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Abstrucf-lhis paper deals with diiipativity of 
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necessary and sufficient condition for dissipativeness in the 
single input I single output case. 
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I. INTRODUCTION 

The roots of the theory of dissipative systems can be found 
in the early papers on electrical circuit theory. In [21, the 
notion of positive realness was introduced in the context of 
circuit synthesis. It was shown in this classic paper that a 
rational function g is the driving point impedance of a circuit 
consisting of a finite number of positive resistors, inductors, 
capacitors, and transformers if and only if g is positive real. 
Starting in the late fifties and early sixties, positive realness 
came to play a key role also in systems and control theory, 
through what we now call positive real (or KYP) lemma. In 
[5] dissipativity was conceptualized in terms of the storage 
function and the supply rate. 

One of the assumptions in the study of dissipativity has 
almost always been controllability of the system. The very 
definition of a dissipative system is often given for the 
controllable case. There is, however, no reason to make the 
definition of an 'energy'-related concept like dissipativity 
dependent on a concept like controllability not related to 
ener,g at all. Even if there is a certain relationship between 
these two concepts, it should follow from the definitions 
instead of being imposed. 

This paper is a step towards a dissipativity theory for 
uncontrollable systems in a behavioral context, for linear 
time-invariant systems with quadratic supply rates and stor- 
age functions. After giving a definition of dissipativity, 
we present a necessary and sufficient condition for a (not 
necessarily controllable) single-input single-output behavior 
to be dissipative. 
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11. PRELIMINARIES 
A ( h e a r  time-invariant differential) behavior (for a de- 

tailed treatment of behavioral theory, we refer to [4]) is 
the set of solutions, assumed infinitely differentiable for 
ease of exposition, of a system of h e a r  constant coefficient 
differential equations 

d 
dt 

R(-)w = 0 

where R E RqXw[E] is a polynomial matrix. Note that 

d 
dt 

B = ker(R(-)). 

The set of all such behaviors will be denoted by 2". 
A behavior B E Cw is said to be controllable if for any 

w- and w+ E B there exist a T > 0 and a w E B such 
that w(t) = w - ( t )  for all t < 0 and w(t) = w+(t - T) for 
all t 2 T. It is well-known that a behavior is controllable if 
and only if rank(R(X)) is the same for all X E @. 
On the other extreme of controllability are autonomous 

behaviors. A behavior B E Lw is autonomous if for wl. 
w2 E B, wl(t) = wz(t)  for all t < 0 implies that w~ = wz. 

A basic result of behavioral theory states that every behav- 
ior can be written as a direct sum of a (unique) controllable 
one and a (non-unique) autonomous one. 

For obvious reasons, representations of the type (1) are 
called kemel x?presentations. There are many other ways of 
representing a behavior. A representation of the type 

d d R(-)w = M ( - ) t  
dt dt 

with real R, M polynomial matrices is called a lorenr vari- 
able representation. In this case, w E B if there exists a 
latent variable trajectory e such that this system of differen- 
tial equations is satisfied. The variables w are called manifest 
variables. A particular case of this are image representations, 

d 
dt 

w = M(-)!, 



whence 23 = im(M($)). It can be shown that a behavior is 
controllable if and only if it allows an image representation. 

Let 23 be a behavior with w = (WI ,WZ) .  We call w2 
observable from wl if (w~,w;),(w~,zu~) E 23 implies 
w; = w;. It turns out that this is the case if and only if there 
exists a polynomial matrix F such that (w1, wz) E 23 implies 
w2 = F($)wl. Analogously, we call a latent variable 
representation observable if, whenever (w, e'), (w. e") satisfy 
(2), then e' = e". It can be shown that a controllahle 23 
admits an observable image representation. 

Every behavior 23 also admits an input-output represen- 
tation. After a reordering, if need be, of the components of 
the manifest variable w, we obtain w = col(u,y) where a 
denote inputs and y outputs (see 141 for precise definitions of 
these concepts). An inputloutput partition of 23 corresponds 
to a kernel of the form 

with the propenies that P i s  square, det P # 0, and P-'Q is 
a matrix of (proper) rational functions. We call this an input- 
output representation of 23. The number of y components is 
given by rank(R). 

