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Abstract— In this paper we discuss the problem of com-
puting the approximate GCD of two univariate polynomials.
We construct a linearly structured resultant matrix from
given polynomials. We show the equivalence of the full rank
property of this resultant matrix and the coprimeness of the
polynomials. Further we show that the nearest structured
low rank approximation (SLRA) of the resultant matrix gives
the approximate GCD of the polynomials. We formulate the
problem of computing the nearest SLRA as an optimization
problem on a smooth manifold, namely the unit sphere SN−1

in RN .
Index Terms— Approximate GCD of polynomials, Nullspace

of a Polynomial Matrix, SVD, Structured Low Rank Approxi-
mation (SLRA)

I. INTRODUCTION

Checking for coprimeness of univariate polynomials is not
a numerically stable problem as the degree of the GCD poly-
nomial changes drastically with small perturbations in the
coefficients of the polynomials (see [1]). This is illustrated
in the following example.

Example 1.1: Let a(s) = s2 +5s+6 and b(s) = s+3. Then
clearly b(s) is a factor of a(s), that is b(s)|a(s). However if
b(s) is perturbed to bε(s) = s + 3 + ε for ε 6= 0,−1, then
bε(s) - a(s). Thus a small perturbation in the coefficient of
b(s) forces the degree of the GCD polynomial to drop to 0
from 1.

From the above example it is clear that just answering
whether the polynomials are coprime is not enough. In order
to overcome this problem, the concept of approximate GCD
is proposed in [2], [3].

In [2] “the nearest GCD problem” is defined as follows: for
given polynomials a(s) and b(s) of degrees m and n respec-
tively and some norm on the space of polynomials, compute
polynomials ã and b̃ such that ‖a(s)− ã(s)‖+‖b(s)− b̃(s)‖
is minimized and ã(s) and b̃(s) have nontrivial GCD (that is
the degree of the GCD polynomial is at least one).

ε-GCD of polynomials is defined as follows in [3]:
Definition 1.2: Let a(s) and b(s) be given polynomials

with degrees n and m respectively. Let some polynomial
norm be given and some ε > 0. Then the ε GCD of polyno-
mials is defined as d∗(s) = gcd(ã(s), b̃(s)) where ã(s) and
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b̃(s) are the ε perturbations of a(s) and b(s) respectively and
degrees of ã and b̃ are less or equal to n and m respectively.

Using these formulations several approaches to compute
the approximate GCD of polynomials are discussed in the
literature. These approaches include the matrix pencil ap-
proach (see [4]), the subspace method (see [5]), the QR
decomposition based methods (see [6], [7]), the structured
matrix based methods ([8], [9], [10], [11], [12], [13]).
The structured matrix methods involve constructing some
resultant matrix from the polynomials, for example Sylvester
matrix or Bezout matrix and obtaining the nearest Structured
Low Rank Approximation (SLRA) of the resultant matrix
which yields the approximate GCD of the polynomials.
Due to a lot of applications, the problem of computing
the nearest SLRA is studied extensively in the literature.
Several numerical algorithms to compute the nearest SLRA
exist: algorithm called lift and project algorithm (see [14]),
algorithm using the linearity of the structure to compute
the nearest SLRA (see [15], [16]), the structured total least
squares approach (see [12], [13]).

In this paper we construct a sequence of linearly structured
resultant matrices from given polynomials a(s) and b(s).
We show that the full rank property of some resultant
matrix in the sequence is equivalent to the coprimeness
of these polynomials. The nearest SLRA of this resultant
matrix gives the approximate GCD of given polynomials.
The approximate GCDs of different degrees can be obtained
by computing the nearest SLRA of appropriate matrix in the
sequence. The paper is organized as follows: the remainder
of the section is devoted to some preliminaries and problem
formulation. In section II we prove the main results of the
paper. In section III we introduce the SLRA problem and
numerical algorithms to solve the SLRA problem at hand.
In section IV we discuss numerical examples to illustrate the
algorithms in section III. Finally we conclude in section V.

Let a(s) = ∑
n
i=0 aisi and b(s) = ∑

m
i=0 bisi be given poly-

nomials of degrees n and m respectively. Note that corre-
sponding to each polynomial a(s) of degree n, there is an
(n + 1) dimensional vector a = [a0 a1 · · · an]

T ∈ Rn+1.
Denote by Pn the space of all polynomials of degree upto
n with coefficients from the real field. The norm function
‖·‖ : Pn→R+ is defined as ‖a(s)‖ := ‖a‖2. Now we define
the problem formally.

