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Graph theoretic methods in the study of structural issues in control
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Abstract: This paper addresses questions regarding controllability and observability for ‘generic parameter’ dynamical
systems. We use graph theoretic methods and hence these questions are answered in a ‘structural sense’. We formulate
necessary and sufficient conditions for controllability in terms of suitable maximum matchings in the bipartite graph
constructed from the constraints and variables. The conditions for observability turn out to be similar. We relate these
tests to Gilbert’s controllability and observability tests.

Keywords: maximum matching, perfect matching, controllability, observability, Gilbert’s tests

1. INTRODUCTION AND
PRELIMINARIES

When dealing with very large dynamical systems, nu-
merical computation is often not feasible. Under the as-
sumption of genericity of parameters, one can answer
questions about controllability, observability and arbi-
trary pole placement using graph theoretic tools. These
issues are typically dealt as ‘structural’ issues in control
in [3, 4], for example. While existing techniques to ad-
dress structural aspects of control start from a (possibly
singular) state space representation of the system, the re-
sults in this paper apply to more general models of dy-
namical systems: linear differential-algebraic equations
of possibly higher order. The behavioral theory of sys-
tems allows this general approach; the required prelimi-
naries for this paper is in Section 3.and more details can be
found in [5, 6]. The paper is organized as follows. Some
definitions and graph theoretic preliminaries are covered
in the following section. Section 3.reviews some con-
cepts within the behavioral approach needed for this pa-
per. Section 4.relates polynomial matrix rank properties to
those of its bipartite graph. Some important results of this
paper are in this section. Section 5.contains main results
about controllability, stabilizability, observability and de-
tectability. Section 6.contains a state space example and
shows how the classical Gilbert’s tests for controllability
and observability are a special case of the main results of
this paper. Section 7.has some conclusive remarks.

2. MATCHINGS IN A GRAPH

A graph in which the vertices can be partitioned into
two sets so that each edge in the graph is a correspon-
dence between a node in one set with a vertex in the other
set is called a bipartite graph. For this paper, one vertex
set denotes the constraints, C, and the other denotes vari-

ables, V . In a bipartite graph, a vertex in one set could
be connected to two or more vertices in the other set of
vertices. A subset of the edges such that there is a one-
to-one correspondence between the vertices in a bipartite
graph is called a matching, i.e. each vertex has at most
one edge from this subset incident on it. The number of
edges in a matching M is denoted by |M |. For a bipartite
graph with vertex sets C and V , a matching M is said to
be a perfect matching if |M | = min(|C|, |V |). A detailed
exposition on these notions can be found in [2].

We introduce some notation regarding the vertices and
edges occurring in a perfect matching in a bipartite graph.
A perfect matching P corresponds to a set of constraints,
variables and the entries corresponding to the edges in
this perfect matching. We use V (P ) to denote the vari-
ables in the perfect matching, C(P ) denotes the set of
constraints and E(P ) denotes the set of entries that occur
in the perfect matching P .

As an example, consider the matrixR ∈ Rp×w[ξ]with
its nonzero entries: eij , marked by its row and column
indices i and j respectively:

R :=

�
0 e12 e13

e21 e22 e23

�
.

Keeping in mind that the rows of the matrixR correspond
to constraints (equations), denote the rows by c1 and c2.
Similarly, the columns correspond to variables, hence de-
note columns of R by v1, v2 and v3. The bipartite graph
is shown in Figure 1.

In the above bipartite graph, there are four perfect
matchings, say, P1, P2, P3 and P4 corresponding to
the edge pairs: {e12, e21}, {e12, e23}, {e13, e22} and
{e13, e21}, respectively. Notice that these perfect match-
ings are precisely the nonzero terms (with suitable signs)
in the maximal minor determinants. More precisely, the
maximal minor corresponding to the first two columns
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Fig. 1 Example of a bipartite graph

has only one nonzero term: product of the entries in the
perfect matching P1 defined above. The maximal minor
due to the 2nd and 3rd columns has two nonzero terms,
namely products of the entries in perfect matchings P2

and P3. Similarly, product of the entries in the perfect
matching P4 corresponds to the maximal minor: columns
1 and 3.