Two-variable polynomial matrices can be used in the 
theory of dissipative systems in a very effective way. Let 
Rql 'q2 [<,?7] denote the set of real two-variable polynomial 
matrices in the indetenninates .C and q. An element of this 
set, say 0, is a finite sum 

i>j 

To each such 0, we associate the bilinear differential form 

d' dj 
dt . dtl Lm(v,w) = C(,v)TOaij(-w). 

1.3 

Note that La is mapping from Cm(R,Rql) x P ( R , R q * )  
to P ( R , R ) .  If 0 is square then it induces a quadratic 
drflerential form given by 

&*(U) = Lm(w,w) 

The QDF Qm, or simply @, is said to be nonnegative along 
23 if Q+(w) 2 0 for all w E 23. 

Bilinear and quadratic differential forms have been studied 
in detail in 161. The (related) operators *,',a: play an 
important role in this. D e h e  
* : Rq1xq2[C,q] -+Rqzxq'[C,q1 by @*(C,V) = aT(q,C) 
: w'xq*[C,nl - Rq'x91[C,~1 by GC>d = (C+S)*(C>9), 

a:Rqlxqz[C,q] -+R"1""2[<] by 8(0)(()=0(-C,<),  
and * : Rq1Xq2[<] + Rq'xqz[<] hy F*(<) = FT(-<). 
Note that a(@*) = a(@)., L. = $Lm, and a(*) = 0. In 
fact, 0 E im(.) if and only if 0 E ker(a). 

m 

111. DlSSlPATlVlTY OF UNCONTROLLABLE SYSTEMS 

The behavior 93 E 2'" (not necessarily controllable) is said 
to be dissipative with respect to the storage function Qe, 0 E 
R W X "  IC,$ if there exists a latent variable representation 
R($)w  = iM($)e of 23 and a @ E ReXe[C,q] such that 
the dissipation inequality 

holds for all (U,!) that satisfy R($)w = M($)e .  Qp is 
called the storage function. When the dissipation inequality 
holds as an equality, we say that 23 is 04ossless. If the 
storage function acts on 20, i.e. if @ E R*""[C,q] and 

d 
BQ*(w) 5 Qm(w) (3) 

for all w E 23, then we call the system dissipative with an 
observable storage function. 

Non-negative storage functions are very important in ap- 
plications, hut we will not consider them in the present paper. 
Our storage functions need not be sign definite. 

In the sequel, we confine attention to single-input single- 
output behaviors, and (mostly) to observable storage func- 
tions. We assume that the behavior (with the manifest vari- 
able w = col(u, y)) is govemed by 

where a, 0, y are scalar polynomials such that a and P are 
co-prime and y is monic. For the supply rate, we take 

i.e. Qa(w) = 2uy. Since a and P are coprime, there exist 
polynomials p and q such that 

cup+ Pq = 1. ( 5 )  

A decomposition of the behavior 23, defined by (4), into con- 
trollable and autonomous parts can be obtained as follows. 
Let 

Rc = [a -PI 
and also let 

for some polynomial v. Define 
d 
dt BC = kerR,(-) 

d 
dt 

and 
23: = kerRI(-) 

Now, 23 = 23, @BE yields a desired decomposition. In fact, 
v parametrizes all possible autonomous pats. An altemative 
representation for the autonomous part is given by 
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where p' := p - /3u and q' .= -q - ay. 
Dissipativity of a controllable behavior B is a well- 

understood subject. The present paper is an attempt to 
investigate dissipativity of uncontrollable systems. We begin 
by recalling well-known results for the controllable case. 
Before that, we need some nomenclature. Let x E a[<] be 
para-Hermitian, i.e. x* = x. A polynomial K. E a[<] is called 
a symmetric factor of x if x = K * K .  It is easy to see that a 
symmetric factor exists if and only if ~ ( i w )  is real (hence x 
is even) and non-negative for w E W. 

The following proposition gives an answer to the question 
when a controllable system is dissipative. The proof follows 
from propositions 5.2, 5.6, and theorem 6.4 of [6] .  

Proposition 1: Let 23 be given by (4) and let y = 1. The 
following statements are equivalent. 

