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Abstract— This paper is about an algorithm to compute the
maximum amount of ‘perturbation’, within a suitable class of
the quadratic supply rates, such that a given system is dissipative
with respect to this class of perturbed supply rates. This turns
out to also be a method to verify strict dissipativity of a behavior
with respect to a given rate of supply of energy.
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I. I NTRODUCTION

Dissipative systems are those that absorb net energy when
they interact with the environment through their ‘manifest’
variables. (The variables through which this interaction takes
place are termedmanifest variables.) This interaction is often
a quadratic form in the manifest variables. For example, the
power flowing in through the ports of an electric network
is V T I, whereV is the vector of voltages across the ports,
and I is the vector of currents through the ports (with the
suitable sign convention). So, here the power is quadratic in
the manifest variables(V, I).

In this paper we study dissipativity for more general supply
rates, and we use the behavioral approach for this purpose.
In this context, strict dissipativity is defined and we present
an algorithm to compute the ‘extent’ (say,ε) to which the
dissipativity is strict. Thisε can be interpreted as the stability
margin of the property of dissipativity for a given behavior.
The computation of the stability margin turns out to open up
a novel algorithm to compute theH∞ norm of a transfer
matrix; and this algorithm turns out to be computationally
more efficient than the present method ([2]) used in Matlab.

This paper is structured as follows. This section contains
briefly the notation that we use, and then basic definitions of
behavioral theory. Preliminaries about dissipativity is covered
in the next section. SectionII also contains definitions and the
relation between ‘stability margin’ of the dissipativity, strict
dissipativity and theH∞-norm of a transfer function. Section
III contains an algorithm to compute this stability margin.
A few examples are provided in sectionIV to illustrate the
method. A few conclusive remarks form sectionV.

R and C denote the fields of real numbers and complex
numbers respectively, andR[ξ] is the ring of polynomials
in one indeterminateξ. C∞(R, Rn) is the set of infinitely
often differentiable functions (i.e., smooth functions) that have
domain R and co-domainRn, the n-dimensional real vector
space.D(R, Rn) is a subset ofC∞(R, Rn) and contains all
functions in C∞(R, Rn) that are compactly supported. In
order to systematically denote the number of components in

a vector valued functionw, we write w ∈ C∞(R, Rw), i.e. w
denotes the number of components inw. Similarly, we write
` ∈ C∞(R, R`).

A controllable behaviorB is a set of functionsw ∈
C∞(R, Rw) that are in the image of some operatorM( d

dt ),
whereM(ξ) is a polynomial matrix. More precisely,

B := {w ∈ C∞(R, Rw) | there exists̀ ∈ C∞(R, R`)
such thatw = M( d

dt )`}.

We write B ∈ Lw
cont. (Lw

cont is the set of controllable
behaviors.) In the above definition,M ∈ Rw×`[ξ], i.e. M is a
polynomial matrix withw rows and̀ columns. In general,M is
not unique andw = M( d

dt )` is calledan image representation
of B. Further, ifw1 = w2 implies `1 = `2, we call this image
representationobservable. It turns out that a given image
representationw = M( d

dt )` is observable if and only if the
complex matrixM(λ) has constant rank for allλ ∈ C. In
light of the fact that controllable behaviors are precisely those
that admit an observable image representation, we use such
representations without loss of generality in this paper.

This paper is restricted to just controllable behaviors since
we deal with only controllable behaviors here. A good expo-
sition on the behavioral approach to systems and control can
be found in [3], [4].

II. D ISSIPATIVE SYSTEMS

Dissipative systems are those for which the the net energy
that has flown into the system is always non-negative. A big
class of physical systems exhibit this property and hence the
sustained interest in them. A formal treatment of dissipative
systems theory in the behavioral approach can be found in [5].
In this section the essential definitions are covered.

Let B ∈ Lw
cont and let Σ ∈ Rw×w be symmetric and

nonsingular.B is said to bedissipativewith respect toΣ (or
Σ-dissipative) if∫

R
wT Σw dt > 0 for all w ∈ B ∩D(R, Rw).

In this contextΣ is called therate of supply of energy, or
simply, supply rate. The following theorem from [5] relates
dissipativity property with a more concrete condition onΣ
andM(ξ), wherew = M( d

dt )` is an image representation of
the behavior.