The above example brings out the following fact: for
a square matrix R, the determinant of R comprises of the
sum of products of the entries in the perfect matchings
(with suitable signs). An upper triangular, or lower tri-
angular, or diagonal square matrix has only one perfect
matching, and hence the determinant comprises of just
one nonzero term. When R is a non-square matrix, then
the perfect matchings correspond to nonzero terms in the
concerned maximal minors. This interpretation of perfect
matchings plays a key role in analysis of system proper-
ties, as shown below in Section 4..

3. POLYNOMIAL MATRICES AND LTI
BEHAVIORS

A linear time invariant dynamical system is described
by differential equations R( d

dt )w = 0, where R ∈
Rp×w[ξ] is a polynomial matrix. The behavior B of this
system is defined as the set of solutions w that satisfy
R( d

dt )w = 0:

B = {w ∈ C∞(R, Rw) | R(
d

dt
)w = 0}.

The superscript w in C∞(R, Rw) denotes the number
of components in a typical element w in the behavior B.
Moreover, we say the behavior B is an element of Lw,
the set of such linear time invariant systems described by
ordinary differential equations.

Let R( d
dt )w = 0 be a kernel representation of P ∈ Lw.

A kernel representation is said to be minimal if the row
dimension of R is the minimum of all kernel representa-
tions of P: in this case R has full row rank. Minimality
of a kernel representation can be assumed without loss of

generality because, otherwise, one can always premulti-
ply R by a unimodular matrix to obtain linearly indepen-
dent laws.

The zeros of a polynomial matrix R(ξ) play a cen-
tral role while studying controllability/observability and
other related properties of behaviors. This concept is sim-
ilar to that of a nonsingular matrix. A square polyno-
mial matrix R ∈ Rw×w[ξ] is said to be nonsingular if
det(R) �= 0. The roots of the polynomial det(R) are
called the zeros of R. We define the zeros of a polyno-
mial matrix, not necessarily square in a similar fashion.
The zeros of R(ξ) ∈ Rp×w[ξ] is defined to be the set
of those complex numbers λ ∈ C where the rank of the
polynomial matrix ‘falls’, more precisely:

zeros(R) := {λ ∈ C | rank (R(λ)) < rank (R(ξ))}.

Unimodular matrices play an important role in the ma-
nipulation of equations describing a dynamical system.
The polynomial matrix U ∈ Rw×w[ξ] is called unimodu-
lar if det(U) is a nonzero constant. In other words, these
are square nonsingular polynomial matrices whose zero
set is empty.

We also need the notion of controllability of a sys-
tem. The behavior B is called controllable if for any
w1, w2 ∈ B, there exist w3 ∈ B and T ∈ R such that
w3(t) = w1(t) for t < 0 and w3(t) = w2(t) for t > T .
If R( d

dt )w = 0 is a kernel representation of B, then con-
trollability of B is equivalent to the zero set of R being
empty.

The results of this paper also concern observability
in dynamical systems. Consider Pfull ∈ Lw+c having
two types of variables: to-be-deduced variable w and ac-
cessible variable c. The question of observability con-
cerns the ability to deduce the to-be-deduced variable
from the accessible variable. w is said to be observable
from c in Pfull if (w1, c) and (w2, c) ∈ Pfull imply that
w1 = w2. When Pfull is described by a kernel repre-
sentation Rw( d

dt )w + Rc( d
dt )c = 0, then observability

of w from c in Pfull is equivalent to Rw(ξ) having full
column rank for every complex number λ. This is equiv-
alent to Rw being a full column rank polynomial matrix,
and having its zero set empty. Another situation when
full column rank comes into picture is when dealing with
autonomous systems. A behavior B ∈ Lw is called au-
tonomous if one can conclude that w1 = w2 whenever
w1, w2 ∈ B satisfy w1(t) = w2(t) for all t � 0. If
R ∈ Rw×w[ξ] induces a minimal kernel representation
of an autonomous B, then without loss of generality, one
can assume that det R is monic: this polynomial is called
the characteristic polynomial of B and is denoted by χB.
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The roots of det R are called the poles of the autonomous
behavior B. The notions of χB and poles are needed
when studying the pole placement problem and its solu-
tion (see Results 3 and 8 below).

