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Abstract—The decentralized control of a line interactive UPS
through ppp-ωωω and qqq-VVV droop control requires measurement only
of variables local to the UPS and does not require a commu-
nication link. The droop control strategy has been known to
result in unstable systems for large gain constants. This paper
begins with a behavioral approach to system representation
and presents the transfer function of the controlled system. By
determining the location of the poles and zeros of the open
loop transfer function, comments are made about the stability
of the controlled system for various gains. The value of control
gain that causes instability can be determined analytically.
Simulations in Scilab are used to show the change in the
poles of the controlled system with changes in control gain.
Experimental results have been presented to show the operation
of the line interactive UPS in transient state.

Index Terms—Decentralized control, behavioral theory of
systems, Uninterruptible Power Supply (UPS), Digital Signal
Processor (DSP).

I. INTRODUCTION

A line interactive Uninterrupted Power Supply (UPS) is

an excellent solution to improve the reliability of electric

power to a critical load [1], [2]. A line interactive UPS is

connected to the distribution system (which will be called

as ac grid) and the load through a single interface without

an additional rectifier. When the ac grid is healthy, the UPS

shares the power demanded by the load with the grid, while

during grid outages, the load is supplied by the UPS. In this

paper, the decentralized control of a line interactive UPS will

be examined where the UPS is controlled by measurement

of variables local to the UPS. For this purpose, the droop

control strategy is analyzed and implemented.

In the droop control strategy [3]–[9] , the frequency ω and

the magnitude V of the UPS output voltages are not constants

but are made to vary with respect to the power supplied

by the UPS. The frequency ω is varied with respect to the

active power p supplied by the UPS while the magnitude

V is varied with respect to the reactive power q supplied.

Previous studies have presented stability analysis of the UPS

with droop control strategy [4], [5], [7]–[9]. The study has

been focused on the dominant poles of the controlled system

that are closest to the imaginary axis of the complex s plane.

Several studies have shown through simulations how the

poles of the closed loop system become unstable for large

droops [4], [7], [9]. However, a conclusive theoretical proof

of stability of the controlled system has not been presented.

In this paper, a behavioral approach has been used to

model the UPS connected to the ac grid. The system is shown
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to be controllable. The transfer function of the plant has been

derived with respect to the droop controller and the poles and

zeros of the open-loop transfer function have been plotted in

the complex s plane. Using these plots, the movement of

poles of the closed loop system with changes in the droop

controller gains can be studied using conventional root locus

techniques. Simulations performed in Scilab show the poles

of the controlled system for changes in the droop controller

gains and verify the conclusions obtained from the pole-

zero plot of the plant transfer function. The value of droop

controller gain for which the controlled system becomes

unstable can be determined analytically. Experimental results

have been presented showing the performance of the line

interactive UPS.

The outline of the paper is as follows. Section II contains

preliminaries on control theory from a behavioral approach

and the power electronic inverter. Section III describes the

mathematical model of the line interactive UPS connected to

the grid and defines the behavior. Section IV shows that the

system is controllable and presents the droop controller in a

mathematical form. Section V derives the transfer function

of the plant and the controlled system and plots the poles

and zeroes of the plant on the complex s plane. Section

VI presents simulation results in Scilab where the stability

of the controlled system for variations in the controller

gains. Experimental results of the droop control strategy are

provided to verify the droop control strategy.

II. PRELIMINARIES

This section serves to provide a brief background of the

behavioral approach to linear dynamical systems and to

power electronics converters. The later sections will use the

facts stated in this section for analysis and proofs.

A. Control theory

This subsection begins by introducing a few basic con-

cepts of behavioral theory applied to control systems. The

notations used in this paper are as follows. The set C
n is

used for the n dimensional complex vector space. Vectors

belonging to the complex vector space C
n are denoted by

lowercase boldfaced letters, e.g. a vector w ∈ C
n. The ring

of single variable polynomials with complex coefficients in

the indeterminate s is denoted by C[s]. The set C
n1×n2 [s]

denotes the set of matrices with n1 rows and n2 columns in

which each entry is an element of C[s]. A matrix is denoted

by uppercase boldfaced letters e.g. a matrix A ∈ C
n1×n2 [s].

