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Application of Graph Theory in Stability Analysis
of Meshed Microgrids

Shivkumar V. lyer, Madhu N. Belur and Mukul C. Chandorkislember, IEEE

Abstract—This paper studies microgrids where loads are sup-  These autonomous inverter-based microgrids are a relatively
pllgd by parallel connected inverters controlled by decentralized new concept. With microgrids gaining popularity, the size and
active power/voltage frequency and reactive power/voltage mag- complexity of microgrids are bound to increase. Therefore,

nitude droop control laws. The implementation of droop control . . - .
laws for sharing of power between inverters has been known to there arises a need to develop techniques of stability analysis

present stability problems particularly for large values of active for microgrids. Microgrids differ from bulk power systems
power/voltage frequency droop control gains. Stability analysis in a few significant aspects. The inverters in the microgrids
of the microgrid requires a mathematical formulation of the are inertia-less as opposed to the generators in bulk power
interaction be_tween the inverters due to thglrdroop control I_aws_. systems and therefore swing equations for inverters are not
However, a simple and elegant mathematical model resulting in . . .
a conclusive proof of stability has been found to be lacking in appllcgple. The inverters do not have substantial overload
reported literature. In this paper, a state dynamical model has Capacities unlike synchronous generators and therefore tran-
been derived by combining active power flow equations with sient studies are extremely important to determine the peak
the active power/voltage frequency droop control laws. Using currents that the inverters will have to supply. Microgrids at
an analogy between the model matrix and connected graphs, a e gjstribution level voltage have cables that posses high R/X
proof of stability of the microgrid has been stated as a theorem. . . . S
The paper further examines the limitations of the proof and the r_atlo as compared to the negligible R/X_ ratio Qf transmission
difference between the results of the proof and reported practical lines in bulk power systems. The above listed differences make
results. stability analysis in microgrids a challenging topic of research.
Index Terms—Microgrids, inverters, decentralized control, With the inverter_s being controlle_d using inputs as active
droop control laws, connected graphs. power p and reactive powey supplied by them, a math-
ematical model can be derived using equations of power
flowing between the inverters. Such a mathematical model was
. INTRODUCTION proposed by Chandorkar et al [1] where the stability of the
Tability analysis in the context of high voltage bulk powemicrogrid with respect to the-w droop control laws were
ransmission systems is well established. Determinatieramined. The microgrid was represented mathematically by
of stable boundaries of power systems is achieved using thatate dynamical equation with the state variables being the
swing equations of generators and the equal area criteriphase angle differences between the output voltages of the
A multi-generator power system loses stability when thieverters in the microgrid. The mathematical model proved
generators lose synchronism due to faults in the systemthe stability of the microgrid with respect to thew droop
excessive variation in the active power demanded by loadsntrol laws for ring and radial microgrids.
Computational techniques have been developed to analyze thin this paper, the mathematical model has been extended
stability of large power systems and are used by practicibgg meshed microgrids with arbitrary connections as most
engineers. practical microgrids will contain complex interconnections.
In this paper, the microgrid will be formed of inverterdMoreover, the proof of stability of the microgrid will be
that are controlled in a decentralized manner by droop contperformed using concepts from graph theory and will be stated
laws. The droop control laws make the inverters emulate syes a theorem. The differences between the stability result
chronous generators by varying the frequency and magnitugl#ained analytically and those obtained from practical results
of the output voltage of the inverters with respect to the poweiill be compared and the reasons for these differences will be
supplied by the inverter [1]. Thg-w droop control law varies examined.
the frequencyw with respect to the active power supplied  The outline of the paper is as follows. Section 2 derives the
by the inverter while the;-V' droop control law varies the mathematical model of the microgrid using active power flow
magnitudeV with respect to the reactive powersupplied equations ang-w droop control laws. Section 3 introduces
[1]. With the inverters being controlled in a decentralizedoncepts of graph theory and presents a proof of stability
manner without any communication between them, it becomefsthe microgrid. Section 4 describes the limitation of the
essential to examine the stability of the microgrid due to treathematical model in its inability to provide the stable
interaction between the inverters and the effect of the drobpundaries of the microgrid accurately.
controllers.