Problem Statement 1.3: Let a(s) and b(s) be given poly-
nomials of degrees n and m respectively. Fix k ∈N such that
k≤min{n,m}. Find ã(s), b̃(s) ∈Pmax{n,m} such that degree
of gcd(ã(s), b̃(s)) is k and

‖(a(s)− ã(s))+(b(s)− b̃(s))‖
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is minimized. Compute k common roots of ã(s) and b̃(s),
the roots of the approximate GCD of a(s) and b(s).

We now discuss some preliminaries of polynomial matri-
ces which are required to prove the main results of this paper.
Let R(s) ∈ R1×2[s], the space of all polynomial matrices of
size 1×2. The degree of the polynomial matrix R(s) is the
maximum of the degrees of each polynomial component.
The polynomial matrix R(s) ∈R1×2[s] with degree n can be
written in the matrix polynomial form where the coefficients
of the polynomial are real matrices of appropriate size.

R(s) = R0 +R1s+ · · ·+Rnsn (1)

where R j ∈ R1×2 for j = 0,1, . . . ,n. A polynomial matrix
R(s)∈R1×2[s] has rank 1 if at least one of the entries in R(s)
is a nonzero polynomial. The nullspace of R(s), denoted by
N , is defined as

N = {y(s) ∈ R2×1[s] | R(s)y(s) = 0}.

The degree of the nullspace N is defined as the
miny(s)∈N deg y(s), where deg y(s) denotes the degree of
the polynomial vector y(s). For R(s) ∈ R1×2[s], we find a
polynomial vector y(s) ∈N such that deg y(s) is same as
the degree of N . Then every vector in N is a polynomial
multiple of y(s). That is

N = {y(s)α(s) | α(s) ∈ R[s]}. (2)

II. MAIN RESULTS

In this section we prove the main results of the paper
which are further used in the next section to compute
the approximate GCD of polynomials. We start with the
following theorem.

Theorem 2.1: Let a(s) and b(s) be given polynomials
of degrees n and m respectively. Let R(s) = [a(s) b(s)] ∈
R1×2[s]. Let N denote the nullspace of R(s). Then a(s) and
b(s) are coprime if and only if degree of N is max{m,n}.

Proof: Let g(s) = gcd(a(s),b(s)) and
`(s)=lcm(a(s),b(s)). Define

p(s) =
`(s)
a(s)

, q(s) =− `(s)
b(s)

. (3)

Then the polynomials p(s) and q(s) satisfy the following
equation:

a(s)p(s)+b(s)q(s) = 0. (4)

That is y(s) = [p(s) q(s)]T ∈N . When deg g(s) = 0, that
is polynomials are coprime, deg p(s) = m and deg q(s) = n.
Note that no polynomials with lesser degrees satisfy (4) in
this case. This implies that the degree of N is max{m,n}.
Conversely assume that the degree of N is max{m,n}. Since
y(s)∈N , this implies that `(s) = a(s)b(s) and deg g(s) = 0.

We now construct a sequence of structured matrices from
the given polynomial matrix R(s) ∈ R1×2[s] and discuss the
relation of the nullspace N with the nullspaces of these
structured matrices. Let a(s) = ∑

n
i=0 aisi and b(s) = ∑

m
i=0 bisi

be given polynomials. Without loss of generality, assume that

n ≥ m. Construct a polynomial matrix R(s) = [a(s) b(s)] ∈

R1×2[s] with degree n. Let X0 =


R0
R1
...

Rn

 ∈ R(n+1)×2. We now

construct the sequence of structured matrices X1,X2, . . . as
follows:

X1 =

 X0 0

0 X0

 , X2 =


X0 0 0

0 X1
0

 , . . . (5)

where 0 in the above equation is a zero matrix of size 1×2.
For any i ∈N, Xi ∈R(i+n+1)×2(i+1). Let Ki be the nullspace
of matrix Xi and let di = dim(Ki). The nullspace N of
the polynomial matrix is related to the nullspaces Ki of
structured matrices in the following way: for any i∈N∪{0},

let y ∈ Ki. Then partition y ∈ R2(i+1) as y =


y0
y1
...
yi

 where

y j ∈ R2 for j = 0,1, . . . , i. Let y(s) = ∑
i
j=0 y js j ∈ R2×1[s].

It is easy to verify that y(s) ∈ N . Note that at ith stage
of this sequence, if Ki 6= {0}, then we get an element of
N of degree i. We prove some important properties of the
sequence {di}i=0,1,... in the following theorem.