Theorem 1:: ConsiderB ∈ Lw
cont, and letΣ ∈ Rw×w be

symmetric and nonsingular. Letw = M( d
dt )` be an image
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representation ofB. ThenB is Σ dissipative if and only if
MT (−iω)ΣM(iω) > 0 for all ω ∈ R .

Thus for eachω ∈ R, non-negativity of the Hermitian
matrix MT (−iω)ΣM(iω) is necessary and sufficient forΣ
dissipativity ofB.

For dissipative systems, there could be nonzero trajectories
in the behavior such that the net energy absorbed along
these trajectories is zero. This is ruled out in the case of
strict dissipativity which we define now.B is called strictly
dissipative with respect toΣ if there existsε > 0 such that∫

R
wT Σw dt > ε

∫
R
|w|2 dt for all w ∈ B ∩D(R, Rw).

(|w|2 denoteswT w.) In other words,B is called strictlyΣ-
dissipative ifB is dissipative with respect toΣ− εI for some
ε > 0, whereI is the identity matrix of suitable size.

Notice that ifB is dissipative with respect toΣ, thenB is
also dissipative with respect toΣ−εI for ε 6 0. The situation
is different for the caseε > 0. This forms the central issue of
this paper:

Given B ∈ Lw
cont, and Σ ∈ Rw×w which is

symmetric and nonsingular, find the maximum
ε ∈ R such thatB is Σ− εI dissipative.

Denote this maximumε by εmax. The algorithm described in
this paper computesεmax, and clearly,εmax > 0 is equivalent
to dissipativity. Moreover,εmax > 0 is equivalent to strict
dissipativity.

Notice thatεmax can also be interpreted as the ‘stability mar-
gin’ of the dissipativity property. SupposeB is Σ-dissipative.
Consider perturbations ofΣ of the kindΣ− εI. The question
that arises now is whether dissipativity ofB is retained under
this class of perturbations forε sufficiently small, and what is
the maximum allowedε that does not makeB non-dissipative.
This viewpoint also leads to understandingεmax as the amount
of robustness of the dissipativity ofB (under the specified
class of perturbations ofΣ).

We now relate this issue to theH∞ norm of a transfer
function. Let g(s) = q(s)

p(s) be a transfer function, withp and
q coprime polynomials. Assumeg is proper and has no poles
in the closed right half complex plane. Suppose‖g(s)‖H∞ =
γ0 < γ1. (γ1 is an upper bound on theH∞ norm ofg.) Then,
Bg ∈ L2

cont defined by the image representation[
u
y

]
=

[
p( d

dt )
q( d

dt )

]
` (1)

is dissipative with respect to[
γ2
1 0
0 −1

]
.

Moreover, it can be verified thatB is also strictlyΣ-dissipative
with the correspondingεmax as below

εmax =
γ2
1 − γ2

0

γ2
0 + 1

.

In this fashion, we can start with an upper bound on theH∞
norm of a transfer function, and use the method described in
the next section to computeεmax and then calculate theH∞
norm of g.

III. A LGORITHM

In this section we present an algorithm to computeεmax,
i.e. the maximumε ∈ R such thatB is dissipative with respect
to Σ− εI.

Let w = M( d
dt )` be an observable image representation of

B. DefineP ∈ C`×`[ω, ε] as follows:

P (ω, ε) := MT (−iω)ΣM(iω)− εMT (−iω)M(iω) . (2)

C`×`[ω, ε] is a matrix of sizè × ` in which each entry is a
polynomial in two indeterminatesω andε, and with complex
coefficients.

An underlying idea behind the algorithm is to find the
maximum ε that makesP (ω, ε) singular for someω ∈ R.
Assume thatP (ω0, ε4) is singular for some (finite)ω0, ε4 ∈ R.
To see thatε4 is an upper bound forεmax, proceed as follows.

Let P (ω0, ε4) be singular forε4, ω0 ∈ R. Hence there exists
0 6= v ∈ C` such that

(M(iω0)v)∗(Σ− ε4I)(M(iω0)v) = 0.

