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1 Introduction and preliminaries

H∞-control has been a subject of intensive research for almost three decades now for two main reasons: proven

performance in practical applications and the elegance of the theory. Weighted H∞-control has been studied

in several contexts because of its equally wide range of applications. In this paper we consider a more general

formulation of this problem and show how the behavioral approach allows us to solve, as a special case, the

weighted H∞-control problem in a more straightforward fashion.

In order to make this paper self-contained, we cover some essential definitions, which we do in the rest

of this section. The following section contains the formulation of the dissipativity synthesis problem (DSP)

and how certain standard control problems can be formulated into a DSP. Section 3 contains the main results

of this paper, which are some necessary conditions and certain sufficient conditions for the solvability of the

DSP. We conclude this paper with a few remarks on the main results in section 4.

A linear differential controllable behavior B is the set of those trajectories w ∈ C∞(R,Rw) that are in the

image of the matrix differential operator M( d
dt ), where M(ξ) is some polynomial matrix with w rows. More

precisely,

B = {w ∈ C∞(R,Rw) | there exists ` ∈ C∞(R,R`) such that w = M( d
dt )` }.

The set of such controllable behaviors with w components is denoted by Lw
cont. For the purpose of this paper,

the easiest way to define the input cardinality of a behavior B is the rank of the polynomial matrix M(ξ)

in the above equation. We denote the input cardinality of B by m(B). See [4] for a good exposition on the

behavioral approach to systems and control.

The set of polynomial matrices (in one indeterminate ξ) with w rows and ` columns is denoted by Rw×`[ξ].

We shall also use matrices in which each entry is a polynomial in two indeterminates ζ and η. Rw×w[ζ, η] is

the set of such polynomial matrices with w rows and columns. Induced by Φ ∈ Rw×w[ζ, η], we have the bilinear

differential form LΦ : C∞(R,Rw) × C∞(R,Rw) → C∞(R,Rw) defined as follows. Let Φ(ζ, η) be written as a
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(finite) sum Φ(ζ, η) = Σk,`∈Z+Φk`ζ
kη` with Φk` ∈ Rw×w. Define LΦ(w, v) by

LΦ(w, v) :=
∑

k,`∈Z+

( dk

dtk
w)TΦk`( d`

dt`
v).

Using the bilinear differential form LΦ induced by Φ ∈ Rw×w[ζ, η], we define the quadratic differential form

QΦ : C∞(R,Rw)→ C∞(R,Rw) by

QΦ(w) := LΦ(w,w) =
∑

k,`∈Z+

( dk

dtk
w)TΦk`( d`

dt`
w).

In this paper we consider integrals of quadratic differential forms. Given Φ ∈ Rw×w[ζ, η], we call B ∈ Lw
cont

Φ-dissipative if
∫
R
QΦ(w) dt > 0 for all w ∈ B ∩D. (B ∩D is the subspace of those trajectories in B which

are compactly supported.) In this context, Φ is said to induce the supply rate QΦ.

Φ ∈ Rw×w[ζ, η] is called symmetric if Φ(ζ, η) = ΦT (η, ζ). Notice that when considering the quadratic

differential form induced by Φ, we can assume that Φ is symmetric without loss of generality.

Let Φ ∈ Rw×w[ζ, η]. Define ∂Φ ∈ Rw×w[ξ] by ∂Φ(ξ) = Φ(−ξ, ξ). It is easy to see that if Φ is symmetric

then the the complex matrix ∂Φ(iω) is Hermitian for all ω ∈ R.

2 Dissipativity synthesis and its applications

In this paper we consider the problem of synthesis of dissipative behaviors. In this context we require the

relation between the input cardinality of the behavior and the signature of the polynomial matrix that induces

the supply rate. (The signature of a nonsingular symmetric constant matrix M , denoted by sign(M), is defined

as (σ−(M), σ+(M)), where σ−(M) is the number of negative eigenvalues of M , and σ+(M) is the number

of positive eigenvalues of M .) In order to make an analogous definition for the signature of a two variable

polynomial matrix Φ(ζ, η), we make certain assumptions on Φ, and these assumptions remain for the rest of

this paper.

Assumption 1 : Let Φ ∈ Rw×w[ζ, η] be symmetric. Assume that ∂Φ is nonsingular and that ∂Φ admits a

J-spectral factorization: ∂Φ(ξ) = F T (−ξ)JF (ξ) for some F ∈ Rw×w[ξ] and J ∈ Rw×w of the form

J =

I+ 0

0 −I−

 .
Under these assumptions, we define (σ−(∂Φ), σ+(∂Φ)) = sign(∂Φ) := sign(J).

It is well known that J-spectral factorizability of ∂Φ is equivalent to ∂Φ(iω) having constant signature for

almost all ω ∈ R (see [5]). We are now ready to state the dissipativity synthesis problem (DSP).

Dissipativity synthesis problem (DSP): Suppose Φ ∈ Rw×w[ζ, η] satisfies assumption 1 and let N,P ∈ Lw
cont

with N ⊆ P. Find conditions under which there exists a behavior K ∈ Lw
cont satisfying

1. N ⊆ K ⊆ P,

2. K is Φ-dissipative, and

3. m(K) = σ+(∂Φ).
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K is called the controlled behavior, while N and P are called the hidden and the plant behaviors respectively.