1) B is @-dissipative with an observable storage function, 
2) 'B is @-dissipative, 
3) ap' + a'p admits a symmetric factor. 
The main contribution of the present paper is the following 

theorem which provides a necessary and sufficient condition 
for the dissipativity of an uncontrollable behavior. 

Theorem 2: Let B be given by (4). Assume fhat y has no 
mots on fhe imaginary axis. Then, fhe following statements 
are equivalent. 

1) B is @-dissipative with an observable storagefunction. 
2 )  ap' + a*p admits a symmetric factor that is coprime 

Proof: (1 =+ 2): (by contradiction) Suppose that 1 holds 
but 2 does not hold. In other words, suppose that B is Q- 
dissipative and all symmetric factors of cup' + a'p have a 
common root with y. As B is @-dissipative, its controllable 
part is also dissipative, i.e., there exists a @ such that 

with y. 

Q(C.1)) - (C+S)@(C,1)) 

= FT(C)F(o) + R:(C)G(C,d + G*(C,a)fL(d (6) 
for some polynomial mahices F E R'XZ[E] and G E 
R'x2[C,1)]. For a trajectory w, such that F($)w, = 
R,($)w, = 0, Q,-;(wc) = 0. Consequently, dissipativity 
of B implies that the bilinear differential form L . (w, we) 
must vanish for all w E B and for all w, such that 
F ( d ) w ,  = R,($)w, = 0. Therefore, there exist J,  K E 
W2'%[C,q] such that 

*-9 

Pre-multiplication by [p(C) -q(C)], post-multiplication 
by coI(B(q),a(q)), and evaluation at C = -< and 7 = < 
result in 

(7) 
for some polynomials 3 and L where 6 = Fcol(,b', a). The 
above polynomial equation is satisfied if and only if for X E 

p'a - q*p = 7'3 + L6. 

C, the implication 

6(A) = y(-X) = 0 *p(-A)a(X) = q(-X)P(X) 

holds. On the other hand, the polynomial 6 is nothing but a 
symmetric factor of a p  + a*P. To see this, postmultiply 
(6) by col(L?(a),a(q)), premultiply by the transpose of 
col(p(q),a(g)), and evaluate at = -( and q = (. So 
6(X) = 0 implies that a(X).O(-X) + a(-A)p(A) = 0. 
Together with p(-X)a(X) - q(-X)p(X) = 0, this implies 

However, the first factor on the left hand side is nonsingular 
due to (5) and the second factor is nonzero as a and /3 are 
coprime. This means that if the polynomial equation (7) has 
a solution then 6 and y* are necessarily coprime. Define 
6' := 6'. Note that 6' is a symmetric factor of u p  + a*p 
and (6', y) is coprime. We reach a contradiction as we found 
a symmetric factor of ap' + a*P which is coprime with y. 

(2 + 1): Let 6 be a symmetric factor of a p  +a'p which 
is coprime with y. Define 

F : = [6' 03 U-', 
G(C,q) : = [ ~ ( C ) a ( q )  - d C ) P ( S )  ~ ( C ) P ( D ) ]  U-'(Q). , 

Note that U is unimodular due to (5).  Straightforward com- 
putation yields 

F*F + R:aG + ac*% = a@. 
Indeed, one can check above equation by pre-multiplying 
both sides by U* and postmultiplying by U. Therefore, there 
exists an R such that 

@(C> 1)) - (C + 1 ) P ( C , d  
= FT(CF(7) + @(C)G(C, 1)) + G'(C, D)RJB), 

and hence 
Q,-;(w3 t 0 (8) 

for all wc E Bc. Let '8, be the autonomous part correspond- 
ing to U = 0. We claim that @ = R + 0 + p r  satisfies, for 
some p E R, 

Qq-;(w) 2 0 (9) 

for all w E B if 8 and r satisfy 
i) Qe(wc) = 0 for all wc E Bc, 
ii) wc E B, and &,-;(we) = 0 implies 

iii) Q. (w,) = 0 for all w, E B,, 
iv) L;(,w,) = 0 for all w. E Bc, and 
v) Q;(w,) < 0 for all 0 # w, E Ba. 