4. GENERICITY OF PARAMETERS

The notion of structural property makes the key as-
sumption of genericity of parameters. All the nonzero
entries are assumed to be independent, i.e. they do not
satisfy any nontrivial algebraic relations (see [4]). The
following result relates genericity of parameters, polyno-
mial matrix rank properties and the concerned bipartite
graph.

Theorem 1: Consider the bipartite graph constructed
using the polynomial matrix R ∈ Rw×w[ξ]. The follow-
ing are true.

1. R is generically nonsingular if and only if the corre-
sponding bipartite graph has at least one perfect match-
ing.
2. R is generically unimodular if and only if every per-
fect matching has only constant entries.

Since we noted in Section 2.that a perfect matching cor-
responds to a nonzero term in the determinant expansion,
the first statement in the above theorem follows by as-
sumption of genericity: cancellation of terms is ruled out
due to genericity. The second statement ensures that the
nonzero terms in the determinant expansion are nonzero
constants, causing the zero set to be empty, and hence
unimodularity.

We now deal with the case that a polynomial matrix R

is not square. Consider the bipartite graph associated to
R. The representation is generically minimal if and only
if there exists a perfect matching M and |M | = |C|. Of
course, this requires |C| � |V | to begin with. A system
satisfying the last inequality strictly is also called ‘open’,
while a system that satisfies |C| = |V | and the condition
for minimality: |M | = |C| is, in fact, autonomous.

In the context of context of controllability and observ-
ability, we ask the question of zeros for a polynomial ma-
trix R which is possibly nonsquare. The assumption of
genericity of polynomials leads to the fact that two (or
more) nonzero polynomials are generically coprime, i.e.
if p and q ∈ R[ξ] are nonzero polynomials, then the poly-
nomial matrix R := [p q] generically has no zeros. Fur-
ther, if degree of p is zero (i.e., if p is a nonzero con-
stant), then R has no zeros even if q is the zero poly-
nomial. (Note that the zero polynomial is defined to have
degree−∞.) The following theorem deals with this issue
for general nonsquare polynomial matrices. We assume
more number of columns than rows only for simplicity;

the same result is true for the converse case also.
Theorem 2: Let R ∈ Rp×w[ξ] be a polynomial ma-

trix. Consider the bipartite graph constructed from the
rows and columns of R and let Pi be the perfect match-
ings in this graph with vertex sets: constraintsC and vari-
ables V . Suppose p < w, i.e. |C| < |V |. Then R(λ) has
full row rank for every complex number λ ∈ C if and
only if at least one of the following statements is true:
1. there exists a subset of variables say VU such that
|VU | = |C| and all perfect matchings between VU and
C have only constant entries, or
2. the following two conditions are satisfied:
A there exist perfect matchings with unequal variable
sets, i.e. | ∪i V (Pi)| > |C|, and
B for every entry e ∈ ∩iE(Pi), we have deg(e) = 0,
i.e. the entry is a nonzero constant.

Property 1 above says that there is a unimodular matrix
as a maximal minor in R, and this guarantees that R has
full row rank and no zeros. Alternatively (Property 2),
determinants of two or more maximal minors in R are
generically coprime if and only if any common entries
(edges) are nonzero constants. The second statement’s
condition B rules out the possibility that any nonconstant
entries are common factors in the determinants of all the
maximal minors.

5. MAIN RESULTS

In the behavioral approach, control is viewed as re-
striction of the plant behavior to a suitable subset called
the controlled behavior K. This restriction is achieved by
interconnection of the plant with another system called
the controller; after interconnection the variables have to
satisfy the laws of both the plant and the controller. We
work in the generality that the plant has two kinds of vari-
ables: the to-be-controlled variables w, and the control
variables c. The controller can impose restrictions only
on c: thus the controller behavior C ∈ Lc, while the full
plant behavior Pfull ∈ Lw+c. The interconnection results
in the full controlled behavior Kfull := Pfull ∧ C defined
as

Kfull := {(, ) ∈ C∞(R, Rw+c) | (w, c) ∈ Pfull and ∈ C}.