Il. MATHEMATICAL MODEL DERIVATION
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V1|V, = Viz6, droop control laws are neglected.
1 o From Fig. 1, the following active power balance equations
P are written
, P
L P2 2P Ly P1 = p12 + p13 + P15 + P,
—— 1 oo
Vg =Vald P21 - P51 g, Vs = Vs Lo D2 = p21 + P23 + P25 + Pe2,
fp= 2101/2 o5 L25<o_ I '—»
— _2;’| = i Inv 5 P3 = P31 + P32 + P31 + pe3, (1)
= | ) Ps Pa = Pa3 + Pas + Pea,
P pa Ls = ps1 + ps2 + psa +
[ L2 b T Vi Valh, P5 = P51+ Ps2 + Psa + pes-
5] ’) . .
png Lsy I |ﬁ It is to be noted that the assumption of balanced three phase
I [ three wire system is important. In such a balanced three phase
| Pst pas Pa system, the power flows marked in Fig. 1 will be constant
D3 T Tpés values. However, if the system is unbalanced due to inequality
of the line resistances or inductances in the three phases or due
V3| Vi =136, to the connection of unbalanced or non-linear load, the power
flows will not be constant values.
Fig. 1. Microgrid Topology Wy
Ws w3
oy
will be generalized to make it applicable to any arbitrary Vis Vis v, ’) ’
microgrid. Fig. 1 is a single line diagram showing the topology Vo "
- 1

of a three phase five inverter meshed microgrid. Each of the
blocks represented by “Inv” stand for three phase inverters. ‘)61
Lo, Log, L34, Lys, Li3, L1s, Los are the inductances of REE%';%Q% w
the interconnecting cables between the inverters with the
resistances of the cables being neglected. Fig. 1 also shdigs2. Inverter output voltage vectors
the power flowing in the interconnecting cables between the
inverters. In Fig. 1, only the active power flows are shown Fig. 2 shows a sample case of output voltage vectors of
since this paper deals with only thew droop control laws. the inverters as complex quantities in polar form. The exact
The terminology used for the power flowing between invertepdacement of the voltage vectors will depend on the loading
is described taking the interconnection between Inverter 1 amehditions at the inverters and thew droop control gains
Inverter 2 as an exampley, is the active power flowing of the inverters. The output voltages of the inverters shown
from Inverter 1 to Inverter 2 through the cable connectingre V1 = V1461, Vo = Valda, Vs = Valds, Vi =
them.py, p2, ps, p4 andps are the active powers supplied byV, /84, V5 = V5/65. The magnitudeds, Vs, Vi, Vi, Vs
the invertersp,1, pe2, pes, pea andpgs are the active power are assumed to be the Root-Mean-Squared (R.M.S) values of
demanded by the loads connected locally to the five invertetise line-to-neutral output voltages. The angdesds, ds, da4,
The following assumptions will be made that simplify thés are measured with respect to an arbitrary reference frame
derivation of the mathematical model: and in the figure are shown in an arbitrary manner. Moreover,
1) The internal dynamics of the inverters are very fast 48 vectors are shown widely for clarity in display though
compared to the dynamics of the interaction betwedhe phase angle differences between the vectors is very small
the inverters due to the droop control laws. Thereforéue to small cable impedances in the microgrid. The voltage
the inverters are assumed to be ideal voltage sourd@$torsV i, Vs, Vs, Vs, Vs are rotating with angular
whose output voltages are determined by the referendegguencies ofvy, wo, ws, w4, ws respectively. The reference
generated by the droop control laws. frame is rotating with an angular frequencywfHowever, at

2) The inverters are further assumed to be controlled powdgady state = wr = ws = ws = ws = w, i.e all the vectors
sources that have the capacity to change their powaitd the reference frame are rotating with the same angular
output as desired. This assumption is an essential feequency. This vector diagram will be used to compute the
quirement in the mathematical formulation using powdtower flows between the inverters as will be discussed soon.
balance laws. Fig. 1 shows the active power flows between the inverters.