Lg(w,  wc) = L . (w, wC) for all w E B, 
*-n 

r .  
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To prove this, take any w = we + w, where w, E '23, and 
we E %Then, we get 

Note that the first summand of the last line can be made 
arbitrarily large by choosing p sufficiently small due to (v). 
The last summand is already nonnegative due to (8). Together 
with (ii). these imply that (9) holds for all U E 'B if we 
choose p sufficiently small. To finish the proof, we will show 
the existence of 8 and r such that (i)-(v) are satisfied. To 
do so, take 

where X induces a state map for Ba, the corresponding state 
model is given by 

d d 
dt dt 

z = X(-)W,, -X = AX, wa = CZ, 

for some matrices A and C with appropriate sizes, and L 
is such that ATL + L A  < 0. Such an L exists since y has 
no roots on the imaginary axis. It can be easily checked 
that (iii)-(v) are satisfied by the choice of (10). Therefore, 
it remains to show the existence of a 8 satisfying (i)-(ii). 
We know from [6, proposition 3.2 and proposition 3.51 that 
there exists 8 satisfying (i)-(ii) if and only if there exist 
two-variable polynomial matrices H, J ,  and K such that 

Pre-multiplying (11)-(12) by UT(<). post-multiplying by 
U(q) ,  and eliminating e(C,v), yields the system of poly- 
nomial equations: 

JZl(C,17) + K11(C,d6(-17) = 0, (13) 

K ~ ~ ( C , V ) +  ~ ~ ~ ( ~ , 1 7 )  = ( c + q w x , q ) ,  (14) 

Note that (13) and (16) are solvable as soon as (14) and (15) 
are. Also note that (14) and (15) are solvable if and only if 

K21(Ci91)F1(9) + r(<)J11(6>9) +GI(C,~I) 
= K;Z(C,d + J;Z(C>d 

3Kz16* + y*aJ11+ aG1 = 0 

are solvable. Clearly, the former equation is solvable as soon 
as the latter is. As 6 and y are coprime, the latter always 
admits a solution. 

This ends the proof of theorem 2. 

Remarks: 
1. Note that the mots of ap* + a*p are symmetric with 

respect to imaginary axis. Let y = y1-y~ where 71 bas no 
symmetric roots with respect to imaginary axis and y2 = 
*y;. Then, there exists a symmetric factor of ap* + a'P 
which is coprime with y only if aP* + a'P and yz are 
coprime. In particular, when y has no symmetric roots with 
respect to imaginary axis (i.e., it bas no even factor), the 
behavior '13 is @-dissipative if and only if its controllable 
part is. 

2. In [3] a sufficient condition for the passivity of uncon- 
trollable multiple input I multiple output state space systems 
is given. For the single input I single output, the condition 
given in [3] comes down to the requirement that fly should 
have no symmetric roots with respect to the imaginary axis. 
The first remark shows that this is a special case of theorem 2. 

3. When the controllable part is lossless, it can be shown 
that ap' + a'P is identically zero. Thus, the coprimeness 
condition of theorem 2 holds only if 7 is a constant and 
hence the behavior '23 is controllable. On the other extreme, 
when up' + u*fl is a constant, the controllable part is 
strictly dissipative, i.e. the dissipation inequality (3) holds 
with the strict inequality for all nonzero trajectories of '23,. 
Then, coprimeness condition of theorem 2 readily holds 
independently on the autonomous part. 

Iv. UNOBSERVABLE STORAGE FUNCTIONS 

Theorem 2 deals with Observable storage functions, i.e. 
storage functions that are only functions of the manifest vari- 
ables. The use of uncontrollable systems and/or unobservable 
storage functions is of considerable importance. We discuss 
this in the present section. 

Example: Consider the system 
d d  
-y = -U. 
dt dt 

It follows from theorem 2 that with respect to the supply rate 
uy, this system does not have an ObSeNabk storage function. 
Consider however the latent variable representation given by 

d 
-51 = 2 2  
dt 
d 
-52 = 0 
dt 

y = 2 2  + U. 