Theorem 2.2: Let R(s) ∈ R1×2[s] be a polynomial matrix
of degree n. Let {Xi}i=0,1,... be the sequence of structured
matrices constructed from R(s) as in the equation (5). Let
Ki = ker(Xi) and di = dim(Ki). Then the following state-
ments hold:
(a) The sequence {di}i=0,1,2,... is a nondecreasing sequence

of nonnegative integers.
(b) There exists n0 ∈N such that dk+1 = dk +1 for all k≥ n0.

Proof: (a) Let n0 ∈ N be the smallest positive integer
such that dn0 > 0. Let y∈R(n0+1) be such that y∈Kn0 . Then
from the structure of matrices Xi it is clear that for 0 ∈ R2[

y
0

]
,

[
0
y

]
∈Kn0+1. Thus dn0+1 ≥ 2dn0 . In particular dn0+1 >

dn0 . Let dn0+1 = 2dn0 +α1. Then using similar argument we
can show that dn0+2 = 3dn0 +2α1 +α2 = dn0+1 +dn0 +α1 +
α2 > dn0+1. Generalizing this argument we can show that

dn0+ j+1 = jd0 +
j−1

∑
k=1

( j− k)αk

= dn0+ j +

(
d0 +

j

∑
k=1

αk

)
≥ dn0+ j

for j = 0,1,2, . . .. The first n0−1 terms of the sequence are
0. This proves that {di}i=0,1,2,... is a nondecreasing sequence
of nonnegative integers.
(b) From equation (2) it is clear that once we find a
polynomial vector y(s)∈N such that deg y(s) is same as the
degree of N , all polynomial vectors in N can be obtained
from linear span of polynomial vectors y(s),sy(s),s2y(s), . . ..
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Further every vector in Ki corresponds to a degree i polyno-
mial vector in N . Let n0 ∈ N be the smallest number such
that dn0 6= 0. This proves that α j = 0 for all j > n0 in part
(a). Then it follows that dk+1 = dk +1 for k ≥ n0.

Corollary 2.3: Let R(s) ∈ R1×2[s] be a given polynomial
matrix with degree n. Construct the sequence {di}i=0,1,...

from R(s) as discussed above. Then the degree of N denoted
by n0 is the positive integer such that dn0 = 1.

Proof: The proof follows from the nullspace character-
ization as stated in equation (2) and the nondecreasing nature
of the sequence {di}i=0,1,....

We now prove the main result of this paper which relates
the coprimeness of the polynomials a(s) and b(s) to the full
rank property of some structured matrix.

Theorem 2.4: Let a(s) and b(s) be two given polynomials
with degrees n and m respectively. Without loss of generality
assume that n ≥ m. Let R(s) = [a(s) b(s)] ∈ R1×2[s] with
degree n. Construct the sequence of structured matrices
{Xi}i=0,1,... as in equation (5). Let g(s) = gcd(a(s),b(s)) with
deg g(s) = g. Then the following statements hold:
(a) The polynomials a(s) and b(s) are coprime, that is, g= 0

if and only if di = 0 for i = 0,1, . . . ,n−1.
(b) The degree of the gcd polynomial g(s) is given by g =

n−n0 where n0 is the positive integer for which dn0 = 1.
Proof: (a) Follows from Theorem 2.1 and Corollary

2.3.
(b) Let n0 be the positive integer such that dn0 = 1. Then
from Corollary 2.3 the degree of N is n0. Also from the
arguments in the proof of Theorem 2.1, it follows that the
degrees of polynomials q(s) =− `(s)

b(s) , p(s) = `(s)
a(s) are n−n0

and m−n0 respectively. This implies that deg g(s) = n−n0
using the relation a(s)b(s) = g(s)`(s).

From above theorem, it is clear that the polynomials are
not coprime if the matrix Xn−1 loses rank. Thus if we perturb
the matrix Xn−1 to X̃n−1 such that the matrix X̃n−1 is rank
deficient and it has same structure as that of Xn−1, then
the polynomials ã(s) and b̃(s) obtained from X̃n−1 are not
coprime. If this perturbation is given in some optimal way
to be explained in the next section, we compute the nearest
polynomials ã(s) and b̃(s), such that they have a nontrivial
GCD.

III. SLRA: FORMULATIONS AND ALGORITHMS

In this section we first state the problem of computing the
nearest SLRA of a given linearly structured matrix. Then
we formulate the approximate GCD problem as an SLRA
problem and give an algorithm to compute the approximate
GCD. Finally we discuss some numerical algorithms to
compute the nearest SLRA of a given matrix.

A. SLRA formulation

Let Ω⊂Rp×q denote the subspace of matrices with given
structure. Let B = {B1,B2, . . . ,BN} be a basis of Ω. Now we
define SLRA problem as it is defined in [14].