3) The loads in the microgrid are assumed to draw a tothine active power flowing in the interconnecting cable between
three phase active and reactive power that has a constangrterm and Invertem is
value. This is the case with loads that are balanced linear 3Vin (Vi — Vi €08 0mn ) Rinn - 3V Viuw Ly S0 0y

passive loads. Pmn = B2+ (wLyn)? R2 1 (WLon)?
4) This paper will focus on the-w droop control laws
since these are known to have a strong impact on thdere 6,,,, = 6, — d,. As can be seen from (2), the

stability of the microgrid. The magnitudes of the inverteactive power flowing in the interconnecting cable between
output voltages will be considered constant as¢Hié any two invertersn andn is dependent on the magnitude of
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output voltaged,,,, V,, of the inverters and the phase angl&rom the above expression fey,.,, it is evident thate,,,,, =
differenced,,, = 4, — 0, between the inverters. Assumingg,,,,. Therefore, from (8)Ap.m = CnmAdnm = CmnAdnm.
the resistances of the interconnecting cable to be negligibléis relation can also be explained with respect to power

the active power flow,,,, can be approximated to balance laws since there is no power loss in the interconnecting
3V, V., . cables with their resistances being neglected.
Pmn = Sin Gy, (3) Combining (5), (6), (7), (8) the following matrix equation

mn .
. . can be written
The p-w droop control law for Invertern is written as

d
W, = wWo — KpmDm (4) %Ad = Ayp(—ApAd+ Apy) (10)

wherewy is the nominal frequency of the microgrid,, is the where

frequency of Invertem, p,, is the active power supplied by A§ = (A6, Ab, Ads, Ady, Ads)
Inverterm and kpy, |s_thep-w droop control gain of Inverter Ay = diag(kp, kpa, kps, kpa, kps)
m. The strong coupling between the phase angle differenc
and the active power flow will decrease if R/X ratio of the “PL = (Ape1, Apez, Apes, Apea, Apes)
cables is considered as is evident from (2). The effect of R/X Ap =

ratio of the cables will be considered at a later section after [ ciz+ciz+eis s —c13 8 —c15
. —C C C C —C —C
the basic proof has been completed. _giz 1 _(g; % istoaitcaa s 0"
. - . —C, C, C. —cC
Equation (3) shows th_at active power., flqwmg between e o ¢34 ukces  oas
Inverterm and Invertem is a nonlinear function of the phase (11)

angle differenced,,,, between the inverter output VOItageS\'/vhere “diag” implies a diagonal matrix with the specified

Therefore, in order to develop a mathematical model usin ; i
. ._vector along the diagonal of the matrix. The above state
droop control laws and power flow equations, the equations . . : . .
namical equation has been derived for the microgrid of

are linearized about an equilibrium point and the variabl I .
. . . , 9. 1. However, the derivation of the mathematical model
are expressed in the small signal domain. The variables ar

expressed as small deviations about the equilibrium point. ik be generalized for any arbitrary microgrid as follows.

. . . For any general microgrid with a large number of inverters
exgmple, variablé,,, is replaced by;.’”" + Admn, With 6”?7? .and complex interconnections between the inverters, the fol-
being the value of the phase angle difference at the equlllbrllfomwin observations can be made. The deviation in the power
point andAJd,,, is the deviation of the phase angle difference 9 ) . ) P
from its value at the equilibrium point. Similarly, variakig,,, Supplied by a Invertem is written as
is replaced by,,,, + Ap,..., variablew,, by w,, + Aw,,. The App, = Z Apmn + Apem (12)
inverter output voltage magnitudé$, andV,, are assumed (n}
to be constant at this point since thé/ droop control laws
are neglected. Thg-w droop controller can be written in the

small signal sense as

where {n} is the set of inverters which are connected to
Inverterm excluding Invertemn. The above equation can be

simplified to
Awp, = —kpmApm (5)
The deviation in the angular frequendyw,, can be writen ~ APm = <Zcmn> Abm =Y epnnA0n + Apem  (13)
in terms of the deviation in the phase angle as {n} {n}

Since, %(Adm) = —kpmAp, constitutes a row of the

d
Awn = E(Aém) (6) representation similar to (10), it can be observed from (13)
The power balance laws of (1) can be linearized and expres#eat the sum of elements along each row of the maix
in the small signal sense as follows will be zero. The matrixA, will have for elementnn, the
term —c¢,,, if Inverter m and Invertern are connected. If

Apr = Api2 + Apis + Apis + Apn Inverterm and Invertem are not connected, the element

Apz = Ap21 + Apaz + Apzs + Ape of A, will be 0. Since,c,n = cum, the matrix A, will be
Aps = Aps1 + Apss + Apsy + Apys (7) symmetric. Therefore, the sum of elements along each column
Aps = Apas + Apas + Apes of A, will also be zero. This special property of the matrix

A, is utilized in proving the stability of the microgrid as will

Aps = Aps1 + Apsz + Apsa + Apes be described in the next section.