1648 



If we allow the storage function to be a function of the 
latent variables, then this 'system becomes dissipative. To 
see this, consider the storage function Q p ( x )  = k x l x z .  
So, Q . ( x )  = k ( & x l ) z a  + k x l ( & x z )  = kx; .  Then, 
Q,(w) - Q .  (z) = u y  - kx;  = U' + u x 2  - kx?. It is easy 
to verify thaTthis expression is nonnegative for all U and x2 
if k 5 -1/4.  

yl 

An important area of application of the ideas of this 
article is the area of electrical circuits. 

I + JT] ......-, 

PQd - , tqL 
......_ ....... 

Consider for example the circuit shown, and regard (V, I) 
as manifest and the internal branch currents and voltages 
as latent variables (see [4]. pages 10-13, 160-161, and 175- 
176 for a derivation of the equations and the analysis of the 
controllability and observability properties of this circuit). Of 
course, this circuit is dissipative with respect to the supply 
rate VI with the internal energy, Qcv; + iL1: (m the 
obvious notation) as the storage function. If C& # $, 
this circuit is controllable and observable (in the sense that 
the branch currents and voltages are observable from the 
port voltage and current). However, when C& = k, the 
differential equation that governs (V, I) is 

Rc d d 
RL dt dt 

( - + C R c - ) V =  ( l+C&-)RcI .  

The variables ( V ~ , I L )  are then unobservable from (V,I) ,  
and hence, the stored energy becomes an unobservable 
storage function. When CRc = k and & # RL, 
then the manifest behavior is controllable. So, there exists 
an observable storage function. In fact, classical results 
from electrical circuit synthesis allow to conclude that the 
port behavior can also be realized using passive elements 
(resistors and one capacitor, in fact), and with observable 
branch currents and voltages. However, when CRc = & 
and Rc = RL, the port behavior becomes uncontrollable 
and theorem 2 shows that there does not exist an observable 
storage function. In fact, in this case, it can be shown 
that there does not exist a passive synthesis with only one 
reactive element. So, in this sense, the realization which we 
started from is a minimal one. Of course, all this shows 
the limited relevance of the classical notion of minimal 
(controllable and observable) state space representations in 
the context of physical systems. 

The most classical result of circuit theory is undoubtedly 
the fact that g is the driving point impedance of a circuit 

containing a finite number of passive resistors, capacitors, 
inductors, and transformers if and only if g is rational and 
positive real. This result was obtained by Brune [2] in his 
MIT Ph.D. dissertation. In 1949, Bott and Duffin [l] proved 
that transformers are not needed. 

It seems to us that a more 'complete' version of this 
classical problem is to ask for the realization of a differential 
behavior. This problem is somewhat more general than the 
driving point impedance problem, because of the existence of 
uncontrollable systems. For example, a unit resistor realizes 
the transfer function of the system 

d d -v+v=-I+I, 
dt dt  

as its driving point impedance, but not its behavior (which 
admits, for example, the short circuit response I ( t )  = 
e & , V ( t )  = 0 ,  not realized by the resistor). An example 
of a circuit that does realize this behavior exactly is the 
above circuit, with L = 1, C = 1, Rr. = 1 ,  & = 1, so 
this uncontrollable behavior is realizable. 

This leads to two nice open problem: 
Problem 1: What behaviors 93 E ,C2 are realizable as 

the pon behavior of a circuit containing a frnite number of 
passive resistors, capacitors, inductors, and transformers? It 
is easy to see that 23 must be single input / single output, 
and that the transfer function must be rational and positive 
real. In addition B must be passive, but in general with a 
non-observable storage function, and therefore it is not clear 
what this says in terms of 93. 

Problem 2: Is it possible to realize a contmllable single 
input / single ourput system with a m t i o ~ l  positive real 
transfer function as the behavior of a circuit containing a 
finite number of passive resistors, capacitors, and inductors, 
but no transformers? Note that in a sense this is the Bott- 
Duffin problem, the issue being that the Bon-Duffin synthesis 
procedure usually realizes a non-controllable system that has 
the correct transfer function (i.e., the correct controllable 
part), but not the correct behavior. There are standard syn- 
thesis procedures known that do realize the correct behavior, 
but they need transformers. 
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