Each of the three conditions above have important implications in systems theory, and more on this can be

found in [9, 6]. In [9, 6], however, the problem was solved only for the case that Φ is a constant. (This means

that the supply rate does not depend on derivatives of the concerned variables.) Another important difference

between the above problem and the one studied in [6, 9] is that the dissipativity there was required to hold on

the half-line. Half-line dissipativity is a concept stronger than just dissipativity as we have defined above. The

relation between half-line dissipativity and internal stability of the controlled behavior K has been brought

out in [6]. In this paper we do not require K to be half-line dissipative and hence we do not go more into this

concept. We only note that, as far as the H∞-control problem is concerned, the above DSP implies that the

closed loop behavior need not have to be internally stable, i.e. the corresponding transfer function is allowed

to have poles in the closed right half plane also. Thus, strictly speaking, this problem is better termed the

L∞-control problem.

An example where we encounter dissipativity with respect to a supply rate induced by a nonconstant Φ

is in mechanical systems. Here, power can be expressed as force F times the derivative of the position x, i.e.

power= F d
dtx. Thus, for w = (F, x), the supply rate QΦ(w) = F d

dtx is induced by Φ ∈ R2×2[ζ, η] defined

below

Φ(ζ, η) :=
1
2

0 η

ζ 0

 .
Hence the problem of synthesis of a passive mechanical system (i.e. the controlled mechanical system can

only absorb energy) can be formulated as a DSP, with the above Φ.

We now briefly describe how the weighted H∞-control problem (or rather the weighted L∞-control prob-

lem) can be viewed as a special case of the DSP. Consider the H∞-disturbance attenuation control problem,

in which the problem is to design a controller that ensures that the effect of exogenous disturbance d on the

endogenous to-be-regulated output z is sufficiently small. Interpret G(s) as the to-be-shaped transfer function

from d to z. For several applications, it is useful to shape the frequency response of not G(s) but of W (s)G(s),

with W (s) a weighting function. (Both G(s) and W (s) are assumed to be real rational transfer matrices.)

Well-studied applications include high frequency roll-off, partial pole placement, etc.. More on this can be

found in [3, 7].

This problem can be rephrased as finding a controller such that L∞-norm of W (s)G(s) is less than or

equal to a given positive γ. Assume for simplicity that both G(s) and W (s) are scalar transfer functions.

This problem can be reformulated into a DSP as explained below.

Define w := (d, z) and choose Φ ∈ R2×2[ζ, η] as

Φ(ζ, η) :=

γ2d(ζ)d(η) 0

0 −n(ζ)n(η)


where W (s) = n(s)

d(s) is a factorization of W (s). Once the dissipativity synthesis problem is solved, we obtain

a K ∈ Lw
cont that satisfies the requirements. Corresponding to this K, we obtain the transfer function G(s)

from d to z. One can verify that requiring K to be Φ-dissipative is equivalent to requiring the L∞-norm of

W (s)G(s) to be less than or equal to γ. Notice that both G(s) and W (s) are allowed to have poles in the
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open right half plane also. This illustrates how the weighted L∞-control problem can be posed as a special

case of the DSP.

3 Main results

In this paper, we provide necessary conditions for the existence of a K satisfying the requirements of the DSP,

and we prove sufficiency of these necessary conditions together with certain additional conditions.

To be able to state these conditions, we need some more definitions relating to behaviors and their orthog-

onal complement. Consider a behavior B ∈ Lw
cont, the orthogonal complement B⊥ of B is defined as

B⊥ := {w ∈ C∞(R,Rw) |
∫
R

wT v dt = 0 for all v ∈ B ∩D}.

The orthogonal complement B⊥ of a controllable behavior B turns out to be a controllable behavior too.

These facts, together with other relations about orthogonality and their proofs, can be found in [1]. We also

require the notion of orthogonal complement with respect to a specific Φ ∈ Rw×w[ζ, η]. The Φ-orthogonal

complement B⊥Φ of B is defined as (∂Φ( d
dt )B)⊥. One can show that B⊥Φ is the largest controllable behavior

such that∫
R

LΦ(w, v) dt = 0 for all w ∈ B ∩D and v ∈ B⊥Φ ∩D.

Using this notion of the Φ-orthogonal complement of a behavior we are ready to state the necessary

conditions for the solvability of the DSP.

Theorem 2 : If K satisfying the requirements of the DSP above exists, then the following two conditions are

satisfied:

1. N is Φ-dissipative, and
2. P⊥Φ is (−Φ)-dissipative.

In addition to the above two conditions that are necessary for the existence of a K, we shall assume certain

‘regularity assumptions’ on the dissipativities of N and P⊥Φ . These three conditions are shown to be sufficient

for the existence of a suitable K, in the following theorem.

Theorem 3 : K satisfying the requirements in the DSP above exists if the following conditions are satisfied:

1. N is Φ-dissipative,
2. P⊥Φ is (−Φ)-dissipative, and
3. m(N ∩N⊥Φ) = 0 = m(P ∩ P⊥Φ).

The third condition in the above theorem is a kind of strictness on the dissipativity of the concerned behavior.

More precisely, it can be shown (see [2]) that if N is Φ dissipative, then m(N ∩N⊥Φ) = 0 is equivalent to

w ∈ N ∩D∫
R
QΦ(w) dt = 0

⇒ w = 0.

In other words, the zero trajectory is the only compact support trajectory in N for which
∫
R
QΦ(w) dt = 0.

It is this kind of strictness of Φ-dissipativity of N that has been assumed in the above theorem. A similar

remark holds for the condition m(P ∩ P⊥Φ) = 0. The proof of the above theorems can be found in [2].
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4 Remarks

We have provided some necessary conditions for the solvability of the dissipativity synthesis problem. We

have also shown sufficience of these necessary conditions, together with additional conditions. The regularity

assumptions make the situation similar to the ‘regular case’ in the proof of the corresponding dissipativity

synthesis problem as solved in [9]. Though the regularity assumptions make the proof much simpler, one

would expect that the two necessary conditions are also sufficient for the solvability of the DSP. This issue is

explored in [2].
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