The deviation in the active power flowing between Inverter

and Invertem can be derived from (2) as I1l. STABILITY PROOFUSING CONCEPTS FROMGRAPH
A 3V Vi cosOmn AS THEORY
Pmn = WLmn e (8) A graph is defined as a mathematical structure used to model
= CrnANOmn pairwise relations between objects from a certain collection.
where The objects are represented by nodes while the interaction
3V Vi €08 6imn between objects is represented by a branch. Fig. 3 shows an
Cmn = ————F———— 9) - . X

wL;; example of a graph consisting of five nodes (objects) numbered
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from one to five interacting through weighted branches. Tlie the Laplacian of the graph of the microgrid. The matix
interaction between objects andn has weight.,,,,,. Since the therefore has an eigenvalue equal to zero and the remaining
graph is undirectedy,,, = ann,. This section will describe non-zero eigenvalues are real and positive. The eigenvalues of
how a graph is used to depict the microgrid with its poweA,A, will be determined as follows.

flows. The eigenvalues ofA;, A, are obtained as follows

roots[det(AI — AgpAp)] a7)
The above equation can be rewritten as
1"00ts[det()\A,1w{72A,:pl/2 —AppAy)] =

roots[det(A,lgéz)det(/\I — AngApAiéz)det(A;;/Q)]

(18)

For non-negative droop control gains &y, the eigenvalues

Fig. 3. A connected graph depicting system interaction .
g graph depicing sy are obtained from

For the connected graph of Fig. 3, the following definitions roots[det (AL — A,ICQQAPA%Q)] (19)
will be provided and details can be found in [2]. The adjacency

matrix of the graph is The eigenvalues oM, A, are the same as the eigenvalues

of A))’A,A}/%. The matrixA,/?A,A,/* is observed to be

0 a2 a3 0 as

A a2 0 axs O ass 14 symmetric and positive semi-definite sindg > 0. Therefore,
= 0 0 . .
0T s 0" aus (14 the eigenvalues oA,/’A,A,}/? are real and non-negative. As
g5 @25 0 ass O a result, the non-zero eigenvalues &f are observed to get

Because the graph is undirected, the adjacency matrixsisaled by the transformatiof,, — Allgp2 A, Ai/Z'

symmetrici.e A = AT. A matrix D will be defined such  The mathematical model of (10) has been derived by
thatD is a diagonal matrix and the diagonal elementdf combining active power balance laws with the droop control

are the sum of all the elements &f in that row. laws. As shown by (13), the property ﬁp being Lap|acian
5 is for any microgrid with any finite number of inverters
Ay = Z Gmn (15) connected in an arbitrary manner. Therefore, a microgrid
n=1

where inverters are controlled yw droop control laws will

h laci £ th q h of Fi is defi be stable for non-zero positive values of droop control gains.
The Laplacian of the connected graph of Fig. 3 is definéhe matrix A, will contain a number of eigenvalues equal

n#m

asL =:D — A. to zero corresponding to the number of disjoint parts of the
L= microgrid. These eigenvalues equal to zero are an indication
arz+aiz+ais —a12 —ai3 0 —ais of the number of degrees of freedom in the model and do not
Tz mzhambas o e s play a role in the stability of the microgrid. The stability of the
o o Tger o deitass ot microgrid is .d_ecided by the non-zero eigenvaluesAgf, A,
(16) that are positive and real. [ ]

The LaplacianL, is also symmetric. Furthermoré, has the The above theorem states that for the model under con-
P y j siqeration we have stability for arbitrary positiyew droop

property that the number of eigenvalues equal to zero is €a8htrol gains. The above proof of the stability of multi-inverter

to the ””“.‘ber of d|5]_0|nt parts OT the graph. In case of t icrogrids has certain limitations that will be discussed in
graph of Fig. 3, there is a single eigenvalue equal to zero. T Siail in the next section