The behavior B of the system is defined as the solution set

of a system of linear constant coefficient ordinary differential
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equations given by A
(

d
dt

)

w = 0, where w ∈C∞(R,Cn) is a

vector containing complex valued variables of the system

with components w1, w2, . . ., wn. Such a representation is

also called a kernel representation of a behavior. The matrix

A is a complex polynomial matrix and is denoted by A ∈
C
•×n[s] where • indicates that the number of rows may vary

with the system formulation. The solution set is assumed to

consist of infinitely often differentiable functions. Hence, the

behaviour is defined as

B =
{

w ∈C∞(R,C
n) | A

( d

dt

)

w = 0
}

. (1)

A polynomial matrix U ∈ C
g×g[s] is called unimodular if

U(s) has a non-zero constant determinant. A1,A2 ∈ C
g×n[s]

represent the same behavior B minimally if and only if there

exists a unimodular matrix U(s) such that A1 = UA2 [10].

Consider the behavior B∈C∞(R,Cn) with a kernel repre-

sentation A( d
dt

)w = 0 with rank(A) < n. Therefore, some of

the components of w = (w1,w2, . . . ,wn) are not constrained

by the requirements of w ∈B. These components are called

inputs. After a permutation of components if required, the

variable w can be partitioned in a possibly non-unique

manner into w = (u,y) where u is the input and y is the

output. The number of components in the output y turns out

to be rank(A). If the kernel representation A( d
dt

)w = 0 is

minimal and A is partitioned as A= [A1 A2] corresponding

to the input-output partition w = (u,y), then y is the output

if and only if det(A2) 6= 0.

Suppose a plant behavior P is required to be restricted to

a subsystem K ⊂P . In order to do so, the number of equa-

tions that the plant variables have to satisfy are increased.

The additional equations result in another behavior termed

as the controller behavior C . The interconnection of these

two systems (P and C ) results in K = P ∩C where both

the plant and controller equations are satisfied. If A( d
dt

)w= 0

and C( d
dt

)w = 0 are kernel representations of the plant and

the controller respectively, then the controlled system behav-

ior is the solution set of
[

AT CT
]T

w = 0. The interconnec-

tion of P and C is called regular if
[

AT CT
]T

w= 0 is also

a minimal kernel representation of P ∩C assuming A and

C are minimal kernel representations. When the controlled

system is autonomous, the poles of the controlled system

are the roots of determinant of
[

AT CT
]T

. We require the

important property of controllability for being able to ensure

that transients go to zero at prescribed rates. A behavior B

is controllable if and only if A of equation (1) above satisfies

full row rank property of A(λ ) for every λ ∈ C (see [10]).

B. Power Electronics

Fig. 1 shows the topology of a standard Uninterrupted

Power Supply (UPS). Inverters are used to convert the dc

output voltage Vdc across the dc capacitor to a three phase

ac output voltage. The voltage Vdc across the dc capacitor is

assumed to remain constant in this paper. Switching devices

S1 to S6 are Insulated Gate Bipolar Transistors (IGBTs) with

their associated anti-parallel diodes that are used to produce

a switched voltage waveform. The switches operate at a

frequency of approximately 5 kHz. The inductor L f and the

capacitor C f form a low pass L-C filter that removes the high

frequency switching harmonics generated by the inverter. The

voltages v f a, v f b, v f c across the filter capacitor C f bank are

the output voltages of the inverter while the currents ica, icb,

icc are the output currents of the UPS. [11] contains a detailed

comparison of the control strategies that are commonly used

to control a three phase UPS of the topology of Fig. 1.
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Fig. 1. Topology of the Uninterrupted Power Supply (UPS)

In Fig. 1, the ac part of the circuit is a three phase circuit.

The output voltage v f , output current ic and the current i f
through the inductor L f are three phase variables having three

components “a”, “b” and “c”. For example, output voltages

v f a, v f b, v f c are the “a”, “b” and “c” phase components of the

output voltage v f with the phase subscript added at the end.

In all the analysis that follows where three phase ac networks

are considered, the three phase variables are transformed

using a method called the Clarke’s transformation to obtain

complex variables. For example, v f = v f d + jv f q will be

the transformed output voltage. The subscripts “d” and “q”

are the real and imaginary components of the complex

variable. Similarly, all three phase variables transformed

using Clarke’s transformation will be expressed as complex

variables with “d” and “q” components. In the following

section, three phase variables will be written as complex

valued variables in their transformed form without d and

q components. This would reduce the number of variables

thereby simplifying the analysis of three phase circuits.