Problem Statement 3.1: Given Ω ⊂ Rp×q, the subspace
of matrices with the given structure, and X ∈ Ω such that

rank(X) = k for k ≤min{p,q}, find a matrix Y such that

min
Y∈Ω,rank(Y )=k−1

‖X−Y‖F .

In this paper, we consider the Frobenius norm as the matrix
norm. However in the problem definition above, one can
use any matrix norm. We now give another optimization
formulation of the SLRA problem as discussed in [15].

Problem Statement 3.2: Let X ∈ Ω be given as X =
∑

N
i=1 xiBi. WLOG we assume p≥ q. Let rank(X) = q. Then

to find Z ∈Ω such that Z = ∑
N
i=1 ziBi such that

min
zi,v

N

∑
i=1

c(Bi)(xi− zi)2

subject to(
N

∑
i=1

ziBi

)
v = 0 , vT v = 1

where c : B −→ R+ is a function which relates the cost
function in terms of vectors x = [x1,x2, . . . ,xN ]T and z =
[z1,z2, . . . ,zN ]T to the Frobenius norm of the difference of
the matrices X and Z.

We now give an algorithm to compute the approximate
GCD of given polynomials using the SLRA formulations
discussed above. Let a(s) and b(s) be given polynomials
with deg a(s) = n and deg b(s) = m. WLOG assume that
n ≥ m. Then R(s) = [a(s) b(s)] ∈ R1×2[s] is a degree n
polynomial matrix. Construct the sequence of structured
matrices {Xi}i=0,1,... as in equation (5). Fix g, the degree
of approximate GCD of a(s) and b(s). From Theorem 2.4
we know that if dn−g = 1, then deg g(s) = g. Consider
Xn−g ∈ R(2n−g+1)×2(n−g+1). Let Ω ⊂ R(2n−g+1)×2(n−g+1) be
the subspace of all the matrices with same structure as that
of Xn−g. Then we compute the nearest SLRA X̃n−g ∈ Ω of
Xn−g. We construct polynomials ã(s) and b̃(s) from X̃n−g.
The g common roots of these polynomials are the roots of
the approximate GCD.

Algorithm 3.3: Algorithm to Compute Approximate GCD

Input: Polynomials a(s) and b(s) with degrees n and
m respectively. The degree g of approximate GCD.
Output: The g roots of approximate GCD.

step 1: Construct matrix R(s) = [a(s) b(s)] ∈ R1×2.
step 2: Construct the structured matrix Xn−g.
step 3: Obtain the nearest SLRA X̃n−g of Xn−g.
step 4: Construct polynomials ã(s) and b̃(s) from X̃n−g.
step 5: Obtain the common roots of ã(s) and b̃(s).

In the following subsection we discuss an algorithm to
compute the nearest SLRA of the given linearly structured
matrix.

B. Numerical Algorithm to Compute the Nearest SLRA

We discuss Lift and Project algorithm (see [14]) to com-
pute an SLRA of a given matrix. This algorithm does not
yield the nearest SLRA, however we use the output of this
algorithm as an initial guess for the method that we propose.
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Before writing the algorithm formally, we describe the idea
behind the algorithm briefly. Let X ∈ Rp×q be a structured
matrix of rank r. Then the nearest rank r−1 approximation
of X is computed using the SVD of X . However this destroys
the structure of the matrix. So this low rank approximation
is projected back onto the space of structured matrices. This
procedure is iterated until one gets the structured low rank
approximation. This procedure can shown to be a descent
method and hence the convergence of this procedure is
guaranteed. Now we write the algorithm formally. Let P be
the projection operator defined on the subspace of matrices
with given structure, that is P : Rp×q→Ω.

Algorithm 3.4: Lift and Project Algorithm for SLRA

Input: X ∈Ω, a rank r matrix
Output: X̃ ∈Ω, a rank r−1 matrix

Initialize X̃ = X
while rank (X̃) == r

Compute the SVD of X as X = ∑
r
i=1 σiuivT

i
Compute the low rank approximation as
X̂ = ∑

r−1
i=1 σiuivT

i
X̃ = PX̂

end while

We now propose a method to compute the nearest SLRA
as follows: we use the formulation as stated in the Problem
Statement 3.2. However we do not solve the optimization
problem as in [15] and [16]. We break the optimization
problem into two nested optimization problems as follows:

min
v∈Rq

 minzi ∑
N
i=1 c(Bi)(xi− zi)2

subject to(
∑

N
i=1 ziBi

)
v = 0


subject to

vT v = 1.