remaining eigenvalues &f are real and positive arld satisfies
L > 0 [2]. On comparing (16) with the matri¥, of (11),
A, can also be interpreted as the Laplacian of a connected
graph. The following proof will describe how the property of In order to examine the limitation of the mathematical
the Laplacian is used to prove the stability of the microgrichodel of (10), a simple microgrid will be considered to
with respect to the-w droop control law. examine the manner in which its poles will change as the
Theorem 1. The mathematical model of the microgrid withp-w droop control gain changes. Fig. 4 shows a single inverter
respect top-w droop control laws is expressed in the form oflnverter 1” connected to a main ac grid. The main ac grid
(10). This representation results in a stable controlled systdévas a fixed frequency and is considered as the reference for
due to the property of the matrik;, A, having real and non- measuring the phase angle of the inverter. The inverter feeds
negative eigenvalues. Furthermore, the non-zero eigenvaluea é&dad and is connected to the main grid through a cable with
A, A, will tend to +oco as the control gains i\, tend to negligible resistance and inductancelof;.
+00. Fig. 4 shows the inverter output voltage vectors in polar
Proof: The mathematical model of the microgrid withform. The grid voltage vector has been considered to be the
respect to droop control laws are presented in (10). Theference for phase angle measurement of the inverter output
discussion above has provided a comparison of (10) for Figviltage vector. Moreover, the grid is assumed to be stiff and
and (16) for Fig. 3. The matrid, of (10) therefore is equal frequency of the grid voltage remains constant. As a result,

IV. LIMITATION OF THE MATHEMATICAL MODEL
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Pig

Vi =Visé, — V,=V,20 The equation can be linearized to obtain the following expres-
ﬁl. Ly sion in small signal sense:
Inv 1 j—D—i 3V
1Vg .
p Aplg = ————F"—— (Rl sin 61 + wlq, cos 51) Adq
01 g R%q 4 (leg)Q g g9

Fig. 4. Single inverter connected to a grid (22)
Under the assumption thain §; ~ ¢1, cosd; =~ 1, the closed

loop equation after applying thew droop control law is:
the only variable in the above system is the phase angle of thf

inverter output voltage vectay;. —(Ad) =

The mathematical model of (10) can be written for the abové!
simple microgrid. The matrices of (10) are scalars and are as_ k ViV
follows: PHRE + (wLig)?

Ay = kp1 (23)
3V1Vq

p= cos &y (20) The above controlled system equation for a microgrid with
wlig cables having non-zero R/X ratio differs from the case where
Since, the matrix equation of (10) is a single differentidR/X ratio was zero in the aspect that instability is now possible
equation for Fig. 4, the controlled system can be represenfed positive values ofk,;. When the following condition is
by the block diagram of Fig. 5. In Fig. 5, thk denotes the satisfied, the poles of the controlled system will be in the
integral operator. For the block diagram of Fig. 5, a root locuight half of the complex plane resulting in instability:

diagram can be drawn as shown in Fig. 6. The integral operator
1

(R1g51 + Wng) A51‘| — kplApgl

leg

1 is considered to be part of the plant along with),. The 6 < 7 (24)
control gain of the controlled system is thev droop control 1
gain Ay,,. In order to interpret the above condition, the equilibrium state

about which the system is linearized will be described. If

Apr1 the only load in the microgrid is connected locally at the

+ A6, Jyoap inverter, the droop control laws will cause the load active

—>| Ak power demand to be shared equally between the inverter and
- the grid. Therefore, active power will flow from the grid to the
inverter and the output voltage of the inverter will lag behind
Fig. 5. Block diagram off’-w droop the grid voltage by phase angfe. Since the grid has been
assumed to be the reference for measurement of phase angle
Imag() of th(=T ?nve_rterﬁl < 0. Undt_er these cir_cumst_ancgs, if the above
Direction of 4  pole at origin condition in (24) is satisfied, the mlf:rogrld will be unstable
Real)  root locus I for any value ofp-w droop control gain.
l However, for a microgrid where the above condition is not
satisfied, the system will be stable for all positive values of
kp1. This result is again contrary to the practical results, where
the microgrid is known to become unstable /as increases
Fig. 6 shows the single pole at the origin due to the integr%?yond a cgrtain value i.rrespectiv_e (_)f the resistance of the
operator. The zero of the plant is at= —oc. Therefore, the |nterconnect|_ng cable. ThIS clearly m@cates that the appro_ach
root locus moves from the plant pole to the plant zer,as— of mat.h_ematlcal modglmg us_ed in this paper has resulted in a
oco. From the root locus plot, it can be concluded that thfgW critical modes being omitted.
controlled system will be stable for all positive valueskgf.
However, in practical cases, even a single inverter connected V. CONCLUSIONS
to a main grid can become unstable for large values,o{3],
[4]. Therefore, the root locus plot of Fig. 6 does not provid&l
the stable boundary of the microgrid.
The derivation of (10) assumes that the resistance of t