If Rw( d
dt )w + Rc( d

dt )c = 0 is a kernel representation of
Pfull and C( d

dt )c = 0 is a kernel representation of C, then
a kernel representation of Kfull is seen to be
�

Rw( d
dt ) Rc( d

dt )
0 C( d

dt )

� �
w

c

�
= 0.

We often require that the interconnection of two sys-
tems should satisfy ‘regularity’: the interconnection of
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Pfull and C is said to be regular if rank [Rw Rc] +

rank C = rank

�
Rw Rc

0 C

�
. A controller C satisfying

this is called a regular controller. See [7] for a detailed
exposition. In this situation where the controller C ∈ Lc

can influence the to-be-controlled variable w through c,
the notion of hidden behavior comes into picture. The
hidden behavior N ∈ Lw is defined as

N := { ∈ C∞(R, Rw) | (w, 0) ∈ Pfull}.
Observability of w from c in Pfull is equivalent to N = �.

We need the following result from [1] regarding pole
placement.

Proposition 3: Let Pfull ∈ Lw+c. The following are
equivalent.
• For every monic p ∈ R[ξ], there exists a regular con-
troller C ∈ Lc such that Pfull ∧ C is autonomous and has
characteristic polynomial p,
• the hidden behavior N satisfies N = �, and Pfull is con-
trollable.

The theorem below is one of the main results: a neces-
sary and sufficient condition for generic observability of
w from c in Pfull.

Theorem 4: Let Pfull ∈ Lw+c. Let Rw( d
dt )w +

Rc( d
dt )c = 0 be a kernel representation of Pfull. The

following are equivalent.
• N = �, i.e. w is observable from c in Pfull.
• At least one of conditions A and B below is true for the
bipartite graph constructed from Rw:
A there exists a subset of constraints say CU such that
|CU | = |V | and all perfect matchings between CU and V

have only constant entries, or
B Conditions B1 and B2 are true:
B1 there exist perfect matchings with unequal variable
sets, i.e. | ∪i V (Pi)| > |C|, and
B2 for every entry e ∈ ∩iE(Pi), we have deg(e) = 0,
i.e. the entry is a nonzero constant.

The proof is similar to that outlined after Theorem 2.
Condition A guarantees existence of a unimodular sub-
matrix as a maximal minor, while condition B guarantees
coprimeness of nonsingular maximal minors. The situa-
tion for controllability is quite similar.

Theorem 5: Let P ∈ Lw. Let R( d
dt )w = 0 be a mini-

mal kernel representation of P. The following are equiv-
alent.
• rank R(λ) is constant for every λ ∈ C.
• At least one of conditions A and B below is true for the
bipartite graph constructed from R:
A there exists a subset of variables say VU such that
|VU | = |C| and all perfect matchings between VU and
C have only constant entries, or

B Conditions B1 and B2 are true:
B1 there exist perfect matchings with unequal variable
sets, i.e. | ∪i V (Pi)| > |C|, and
B2 for every entry e ∈ ∩iE(Pi), we have deg(e) = 0,
i.e. the entry is a nonzero constant.

In the absence of controllability, one often seeks its
weaker notion, called stabilizability. A behavior P ∈ Lw

is said to be stabilizable if for everyw1 ∈ P, there exists a
w ∈ P such that w(t) = w1(t) for all t � 0 and w(t) →
0 as t → ∞. Thus a behavior is called stabilizable if
every trajectory can be steered to zero asymptotically. A
necessary and sufficient condition to check stabilizability
of P using a kernel representation R( d

dt )w = 0 is that
rank (R(λ)) is constant for all λ ∈ C+, the closed right
half complex plane. The result below gives a structural
necessary condition for stabilizability.

Theorem 6: Let P ∈ Lw. Let R( d
dt )w = 0 be a mini-

mal kernel representation of P. Suppose P is stabilizable,
i.e. the rank R(λ) is constant for every λ ∈ C+. Then,
the bipartite graph of constraints-variables constructed
using R satisfies the condition that for every entry e such
that e ∈ ∩iE(Pi), the polynomial e is Hurwitz.