III. MATHEMATICAL MODEL OF THE SYSTEM

Fig. 2 shows the single line diagram of a line interactive

UPS consisting of a UPS in Fig. 1 connected to a three phase

ac grid. The UPS has a load connected to it locally that it

will continue to supply if the ac grid fails. The topology of

the UPS has been described in the previous section. Lc1 is

an inductance used to interface the UPS to the grid and the

load. L1g is the inductance of the cable that connects the

UPS to the ac grid with R1g being its parasitic resistance. vg
is the three phase ac grid voltage.

The mathematical model of the microgrid is written using

the system variable w

w =
[

v f1 ic1 vp1 il1 u1 vg i1g
]

. (2)

From (2), (v f1, ic1,vp1, il1) are the three phase variables

shown in Fig. 2 in complex d-q form: v f1 = v f1d + jv f1q,
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Fig. 2. Line interactive UPS with a load local to the UPS

ic1 = ic1d + jic1q, vp1 = vp1d + jvp1q and il1 = il1d + jil1q. The

variable u1 = δ1− jV1 is also local to the UPS: δ1 is defined

as the phase angle of the complex variable v f1 while V1 is

defined to be the magnitude [4]. i.e,

δ1 = tan−1
( v f1q

v f1d

)

and V1 =

√

√

√

√

v2
f1d + v2

f1q

V 2
f1d +V 2

f1q

(3)

where Vf1d and Vf1q are the values of v f1d and v f1q at the

equilibrium point about which the equations are linearized

as will be discussed next. δ1 and V1 are the inputs to the

system as will be described later in the section and further

in the next section.

i1g = i1gd + ji1gq is the current flowing in the cable

interconnecting the UPS and the ac grid as shown in Fig. 2.

vg = vgd + jvgq is the voltage of the ac grid. In a line

interactive UPS of Fig. 2, the UPS and the ac grid are

two independent entities. Therefore, the grid voltage vg is

an external input to the system and this will be evident in

the input-output partition of the behavior w.

With the above description of the variables in the vector w,

the behavior of the system of Fig. 2 can be defined. However,

from (3), the relations of δ1 and V1 are non-linear. The other

variables of w are related by linear differential equations

obtained from network laws such as Kirchoff’s Voltage Law

and Kirchoff’s Current Law. Therefore, in order to define the

behavior of the system as the solution set of equations, the

entire system is linearized about an equilibrium point and all

the components of the vector w are expressed as deviations

about the equilibrium point. The symbol “∆” denotes the

deviation of the variables from the equilibrium point in the

equations that follow. Therefore, the deviation in the system

vector is written as

∆w = [∆v f1 ∆ic1 ∆vp1 ∆il1 ∆u1 ∆vg ∆i1g ]T . (4)

The derivation of the mathematical equations describing

the system is omitted and the final matrix equations are as

below. The derivations can be found in detail in pages 4-14

of [12].

Atotal ∆w = 0 (5)

where Atotal ∈ C
5×7[s] is written as







0 1 0 −1 0 0 −1
1 −Zc1(s) −1 0 0 0 0

0 0 1 −Zl1(s) 0 0 0

kh1 0 0 0 −1 0 0

1 −Zc1(s) 0 0 0 −1 −Z12(s)






∆w = 0 (6)

where Zc1(s) = (Rc1 + sLc1)+ jωLc1, Zl1(s) = (Rl1 + sLl1)+
jωLl1 and Z1g(s) = (R1g + sL1g)+ jωL1g. ω is the angular

frequency of the ac grid and is a constant.

kh1 =
−Vf1q− jVf1d

V 2
f1d +V 2

f1q

Vf1d and Vf1q are the values of the variables v f1d and v f1q
at the equilibrium point about which the nonlinear system is

linearized. In the next section, the values of the variables at

the equilibrium point will be listed.

With respect to the above presentation of the system

equations, the behavior of the linearized system can be

defined as B = kernel Atotal

(

d
dt

)

The next section will use

this behavior of the system to analyze controllability of the

system. Furthermore, for a given controller, the stability of

the system will be examined.

IV. CONTROLLABILITY AND CONTROLLER MODEL

In this section we use suitable elementary row opera-

tions on the matrix Atotal which allows calculation of the

controlled system’s poles. The system variables ∆w can be

partitioned in an input-output manner. The control input

to the system is ∆u1 while ∆vg is the external input to

the system combined together as the system inputs ∆w1 =
∆(u1,vg). The remaining variables are outputs of the system

and combined together as ∆w2 = ∆(v f1, ic1,vp1, il1, i12). The

behavior of the system can be written with respect to this

input-output partition as

B =
{[

∆w1
∆w2

]

∈C∞(R,C
n)|Atotal

( d

dt

)[

∆w1
∆w2

]

= 0
}

(7)

where

[A1 |A2] =













0 0 0 1 0 −1 −1

0 0 1 −Zc1(s) −1 0 0

0 0 0 0 1 −Zl1(s) 0

−1 0 kh1 0 0 0 0

0 −1 1 −Zc1(s) 0 0 −Z12(s)













.