4(Ad)

W [—=
>
<

v

Fig. 6. Root locus plot with respect {@w droop

The stability analysis of large multi-inverter microgrids
here droop control laws are implemented at each inverter
[s_extremely important if microgrids are to be a feasible

int i bles i ligible. Th tion is rel ernative towards reliable and expandable power supplies.
Intérconnecting cables IS negligibe. 1he assumplion IS re1axgg;. paper proposes a mathematical proof of stability of

at this point to examine the effect of non-zero R/X ratio of thﬁﬂcrogrids. In this paper, only thew droop control laws have
cables on the stability results obtained above. The active POV '

_ . ) en included in the model and the voltage magnitude of the
flowing between th? nverter anq the grid when the caple hﬁ/erters have been assumed to be constant at their nominal
a rTon-zero RIX ratio can be written along the same lines &lues. The loads in the microgrids have been assumed to draw
(2): only active power. The approach undertaken in this paper has
siné; (21) severgl sig_nifican'g contributions and limitations which will be

described in detail below.

P 3V1(V1 — Vg COS 51)R1g 3V1ngng
1 =
! Rig + (wlig)? Rig + (wlig)?
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The mathematical model uses steady state power flg@y C. Godsil and G. RoyleAlgebraic Graph Theory. Springer, 2001.

equations since the droop control laws require as inputs tikN- Pogaku, N. Prodanovic, and T. Green, "Modeling, analysis and
testing of autonoumous operation of an inverter-based microdiEE

power supplied by the inverter. Using power balance laws T,3nsactions on Power Electronics, vol. 22, no. 2, pp. 613-625, March
and power flow equations, the mathematical model developed 2007.

exhibits a very elegant matrix structure. The structure of i Y. Mohamed and E. Saadany, “Adaptive decentralized droop controller
. . . to preserve power sharing stability of paralleled inverters in distributed

matrix allows an analogy to the Laplacian of an undirected generation microgridsEEE Transactions on Power Electronics, vol. 23,

connected graph. Using this analogy, the poles of the microgrid no. 6, pp. 2806-2816, November 2008.

have been proved to be stable for all positive values of the

p-w droop control gains. The mathematical model therefore

conclusively proves the applicability pfw droop control laws

to a multi-inverter microgrid. Furthermore, the model includes

large microgrids with meshed interconnections and hence the

proof is independent of topology.

The derivation of the mathematical model using steady
state power flow equations assumes that the inverters are
controllable power sources. As shown in the previous paper,
the inverters are controlled as voltage sources and the output
currents of the inverter are strongly dependent on the inter-
connections between inverters and the droop control laws. As
a result, the dynamics of the inverter output current have been
neglected in this model. A simplified model with a single
inverter connected to the grid helps to illustrate this issue.
The dynamics present in the controlled system are the poles
at origin solely due to the integral action of thev droop since
frequency is varied to vary phase angle differences between
inverters.

However, it has been reported in literature that large values
of p-w droop control gain result in instability of the microgrid.
This is intuitive when multi-inverter microgrids are compared
with conventional power systems. Large rates of change of the
speed of generators will cause the generators to swing out of
synchronism resulting in large power oscillations in the power
system and finally a blackout. In a multi-inverter microgrid,
large p-w droop control gains cause power oscillations that
increase in magnitude until the inverter protection trips the
inverters to safeguard against overcurrents. While designing a
multi-inverter microgrid, it is of utmost importance to ensure
that thep-w droop control gains of the inverters do not result
in instability during operation. Therefore, any mathematical
model for the microgrid must be able to provide the stable
boundaries of the microgrid with acceptable accuracy.

The mathematical model presented in this paper shows
the microgrid to be stable for all positive values of droop
control gains. Therefore, the model does not provide the stable
boundaries of the microgrid. The previous section considers
the effect of cable R/X ratio of the simple case of a single
inverter connected to a main ac grid. However, it has been
found that though certain R/X ratio that violate a derived
condition can result in instability, the microgrid will remain
stable in other cases for all values®fu droop control gain.
Therefore, the limitation of the approach lies in the assumption
that the inverters are controllable power sources which leads
to loss of important modes of the system.
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