Consider

(M(iω0)v)∗(Σ− εI)(M(iω0)v)
= v∗P (ω0, ε4)v − (ε− ε4)(M(iω0)v)∗(M(iω0)v)
= −(ε− ε4)(M(iω0)v)∗(M(iω0)v) .

Note that becauseM(λ) has full column rank for allλ ∈ C,
MT (−iω)M(iω) is nonsingular for allω ∈ R. This results
in the required conclusion: forε > ε4, v∗P (ω0, ε)v < 0 and
henceP (ω0, ε) 6> 0 for ε > ε4, This proves thatε4 is an upper
bound forεmax.

A step-by-step procedure is given below. The explanations
for the various steps are provided along with the algorithm.
The formal proofs are skipped here, since they follow along
similar lines as in [1] for an analogous problem.
Step 1) Define the two variable polynomial matrixP (ω, ε) as

in equation (2).
Step 2) Evaluate the polynomialpε(ω) ∈ C[ω, ε] defined as

pε(ω) := det(P (ω, ε)).
Step 3) For eachω, ε ∈ R, the matrixP (ω, ε) is a Hermitian

matrix. We wish to find the maximumεmax such that
for all ε 6 εmax,

P (ω, ε) > 0 for all ω ∈ R .

Again, because of the nonsingularity of
MT (−iω)M(iω) for all ω ∈ R, we have that for
ε � 0 (i.e. ε < 0 and |ε| is very large) the above
inequality is always satisfied as a strict inequality. In
other words, forε � 0, P (ω, ε) has` real and positive
eigenvalues for eachω ∈ R. This implies that for
ε � 0, pε(ω) has no roots inR. A graph of pε(ω)
versusω is shown in figure1.

Step 4) We now analyze the properties that the polynomial
pε has, at this maximum valueεmax we are seeking.
As noted above,pε has no real roots forε sufficiently
negative and we look for the supremumεsup such that
pε has no real roots for allε < εsup. It can be shown that
εmax = εsup (see the explanation just before beginning
of this algorithm), and, further, that atε = εsup, pε has
at least onerepeatedreal rootω0 ∈ R ∪ ∞. We now
distinguish the following two cases:
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ω

pε(ω)

Fig. 1. for ε� 0 (or equivalently, forε < εsup)

Case 1: Atε = εsup, the repeated root ofpε is finite.
This case is dealt in the next step.
Case 2: The other case is that, asε → εsup, at least two
roots ofpε become unbounded. In this case, the degree
of pε has fallen (by at least two), and, loosely speaking,
we sayω0 = ∞ is the multiple root ofpε at ε = εsup.
This case is analyzed inStep 10below.

pε(ω)

ωω0−ω0

Fig. 2. for ε = εmax

Step 5) Case 1. Atε = εmax, pε(ω) has a rootω0 in R.
Further, by the sign definiteness ofP (ω, ε) for values
lower thanεmax, we infer that this real rootω0 should
have an even multiplicity. This implies thatdpε

dω (ω) also
has the same root. See figure2. We computeqε(ω) :=
dpε

dω (ω). We now determine all values ofε for which pε

andqε are not coprime.
Step 6) We write the polynomialspε andqε as below. Notice

that pε is an even polynomial inω and hence its
derivativeqε is an odd polynomial inω.

pε(ω) = a0(ε) + ω2a2(ε) + · · ·+ ωnan(ε)
qε(ω) = ωb1(ε) + · · ·+ ωn−1bn−1(ε) (3)

for ai, bi ∈ C[ε].
Step 7) We now use the result that two polynomials are

coprime if and only if their Sylvester resultant is
nonsingular. We form the Sylvester resultantS ∈

C(2n−1)×(2n−1)[ε].

S =



a0 a1 ··· an−2 0 an 0 ··· 0
0 a0 ··· an−3 an−2 0 an 0 ···
... ···

...
...

...
...

...
...

...
0 ··· 0 a0 a1 a2 ··· 0 an

0 b1 ··· 0 bn−1 0 0 ··· 0
0 0 ··· bn−3 0 bn−1 0 0 ···
...

... ···
...

...
...

...
...

