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Abstract—This paper is about an algorithm to compute the a vector valued functiom, we write w € € (R, R¥), i.e. w

maximum amount of ‘perturbation’, within a suitable class of denotes the number of componentsuin Similarly, we write
the quadratic supply rates, such that a given system is dissipative , € (R RZ)
, .

with respect to this class of perturbed supply rates. This turns . . .
out to also be a method to verify strict dissipativity of a behavior ~ A controllable behaviors is a set of functlonSwd €
with respect to a given rate of supply of energy. ¢>(R,R¥) that are in the image of some operatuf(;),

o . ... . whereM(¢) is a polynomial matrix. More precisely,
Keywords: Dissipative system, behavior, strict dissipativity, © holy P Y

quadratic supply rates B = {we ¢°(R,RY) | there existd € €*(R,R)
such thatw = M ()¢}

I. INTRODUCTION

We write B e £ .. (€%, is the set of controllable

Dissipative systems are those that absorb net energy WrP)%rP]aviors.) In the above definition/ € R"<‘[¢], i.e.

they interact with the environment through their ‘manifestb0|yn0mia| matrix withw rows and? columns. In general)/ is
variables. (The variables through which this interaction takeg; unique ando = M (-3¢ is calledan image representation
place are termechanifest variable§ This interaction is often ¢ o3 Firther ifw, — ujl; implies ¢, = £», we call this image

a quadratic form in the manifest variables. For example, the,resentatiorobservable It turns out that a given image
power flowing in through the ports of an electric networlfepresentationu _ M(%)E is observable if and only if the

is VTI, whereV is the vector of voltages across the port%omplex matrix M (\) has constant rank for alk € C. In

and I is the vector of currents through the ports (with thgyp: of the fact that controllable behaviors are precisely those

suitable sign convention). So, here the power is quadratic {iby aqmit an observable image representation, we use such

LS mapifest variablegV, 1 ): . representations without loss of generality in this paper.
In this paper we study dissipativity for more general supply This naper is restricted to just controllable behaviors since

rates, and we use the behavioral approach for this purpage. qea| with only controllable behaviors here. A good expo-

In this context, strict dissipativity is defined and we preseltion on the behavioral approach to systems and control can
an algorithm to compute the ‘extent’ (sas) to which the be found in [3], [4].

dissipativity is strict. This can be interpreted as the stability
margin of the property of dissipativity for a given behavior.
The computation of the stability margin turns out to open up Il. DISSIPATIVE SYSTEMS

a novel algorithm to compute thg(.. norm of a transfer  Dissipative systems are those for which the the net energy
matrix; and this algorithm turns out to be computationallihat has flown into the system is always non-negative. A big
more efficient than the present method ([2]) used in Matlalzlass of physical systems exhibit this property and hence the

This paper is structured as follows. This section contaiRgstained interest in them. A formal treatment of dissipative
briefly the notation that we use, and then basic definitions &fstems theory in the behavioral approach can be found in [5].
behavioral theory. Preliminaries about dISSIpatIVIty is Coverqﬁ this section the essential definitions are covered.
in the next section. Sectidh also contains definitions and the | et 8 < g7  and let € R"** be symmetric and
relation between ‘stability margin’ of the dissipativity, stricthonsingulars3 is said to bedissipativewith respect to¥ (or
dissipativity and theH.-norm of a transfer function. Sectiony:.gissipative) if
[l contains an algorithm to compute this stability margin.
A few examples are provided in sectid¥ to illustrate the /wTZw dt > 0 for all w € BND(R,RY).
method. A few conclusive remarks form sectign R

R and C denote the fields of real numbers and complel this contextX is called therate of supply of energyor
numbers respectively, ani[¢] is the ring of polynomials simply, supply rate The following theorem from [5] relates
in one indeterminate. € (R, R®) is the set of infinitely dissipativity property with a more concrete condition &n
often differentiable functions (i.e., smooth functions) that havand M (&), wherew = M(C‘f—t)ﬁ is an image representation of
domainR and co-domainR®, the n-dimensional real vector the behavior.
space.®(R,R?) is a subset of£>°(R,R*) and contains all
functions in €>(R,R*) that are compactly supported. In Theorem 1:: Consider8 € £¥ ., and let¥ € R"*" be
order to systematically denote the number of componentsspmmetric and nonsingular. Let = M(j—t)é be an image



representation of3. Then®B is X dissipative if and only if I1l. ALGORITHM

MT(~iw)EM(iw) >0 forall w e R . - In this section we present an algorithm to computgs,

Thus for eachw < R, non-negativity of the Hermitian j o the maximum € R such thats is dissipative with respect
matrix M7 (—iw)¥XM (iw) is necessary and sufficient fat 0> — el
dissipativity of . , . Letw = M(Z)¢ be an observable image representation of

For dissipative systems, there could be nonzero trajectori@s pefine P ¢ CPw, ] as follows:
in the behavior such that the net energy absorbed along
these trajectories is zero. This is ruled out in the case of P(w,€) := M (—iw)EM (iw) — eM" (—iw)M (iw) . (2)
strict dissipativity which we define nows is called strictly C**[w, €] is a matrix of sizel x ¢ in which each entry is a
dissipative with respect t& if there existse > 0 such that polynomial in two indeterminates ande, and with complex

T 9 v coefficients.