(8)

Following the derivation of the kernel representation of

the behavior in input-output form, the controller can now

be described. (8) shows that the output variables of the

plant are v f1, ic1, vp1, il1, i12. However, during practical

implementation it would be desirable if the control variable

u1 were dependent on measurement of variables at the

vicinity of the UPS. From Fig. 1 and Fig. 2, the variables at

the vicinity of the UPS and that interact with the ac grid are

v f1 and ic1. This form of a controller is called a decentralized

controller.

In the analysis, the three phase ac variables of the sys-

tem were transformed into single complex variables. The

advantage of such a transformation was that a variable with

three real components was transformed into a single complex

variable with a real and imaginary part. This led to a reduc-

tion in the number of variables which simplified analysis.

However, in the actual implementation of the system and the

controller, only real variables are dealt with. Therefore, the

following discussion describes the mathematical formulation

of the controller and considers the complex variables v f1
and ic1 as real variables v f1d , v f1q and ic1d , ic1q. Similarly,
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the components δ1 and V1 of the control variable u1 will be

considered separately.

In this section, the controller equation will be written

directly. The controller equations are written in the following

matrix form

[

∆δ1

∆V1

]

= −

[

m1
Ic1d
s m1

Ic1q
s m1

Vf1d
s m1

Vf1q
s

−n1Ic1q n1Ic1d n1V f1q −n1V f1d

]







∆v f1d

∆v f1q

∆ic1d

∆ic1q






. (9)

In the above equation, Ic1d and Ic1q are the values of ic1d

and ic1q at the equilibrium point respectively. The values of

the variables at the equilibrium point are Vf1d = 1, Vf1q = 0,

Ic1d = 0.776, Ic1q = −0.9. The values have been obtained

by a transient simulation of the non-linear system. From the

control law of (9), the deviation in angle ∆δ1 is an integral

function of the variables ∆v f1d , ∆v f1q and ∆ic1d , ∆ic1q while

the deviation in voltage magnitude ∆V1 is a proportional

function of the variables ∆v f1d , ∆v f1q and ∆ic1d , ∆ic1q.

V. STABILITY ANALYSIS

The transfer function will be derived to understand the

properties of the plant. The transfer function of the plant

is derived with respect to the controller in (9). The kernel

representation of the behavior [A1 A2](
d
dt

)∆w = 0 with

Atotal used in (8) upon simplification using elementary row

operations results in a block matrix of the form

[

0 M1 Ao2

−I 0 Ao1

]

[

∆w1

∆w2nc

∆w2c

]

= 0. (10)

In the above equation, w1 = (u1,vg), w2nc = (vp1, il1, i1g),
w2c = (v f1, ic1). The matrix M1 ∈R

3×3 turns out to be a non-

singular constant matrix. It is evident from the above matrix

equation, that the plant transfer function can be obtained

from the following equation

Ao1∆w2c = ∆w1. (11)

Consider the transfer function matrix from input ∆w1 to

output ∆w2c. It contains complex entries with the inputs and

outputs also being complex. In order to analyze the stability

of the controlled system, the open-loop plant equations

have to be combined with the controller equations of (9).

Therefore, the plant transfer function will have to be written

in terms of real variables with real valued polynomials. The

matrix A−1
o1 is written as,

A−1
o1 =

[

a1 + ja2 0

b1 + jb2 c1 + jc2

]

(12)

where a1, a2, b1, b2, c1, c2 are real rationals in the inde-

terminate s. From (11) and (12), the plant transfer function

matrix with real valued variables and real valued rationals is

written in terms of the matrix Tp(s) as follows







∆v f1d

∆v f1q

∆ic1d

∆ic1q






= Tp(s)





∆δ1

∆V1

∆vgd

∆vgq



 =





a1 a2 0 0

a2 −a1 0 0

b1 b2 c1 −c2

b2 −b1 c2 c1









∆δ1

∆V1

∆vgd

∆vgq



 . (13)

Equations (13) and (9) provide in terms of real valued

polynomials the open-loop plant transfer function matrices

and the controller equations respectively. In (9), the control

input u1 = δ1 − jV1 has been related to the output variables

v f1, ic1. The grid voltage vg as has been described before

is an external input. The grid voltage can change arbitrarily

and independently with respect to the UPS. Hence, in order

to analyze the stabilization performance of the controller, the

perturbations in the grid voltage ∆vg are assumed to be zero.