...
0 ··· 0 0 b1 ··· ··· bn−1 0
0 ··· 0 0 0 b1 ··· 0 bn−1


(4)

with ai, bi polynomials frompε and qε. The ai’s con-
stitute the firstn − 1 rows and thebi’s constitute the
remainingn rows of S.

Step 8) We computedet(S). Assume thatdet(S) 6= 0 The
case thatdet(S) = 0 is analyzed in inStep 11(Case 3)
below.

Step 9) We then compute the roots of the polynomialdet(S).
It is precisely at these roots thatpε and qε have a
common rootω0. We are looking for only realε, and
hence we restrict ourselves to the real roots ofdet(S).
Moreover, it is possible that at someε which is a real
root of det(S), the common rootω0 of pε andqε is not
real. This value ofε is also not a candidate forεmax.
Hence we consider only those real roots ofdet(S) that
result in pε and qε having a common root inR. The
minimum of these real roots ofdet(S): ε1 is a candidate
for the εmax we are seeking.

Step 10) Case 2. This case happens when, asε → εmax, a root
of p(ω, ε) approaches∞. (For a very simple example,
we can see that the rootω0 of the polynomialp(ω, ε) =
εω+1 approaches∞ asε → 0. An example of a transfer
function g(s) which results in a behavior of the kind
as in equation (1) is covered in the next section.) This
happens precisely whenε approaches some rootε′ of
an(ε), the leading coefficient ofpε(ω).
The minimumε2 of the real roots ofan(ε) is another
candidate forεmax .

Step 11) Case 3. This case is whendet(S) = 0. This happens
when pε and dpε

dω are not coprime for all values ofε,
or in other words, not coprime as polynomial in two
variables. This implies thatpε andqε can be factored as

pε(ω) = rε(ω) p′ε(ω)
qε(ω) = rε(ω) q′ε(ω)

for some suitable nontrivial factorrε(ω). We continue
with p′ε and q′ε and it turns out that after dividing
out factors of the kindrε(ω), the Sylvester resultant
S′ obtained byp′ε and the correspondingq′ε satisfies
det(S′) 6= 0. We proceed through Steps 7 to 9 with
p′ε and q′ε instead. We form the Sylvester resultant and
then proceed as inStep 9and obtainε1.
It turns out that the factorrε(ω) does not contain any
additional information aboutεmax.

Step 12) Define εmax := min(ε1, ε2). This completes the
algorithm.

IV. EXAMPLES

In this section, we provide some simple examples which
are typical of the three cases described above. We consider
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transfer functions and the associated behaviors are obtained
as in equation (1) above.

Considerg(s) = 1
s+1 , and

Σ =
[
4 0
0 −1

]
. (5)

We see that this is an example of Case 1, i.e.pε and qε are
not coprime forεmax = 3

2 , with the common root being finite
(ω0 = 0). g(s) = 1

s2+s+1 is an example of a similar nature.
Notice that in both these examples, theH∞ norm of g(s) is
attainedat a finite frequency.

Now considerg(s) = s+1
s+2 andΣ as in equation (5). Here,

one can verify that the situation in Case 2 (of the algorithm)
is relevant. This is obviously because theH∞ norm of g(s)
is not attained at any finite frequency, but

‖s + 1
s + 2

‖H∞ = lim
ω→∞

| iω + 1
iω + 2

| = 1.

For an example of Case 3, we need a matrix of transfer
functions; amongst the simplest being

G(s) =
[ 1

s+1 0
0 1

s+1

]
.

We proceed withΣ andM as follows

Σ =


4 0 0 0
0 4 0 0
0 0 −1 0
0 0 0 −1

 and M =


ξ + 1 0

0 ξ + 1
1 0
0 1

 .

Straightforward calculations show thatdet(S) = 0 and apply-
ing the procedure, we getεmax = 3

2 .

V. REMARKS

We presented an algorithm to determine the maximum
perturbation εmax on the supply rateΣ (within a certain
class of perturbations), such that a given behaviorB retains
dissipativity within this perturbed class of supply rates. As
explained above, we call thisεmax the stability margin of the
dissipativity property.

A second remark is that the algorithm of sectionIII requires
only a slight modification before it can be used as an efficient
method to compute theH∞ norm of a transfer matrix. This
issue has been addressed in [1]. The proofs of the various
claims above can also be found in [1].
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