/Rw Zwdt > 6/]R [wf” dt for all w € B ND(R,R). An underlying idea behind the algorithm is to find the
maximum e that makesP(w,€) singular for somew € R.
Assume thafP(wy, €4) is singular for some (finiteyy, e4 € R.

To see that, is an upper bound for,,,, proceed as follows.

Notice that ifB is dissipative with respect t&, thenB is LetP((ccu?, e4)hbehsmgular fok,wo € R. Hence there exists
also dissipative with respect 00— el for € < 0. The situation 07 v € C" such that
is different for the case > 0. This forms the central issue of (M (iwo)v)* (2 — el ) (M (iwg)v) = 0.
this paper:

(Jjw|* denotesw®w.) In other words,® is called strictly Y-
dissipative if*8 is dissipative with respect t& — e/ for some
e > 0, where! is the identity matrix of suitable size.

Consider
Given B € £¢ ., and¥ € R"*¥ which is (M (iwo)v)* (% — el ) (M (iwo)v) ‘
symmetric and nonsingular, find the maximum = V" P(wo, €a)v — (€ — €4) (M (iwo)v)”™ (M (iwo)v)
¢ € R such that® is ¥ — I dissipative. = —(e — e4) (M (iwo)v)* (M (iwo)v) .

Denote this maximum by e... The algorithm described in Note that becaus@/()) has full column rank for all\ € C,
this paper Computes.ay, and clearlyena. > 0 is equivalent M” (—iw)M (iw) is nonsingular for ally € R. This results
to dissipativity. Moreoverema. > 0 is equivalent to strict in the required conclusion: for > €4, v*P(wo,€)v < 0 and
dissipativity. henceP(wy, €) # 0 for € > ¢4, This proves that, is an upper
Notice thate,,,, can also be interpreted as the ‘stability maPound forep..
gin’ of the dissipativity property. Supposs is X-dissipative. A Step-by-step procedure is given below. The explanations
Consider perturbations & of the kindX — eI. The question for the various steps are provided along with the algorithm.
that arises now is whether dissipativity f is retained under The formal proofs are skipped here, since they follow along
this class of perturbations fersufficiently small, and what is Similar lines as in [1] for an analogous problem.
the maximum allowed that does not mak® non-dissipative. Step 1) Define the two variable polynomial matriX(w, €) as

This viewpoint also leads to understanding.x as the amount in equation 2).
of robustness of the dissipativity 88 (under the specified Step 9 Evaluate the polynomigbh.(w) € Clw, €] defined as
class of perturbations df). pe(w) := det(P(w, €)).

We now relate this issue to th#&., norm of a transfer Step 3 For eachw,e¢ € R, the matrixP(w, €) is a Hermitian
function. Letg(s) = ggj; be a transfer function, witp and matrix. We wish to find the maximuna,,., such that
g coprime polynomials. Assumeis proper and has no poles for all € < emax,
in the closed right half complex plane. Suppdigés)||sc.. = P(w,e) = 0forallweR.

Yo < 71. (1 is an upper bound on th& ., norm ofg.) Then, Again, because of the nonsingularity of
B, € £2,,, defined by the image representation MT(—iw)M(iw) for all w € R, we have that for
wl p((%) e < 0_(i.e_. e <0 and_\e|_ is very Iarge)_the ab_ove

[ y ] = { q(%) ]5 @) inequality is always satisfied as a strict inequality. In

other words, fore < 0, P(w, €) has? real and positive
eigenvalues for eaclv € R. This implies that for
Y0 e < 0, pe(w) has no roots inR. A graph of p.(w)

0o -1|° versusw is shown in figurel.
Moreover, it can be verified thas is also strictlys-dissipative SteP 4 We now analyze the properties that the polynomial

with the correspondingma. as below pe has, at this maximum value,,, we are seeking.
As noted abovep. has no real roots foe sufficiently

is dissipative with respect to

€max = “/%2* % negative and we look for the supremum,, such that
7 +1 pe has no real roots for all < €4,y It can be shown that
In this fashion, we can start with an upper bound ondhg emax = €sup (S€€ the explanation just before beginning
norm of a transfer function, and use the method described in  of this algorithm), and, further, that at= €., p. has
the next section to computg,.,. and then calculate th&(., at least onaepeatedreal rootwy € R U oco. We now

norm of g. distinguish the following two cases:



Fig. 1.

Fig. 2.

Pe(w)

fore < 0 (or equivalently, fore < esup)

(C(Qn—l) X (2n—1) [6] .

rag a1 -+ Gp_o O a, 0 - 0 A
0 ap -+ an—3 an—2 0 Qn 0 .
(.) 0. ao. al. ag. O. a.,,,
S = 0 by - 0 bp_1 O 0o - 0 (4)
0 0 © o bp—3 0 bp—1 0 0
0 0 0 b w bp1 0
LO - O 0 0 by - 0 bp—1d

with a;, b; polynomials fromp. and ¢.. The a;'s con-
stitute the firstn — 1 rows and theb;’s constitute the
remainingn rows of S.