The above theorem signifies that any common factors
in all the maximal minors have to be Hurwitz to ensure
that P is stabilizable. An analogous result is straightfor-
ward for detectability. Detectability plays a role when
we do not have property of observability of a to-be-
deduced variable w from the accessible variable c. For
Pfull ∈ Lw+c, w is said to be detectable from c if we have
w1(t) − w2(t) → 0 as t → ∞ whenever (w1, c) and
(w2, c) ∈ Pfull. If Rw( d

dt )w + Rc( d
dt )c = 0 is a ker-

nel representation of Pfull, then detectability of w from
c is equivalent to R(λ) being full column rank for every
λ ∈ C.

Theorem 7: Let Pfull ∈ Lw and let Rw( d
dt )w +

Rc( d
dt )c = 0 be a kernel representation. Suppose w is

detectable from c in Pfull. Then, the bipartite graph of
constraints-variables constructed using Rw satisfies has
at least one perfect matching P such that |P | = |V | and
for every entry e such that e ∈ ∩iE(Pi), the polynomial
e is Hurwitz.

Using Proposition 3, Theorems 4 and 5, we obtain the
following result.

Corollary 8: Consider Pfull ∈ Lw+c described by the
minimal kernel representation Rw( d

dt )w + Rc( d
dt )c = 0.

Construct the bipartite graphs GN from Rw and GPfull

from [Rw Rc]. Then arbitrary pole placement is possible
using a regular controller generically if and only if the
following conditions are satisfied:

1. GN satisfies the necessary and sufficient conditions of
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Theorem 4 for generic observability of w from c in Pfull,
2. GPfull satisfies the necessary and sufficient conditions
of Theorem 5 for generic controllability of Pfull.

6. GILBERT’S CONTROLLABIL-
ITY/OBSERVABILITY

TESTS

In this section we apply the above results to a state
space description of a system and we note that the re-
sults reduce to the familiar Gilbert’s tests for controlla-
bility and observability.

Consider the example: d
dtx = Ax + Bu and y = Cx,

where

A =

⎡
⎢⎣

2 0 0
0 3 1
0 0 4

⎤
⎥⎦ , B =

⎡
⎢⎣

0
1
4

⎤
⎥⎦ and C =

�
1 0 1

�
.

We construct the bipartite graphs from R(ξ) = [ξI −
A B] and R(ξ) =

�
ξI − A

C

�
to check controllability of

(A,B) and observability of (C,A) as shown in Figures 2
and 3 respectively.
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Fig. 2 Controllability bipartite graph
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Fig. 3 Observability bipartite graph

Notice that the eigenvalue 3 of A is unobservable,
and this would be observable if at least one of the en-
tries A(3, 2) or C(1, 2) were nonzero. Similarly, (A,B)
would be controllable if B(1) were nonzero, thus ensur-
ing that the eigenvalue 2 ofA is controllable. Thus, Theo-
rems 4 and 5 boil down to the familiar Gilbert conditions
for controllability and observability. Further, (A,B) is
not stabilizable since the necessary conditions for sta-
bilizability (Theorem 6) is not satisfied: (ξ − 2) is a

common factor of all perfect matchings constructed from
[ξI − A B], and this factor is not Hurwitz.

7. CONCLUSION

We formulated conditions for a system to be control-
lable and for arbitrary pole placement in terms of prop-
erties of a bipartite graph. The genericity of parameters
helped to obtain necessary and sufficient conditions with-
out requiring any numerical computation: an important
issue when dealing with large dynamical systems. The
results obtained, in this sense, are structural properties. It
should be noted that, loosely speaking, in the absence of
genericity, the conditions continue to be necessary, like
they were in the case of stabilizability and detectability.

An important direction for future work is the case of
other representations of system equations: latent vari-
able representations and/or image representations (when
the system is controllable). While premultiplication by a
unimodular matrix to the set of equations is allowed in
general, the structure of zero and nonzero entries is eas-
ily destroyed by such premultiplication, and moreover,
the ‘algebraically independent’ assumption of genericity
is lost too. Noting these points, a careful extension of
these results to image/latent variable representations ap-
pears challenging.
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