The complete controller equations are





∆δ1

∆V1

∆vgd

∆vgq



=





−m1
Ic1d
s −m1

Ic1q
s −m1

Vf1d
s −m1

Vf1q
s

n1Ic1q −n1Ic1d −n1V f1q n1V f1d

0 0 0 0
0 0 0 0











∆v f1d

∆v f1q

∆ic1d

∆ic1q







Denoting the above matrix by Tc(s), the controlled system

is written as
[

−I Tp(s)
Tc(s) −I

][

∆w2c

∆w1

]

= 0 (14)

The original mathematical model of (6) has been trans-

formed into the plant model of (13) with respect to the

controller model equation preceeding (14). These are shown

in Fig. 3. The stability of the line interactive UPS connected

to the grid will be analyzed using these transformed sys-

tems. The plant transfer function G1(s) with respect to the

controller gain m1 and G2(s) with respect to the controller

gain n1 will be derived below.

+

−

∆p1
s∆δ1

G1(s)

m1

(a) Plant with p-ω droop

+

−

∆q1
∆V1

G2(s)

n1

(b) Plant with q-V droop

Fig. 3. Block diagram of the transformed system of (13) and (14)

By performing elementary row operations to the matrix

of (14), the matrix can be converted to an upper triangular

form having the determinant as the product of two rationals

in s. One rational contains just the gain m1 and the other

rational contains the gain n1 of equation preceeding (14).

Upon simplification, the numerators of the rationals turns

out to be the characteristic polynomial of the closed loop

system as follows

[den1(s)+m1 num1(s)][den2(s)+n1 num2(s)] = 0 (15)

with den1(s) and num1(s) being the terms corresponding to

zeroth order in m1 and first order in m1 respectively. Sim-

ilarly, den2(s) and num2(s) being the terms corresponding

to zeroth order in n1 and first order in n1 respectively. With

respect to Fig. 3, we define G1(s) = num1(s)
den1(s) and G2(s) =

num2(s)
den2(s) .

The parameters making up the transfer functions G1

and G2 are functions of the resistances Rc1, Rl1, R1g and

inductances Lc1, Ll1, L1g of the circuit in Fig. 2 and the gain
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TABLE I

INDUCTANCE AND RESISTANCE VALUES IN PER UNIT

Inductance Resistance

Lc1 = 0.0039 Rc1 = 0.00156

L1g = 0.00147 R1g = 3.125×10−4

Ll1 = 1.178 Rl1 = 0.937

TABLE II

OPEN LOOP PLANT POLES AND ZEROS

Poles −0.35± j −0.35± j 0

Zeros 13.95 −14.65 −0.35± j14.37

constants m1 and n1. The resistances and inductances of the

circuit in Fig. 2 are listed in Table I. The numerators of the

rationals are written in terms of the parameters as

den1(s)+m1 num1(s)

=1.109s(s4+2.285s3+3.857s2+2.915s+1.829)

+m1(−s4−2.285s3+201.82s2+324.13s+333.85) and

(16)

den2(s)+n1 num2(s)

=1.109(s4+2.285s3+3.857s2+2.915s+1.829)

+n1(s4+2.285s3+209.53s2+329.96s+337.51) .

(17)

The poles and zeros of the plant are obtained by calculating

the roots of the polynomials to which m1 and n1 in (16) and

(17) are multiplied.

The poles and zeros of the plant transfer function are listed

in Table. II. From Table. II, the equations (16), (17) the

following observations can be made about the plant.

1) It is evident from the table that there is a real zero

in the right half of the complex s plane at 13.95. This

indicates that the plant is a non-minimum phase system

with respect to the gain constant m1.

2) Due to the system being non-minimum phase with

respect to the gain constant m1, the controlled system

will become unstable as m1 is increased to large values.

The next section presents simulation results where the poles

of the controlled system will be plotted for variations in the

gain m1.

VI. SIMULATION AND EXPERIMENTAL RESULTS

This section will begin by showing the stable operation

of the line interactive UPS using simulations in Scilab. The

next subsection will then show the experimental results of

the line interactive UPS.

