Y) 
is output, 

for ( y , u ~ , w )  E e, ( y , u z )  is input and U, is output, 

0 f o r  (w,y,ul,uz) E Xt.ii, vz is input and ( w , y , w )  is 
output. 

As a spccial case, when Xrull is autonomous, we intcr- 
prct uz as having zero componcnts. Figure 3 dcpicts 
bow thc control variablcs arc partitioncd into inputs and 
outputs in order to  implcmcnt thc controllcr behavior 
in a feedback configuration. 

The abovc thcorcm assigns an inputjoutput partition 
without modifying the controllcr itself. Oftcn, we arc 
not allowcd to choosc an inputjoutput partition, bc- 
cause we are givcn a priori that some variablcs arc scn- 
sors, while others arc actuators. Hcncc, necessarily, the 
scnsors are plant outputs and should, correspondingly, 
bc controller inputs. The actuators, then, arc inputs 
to thc plant. In thc following thcorcm wc show that 
if our plant 3'rUu has an a priori given inputjoutput 
structure with rcspcct t o  sensors and actuators, and if 
X E P is rcgularly implcmcntablc and autonomous, 
thcn X can bc regularly implcmentcd by a controllcr 
e E Cc that  takes thc scnsors as input, and actuatcs 
part of tbc plant actuators. Sincc Xrull is again not 
ncccssarily autonomous, some control variablcs remain 
free. Thcsc can bc iutcrprctcd as plant actuators which 
arc not being uscd for the control of thc to-bc-controlled 
variablcs. 
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Theorem 8 : Let Prull E C"+J+' with to-be-controlled 
variable w and control variable c = (y,u). Assume, in 
Prull, U is input and (w,y) is output. Then, for every 
regularly implementable, autonomous X E E", there ex- 
ist a controller t! E Cc that implements X through e, 
and a partition U = (ulru2) such that 

in t!, (y,u2) is input and u1 is  output, 
in X~"II, u2 is input and (w,y,ul)  i s  output. 

In general, the feedback transfer functions obtained in 
the above two theorems, are singular. In [15] it has been 
argued that many applications of control do not require 
the properness condition of the fecdback transfer func- 
tion and that the properness condition is, nevertheless, 
a very important special case. 

6 Dis turbances  and regular  interconnection 

In section 3 we have formulated the problems of stabi- 
lization and pole placcmcnt for a given plant Pfupr.a with 
to-be-controlled variable w and control variable c. In 
most system models, an unknown external disturbance 
variable, d, also occurs. The stabilization problem is 
then to find a controller acting on c such that whenever 
d(t) = 0 (t  > 0), wc havc w(t) + 0 ( t  + CO). Typically, 
the disturbance d is assumed to be free, in the sense that 
every Cm function d is compatible with the equations of 
the model. As an example, think of a model of a car sus- 
pension system given by Ri(&)w+R2($)c+Ra(&)d = 
0, where d is thc road profile as a function of time. In 
the stabilization problcm, one puts d = 0 and solvcs the 
stabilization problem for the full plant Pfull represented 
by Rl(&)w + Rz(&)c  = 0. In doing this, onc should 
make sure that the stabilizing controller e: C($)c = 0, 
when connccted to the actual model, does not put re- 
strictions on d. The notion of regular intcrconncction 
captures this, as cxplaincd below: 

Consider the full plant behavior Pf,ll E E"+'. An ex- 
tension of Prull is a behavior y;; E C"+c+d (with d an 
arbitrary positive integer), with variables (w, c, d), such 
that d is free in q;;, 

'%Pr,a = {(tu, c) 1 such that (w, e, 0) E 

Thus, being an extension of Pf,lI formalizes that 
Pfu~l has exactly those signals (w,c) that arc compatible 
with the disturbance d = 0 in q$. Of course, a given 
full behavior Pfupt,. has many extensions. 

For a given extension 
we define the extended controlled behavior by 

and a given controller t! E e., 

A controller C? shall be acccptablc only if the distur- 
bancc d remains free in X;;fl, for any possible extension 
y;:,. It turns out that this is guaranteed exactly, by 
the rcgularity of the intcrconncction of Pr,ll and t! ! 

T h e o r e m  9 : The following statements are equivalent. 

The interconnection of ?full and t! is regular, 
for any eztension of Prull, d is free in X;;fl. 
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