Step § We computedet(S). Assume thatdet(S) # 0 The

case thatlet(S) = 0 is analyzed in inStep 11(Case 3)
below.

Step 9 We then compute the roots of the polynomiat(S).

Case 1: Ate = €, the repeated root of. is finite.
This case is dealt in the next step.

Case 2: The other case is that,eas> e, at least two
roots of p. become unbounded. In this case, the degree
of p. has fallen (by at least two), and, loosely speaking,
we saywy = oo is the multiple root ofp, at e = eqyyp.
This case is analyzed itep 10below.

—Wwo wo w

It is precisely at these roots that and ¢. have a
common rootwy. We are looking for only reat, and
hence we restrict ourselves to the real rootslef(.S).

Moreover, it is possible that at somewhich is a real
root of det(S), the common root, of p. andg. is not
real. This value of is also not a candidate faf,,,.

Hence we consider only those real rootsdef(.S) that
result in p. and ¢. having a common root iR. The

minimum of these real roots alfet(.S): ¢; is a candidate
for the e,,x We are seeking.

Step 10 Case 2. This case happens wheng as €,,,x, a root

of p(w, ¢) approachesc. (For a very simple example,
we can see that the roat of the polynomialp(w, €) =
ew—+1 approacheso ase — 0. An example of a transfer
function g(s) which results in a behavior of the kind
as in equationl) is covered in the next section.) This
happens precisely when approaches some roet of
an(€), the leading coefficient of, (w).

The minimume, of the real roots ofu,,(¢) is another
candidate fore,ax -

Step 1) Case 3. This case is whekt(S) = 0. This happens

fore = €max

Step § Case 1. Ate = €max, pe(w) has a rootwy in R.

Further, by the sign definiteness &fw, ¢) for values
lower thane,,.x, we infer that this real roat, should
have an even multiplicity. This implies th%%(w) also
has the same root. See figlzeWe computey, (w) :=
%(w). We now determine all values effor which p,
andgq. are not coprime.

Step 6 We write the polynomialg. andg. as below. Notice

that p. is an even polynomial inw and hence its
derivativeg. is an odd polynomial inv.

pe(w) = ag(e) + w?as(€) + -+ w"an(€)

ge(w) = wbi(€) + - +w" by_1(e) (3)

for Cl,i,bi S (C[G]
Step 7 We now use the result that two polynomials are

coprime if and only if their Sylvester resultant is
nonsingular. We form the Sylvester resultaft €

Step 12 Define emax

when p. and % are not coprime for all values o,
or in other words, not coprime as polynomial in two
variables. This implies thai, and¢. can be factored as
Pe(w) = re(w) pe(w)
e(w) = re(w) g-(w)
for some suitable nontrivial factor.(w). We continue
with p. and ¢/ and it turns out that after dividing
out factors of the kindr.(w), the Sylvester resultant
S’ obtained byp. and the corresponding. satisfies
det(S’) # 0. We proceed through Steps 7 to 9 with
p. and¢. instead. We form the Sylvester resultant and
then proceed as iBtep 9and obtaine;.
It turns out that the factor.(w) does not contain any
additional information about,,,.
:= min(ey, e2). This completes the
algorithm.

IV. EXAMPLES

In this section, we provide some simple examples which
are typical of the three cases described above. We consider



transfer functions and the associated behaviors are obtained
as in equation) above.

Considerg(s) = 5, and

4 0
- [O _J . (5)

We see that this is an example of Case 1, peand¢. are
not coprime forey,ax = 3, with the common root being finite
(wo = 0). g(s) = ﬁ is an example of a similar nature.
Notice that in both these examples, the, norm of g(s) is
attainedat a finite frequency.

Now considerg(s) = ;i; and X as in equation&). Here,
one can verify that the situation in Case 2 (of the algorithm)
is relevant. This is obviously because the, norm of g(s)
is not attained at any finite frequency, but

s+1 _ w+1,
Il = Jim 157l =

For an example of Case 3, we need a matrix of transfer

functions; amongst the simplest being

G<s>=[s§1 L]

s+1
We proceed with> and M as follows
4 0 0 O £+1 0
10 4 0 O - 0 ¢+1
=100 -1 o | @ M=] 4 0
00 0 -1 0 1

Straightforward calculations show thédt(S) = 0 and apply-
ing the procedure, we get,.. = g

V. REMARKS

We presented an algorithm to determine the maximum
perturbatione,,,, on the supply rateX (within a certain
class of perturbations), such that a given beha®oretains
dissipativity within this perturbed class of supply rates. As
explained above, we call thig,., the stability margin of the
dissipativity property.

A second remark is that the algorithm of sectlidnrequires
only a slight modification before it can be used as an efficient
method to compute th&(,, norm of a transfer matrix. This
issue has been addressed in [1]. The proofs of the various
claims above can also be found in [1].
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