A. Simulation Results

To examine the stability of the controlled system consist-

ing of the plant and the controller, the poles of the controlled

system are plotted for variations in the control gains m1. The

stability analysis has analyzed as follows. The controller gain

n1 is kept constant at a nominal value of n1 = 0.00125 while

the gain m1 is varied from a low gain of m1 = 1.5×10−5 to

a high gain of m1 = 9.54×10−3. The poles of the controlled

system are plotted on the complex plane.

−1.5
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−0.5

 0

 0.5

 1

 1.5

−1.5 −1 −0.5  0  0.5

Real(s)

Im
ag

(s
)

Fig. 4. Variation of closed loop poles for n1 = 0.00125 and m1 varying
between 1.5×10−5 and 0.00954.

TABLE III

DETAILS OF EXPERIMENTAL SETUP

Grid

Three phase 140 V line-line R.M.S from an auto-transformer.

UPS

Dc bus voltage = 250 V, Switching frequency = 5 kHz

L f1 = 3 mH, 25A, Lc1 = 400µH, 25A, C f1 = 200µF, 440V

Load

Resistive load of six 250V, 200W incandescent lamps.

Tunable inductor load of 22 mH, 25A

Delta connected bank of single phase diode rectifiers

with 250V, 100W incandescent lamp load.

Fig. 4 shows the variation of the poles of the controlled

system in the first case when n1 is kept constant and m1 is

varied. The arrows show the direction of movement of the

poles with increase in m1. As can be seen from the figure, the

controlled system becomes unstable for large values of gain

m1. The value of m1 when the controlled system becomes

unstable is approximately 3.66×10−3.

B. Experimental Results

The experimental results have been obtained from a scaled

down laboratory hardware of a line interactive UPS. Table III

lists the ratings of the equipment used for the experimental

setup. The control algorithms have been executed using

the Texas Instruments TMS320VC33 floating point Digital

Signal Processor (DSP). The DSP also has the capability of

storing measured data in real-time that can be uploaded onto

a personal computer and plotted. The waveforms presented

in this section have been generated from data saved by the

DSP.

The UPS is initially supplying the load in isolation to the

ac grid. After 0.8s, the ac grid is connected to the UPS using

an ac contactor and associated synchronizing circuits. The

plots below show the transition of the operation of the UPS

from a standalone mode in which it supplies the entire load

to a line interactive mode where it shares the load power

demand with the ac grid. Fig. 5 shows the active and reactive

power supplied by the UPS. As can be seen both the active

power in Fig. 5(a) and reactive power in Fig. 5(b) fall sharply

when the ac grid is connected.

Fig. 6 shows the phase a output of the UPS. Fig. 6(a)

shows the output voltage v f a of the UPS. Upon intercon-

nection, the magnitude of the voltage increases towards the

magnitude of the ac grid voltage. Fig. 6(b) shows the output
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(b) Reactive power supplied by the UPS

Fig. 5. Active and reactive power supplied by the UPS for m1 = 0.0125
rad/(W-s) and n1 = 0.015 V/(VAR)
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Fig. 6. Output voltage and current of the UPS

current ica of the UPS. Upon interconnection, the current is

seen to decrease as the UPS supplies only a portion of the

load power demand while the ac grid supplies the rest. As

has been observed from a plot of all three phases va, vb and

vc that these are balanced sinusoids with very little distortion

due to the switching frequency harmonics of the inverter.

VII. CONCLUSIONS

We presented a detailed examination of the stability of the

line interactive UPS connected to the ac grid. The studies in

related literature have performed stability analysis for partic-

ular topologies of UPS units connected in parallel. However,

these studies do not elaborate on how the stability analysis

can be extended for larger and more complex systems. In this

paper, the method employed to analyze stability begins from

the complete mathematical model of the line interactive UPS

connected to the ac grid. By simplification, the transfer func-

tion of the controlled system has been obtained. The process

of simplification can be applied to any system containing

UPS units. The plant transfer function has been shown to

be a non-minimum phase system. Furthermore, it has been

shown that for large p-ω droop coefficients, the controlled

system becomes unstable while q-V droop coefficients do

not affect the stability of the controlled system. Simulations

performed in Scilab verify the conclusions on stability of

the controlled system for changes in the droop controller

coefficients.

Experimental results show the operation of the line in-

teractive UPS during transients when it is connected to the

ac grid after initially being in standalone mode. The results

show that the system remains stable following oscillations

during the interconnection. Moreover, the power demanded

by the load is seen to be shared by the ac grid and the UPS.
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