The optimization problem inside the braces is called the inner
optimization problem. This inner optimization is shown to
have a closed form solution. This solution can be completely
expressed in terms of the optimization variable v of the
outer optimization. In order to solve the inner optimization
problem we use Lagrange multiplier approach. Thus the
inner optimization problem, I, becomes:

I : min
zi,λ

N

∑
i=1

c(Bi)(xi− zi)2 +λ
T

(
N

∑
i=1

ziBi

)
v

where λ is a vector of Lagrange multipliers. Now differen-
tiating with respect to zi and λ we get,

wrt zi : zi = xi−
1

2c(Bi)
λ

T Biv for i = 1,2, . . . ,N (6)

wrt λ :

(
N

∑
i=1

ziBi

)
v = 0. (7)

From equations (6) and (7), we get,(
N

∑
i=1

(xi−
1

2c(Bi)
λ

T Biv)Bi

)
v = 0

⇒

(
N

∑
i=1

xiBi

)
v =

N

∑
i=1

1
2c(Bi)

λ
T BivBiv

⇒ Xv = Dvλ (8)

where Dv is defined as

Dv =
N

∑
i=1

1
2c(Bi)

Biv(Biv)T . (9)

Note that Dv is a symmetric nonnegative definite matrix. In
order to compute λ we solve linear system (8) to get

λ = D−1
v Xv. (10)

Substituting λ from (10) in equation (6), we get,

zi = xi−
1

2c(Bi)
vT XT D−1

v Biv for i = 1,2, . . . ,N. (11)

Thus the optimal value for the inner optimization problem I
is given by,

N

∑
i=1

c(Bi)(xi− zi)2 =
N

∑
i=1

(vT XT D−1
v Biv)2. (12)

The outer optimization can be stated completely in the
optimization variable v as follows:

min
v∈Rq

N

∑
i=1

(
vT XT D−1

v Biv
)2

(13)

subject to
vT v = 1.

Notice that the constraint set of this optimization problem
is Sq−1, a unit sphere in Rq, a smooth manifold. Alterna-
tively we can view this constrained optimization problem
as a non constrained optimization problem on the manifold
Sq−1. We use the gradient search algorithm (see [17]) to
solve this problem. Before proceeding further, we state the
unconstrained optimization problem.

min
v∈Sq−1

f (v) (14)

where

f (v) =
N

∑
i=1

(
vT XT D−1

v Biv
)2

. (15)

IV. NUMERICAL EXAMPLES

In this section we discuss some numerical examples. We
also compare the performance of our algorithm using the
numerical examples with some algorithms already existing
in the literature.

Example 4.1: (See [2]) Given the polynomials a(s) =
s2 − 6s + 5 and b(s) = s2 − 6.3s + 5.72, we compute the
nearest noncoprime polynomials. Using our algorithm, we
get the polynomials ã(s) = 0.9850s2−6.0030s+4.9994 and
b̃(s) = 1.0149s2−6.2971+5.7206. Here we give only 4 sig-
nificant digits of the polynomial coefficients. ‖[a(s) b(s)]−
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[â(s) b̂(s)]‖= 0.0216. The common root between â(s) and
b̂(s) is 5.0989. This example is also addressed in the paper
[10] where the results are obtained using the SLRA of the
Sylvester matrix. Our results match with the results obtained
in [10].

Example 4.2: Consider the polynomials a(s) = s2 +2s−1
and b(s) = s4 + 4s3 + 3s + 1. We compute the approximate
GCDs of degrees 1 and 2 for these polynomials. For the
case when g = 1, we construct X3 and compute the nearest
SLRA X̃3. Here ‖(a(s)− ã(s))+(b(s)− b̃(s))‖= 0.0259 and
the common root is −4.1611. For the case when g = 2, we
construct X2 and compute the nearest SLRA X̃2. In this case
‖(a(s)− ã(s)) + (b(s)− b̃(s))‖ = 1.3697 and the common
roots are −0.1312 and −4.1807.

V. CONCLUDING REMARKS

In this paper we address the problem of computing the
approximate GCD of univariate polynomials. We construct a
linearly structured resultant matrix from given polynomials.
The full rank property of this resultant matrix is equivalent
to the coprimeness of the polynomials. The nearest SLRA
of this structured matrix gives the approximate GCD of
the polynomials. The problem of computing the nearest
SLRA is formulated as an optimization problem on a smooth
matrix manifold, namely unit sphere SN−1 in RN . This
approach of computing an approximate GCD is based on the
nullspace properties of the polynomial matrix obtained from
given polynomials. Hence this approach may be useful to
generalize the results of this paper for the case when several
polynomials are considered.
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