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Abstract—This paper studies microgrids where loads are sup-
plied by parallel connected inverters controlled by decentralized
active power/voltage frequency and reactive power/voltage mag-
nitude droop control laws. The implementation of droop control
laws for sharing of power between inverters has been known to
present stability problems particularly for large values of active
power/voltage frequency droop control gains. Stability analysis
of the microgrid requires a mathematical formulation of the
interaction between the inverters due to their droop control laws.
However, a simple and elegant mathematical model resulting in
a conclusive proof of stability has been found to be lacking in
reported literature. In this paper, a state dynamical model has
been derived by combining active power flow equations with
the active power/voltage frequency droop control laws. Using
an analogy between the model matrix and connected graphs, a
proof of stability of the microgrid has been stated as a theorem.
The paper further examines the limitations of the proof and the
difference between the results of the proof and reported practical
results.

Index Terms—Microgrids, inverters, decentralized control,
droop control laws, connected graphs.

I. I NTRODUCTION

STability analysis in the context of high voltage bulk power
transmission systems is well established. Determination

of stable boundaries of power systems is achieved using the
swing equations of generators and the equal area criterion.
A multi-generator power system loses stability when the
generators lose synchronism due to faults in the system or
excessive variation in the active power demanded by loads.
Computational techniques have been developed to analyze the
stability of large power systems and are used by practicing
engineers.

In this paper, the microgrid will be formed of inverters
that are controlled in a decentralized manner by droop control
laws. The droop control laws make the inverters emulate syn-
chronous generators by varying the frequency and magnitude
of the output voltage of the inverters with respect to the power
supplied by the inverter [1]. Thep-ω droop control law varies
the frequencyω with respect to the active powerp supplied
by the inverter while theq-V droop control law varies the
magnitudeV with respect to the reactive powerq supplied
[1]. With the inverters being controlled in a decentralized
manner without any communication between them, it becomes
essential to examine the stability of the microgrid due to the
interaction between the inverters and the effect of the droop
controllers.
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These autonomous inverter-based microgrids are a relatively
new concept. With microgrids gaining popularity, the size and
complexity of microgrids are bound to increase. Therefore,
there arises a need to develop techniques of stability analysis
for microgrids. Microgrids differ from bulk power systems
in a few significant aspects. The inverters in the microgrids
are inertia-less as opposed to the generators in bulk power
systems and therefore swing equations for inverters are not
applicable. The inverters do not have substantial overload
capacities unlike synchronous generators and therefore tran-
sient studies are extremely important to determine the peak
currents that the inverters will have to supply. Microgrids at
the distribution level voltage have cables that posses high R/X
ratio as compared to the negligible R/X ratio of transmission
lines in bulk power systems. The above listed differences make
stability analysis in microgrids a challenging topic of research.

With the inverters being controlled using inputs as active
power p and reactive powerq supplied by them, a math-
ematical model can be derived using equations of power
flowing between the inverters. Such a mathematical model was
proposed by Chandorkar et al [1] where the stability of the
microgrid with respect to thep-ω droop control laws were
examined. The microgrid was represented mathematically by
a state dynamical equation with the state variables being the
phase angle differences between the output voltages of the
inverters in the microgrid. The mathematical model proved
the stability of the microgrid with respect to thep-ω droop
control laws for ring and radial microgrids.

In this paper, the mathematical model has been extended
to meshed microgrids with arbitrary connections as most
practical microgrids will contain complex interconnections.
Moreover, the proof of stability of the microgrid will be
performed using concepts from graph theory and will be stated
as a theorem. The differences between the stability result
obtained analytically and those obtained from practical results
will be compared and the reasons for these differences will be
examined.

The outline of the paper is as follows. Section 2 derives the
mathematical model of the microgrid using active power flow
equations andp-ω droop control laws. Section 3 introduces
concepts of graph theory and presents a proof of stability
of the microgrid. Section 4 describes the limitation of the
mathematical model in its inability to provide the stable
boundaries of the microgrid accurately.

II. M ATHEMATICAL MODEL DERIVATION

In this section, the topology of the microgrid used for
deriving the mathematical model will be described. The model
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Fig. 1. Microgrid Topology

will be generalized to make it applicable to any arbitrary
microgrid. Fig. 1 is a single line diagram showing the topology
of a three phase five inverter meshed microgrid. Each of the
blocks represented by “Inv” stand for three phase inverters.
L12, L23, L34, L45, L13, L15, L25 are the inductances of
the interconnecting cables between the inverters with the
resistances of the cables being neglected. Fig. 1 also shows
the power flowing in the interconnecting cables between the
inverters. In Fig. 1, only the active power flows are shown
since this paper deals with only thep-ω droop control laws.
The terminology used for the power flowing between inverters
is described taking the interconnection between Inverter 1 and
Inverter 2 as an example.p12 is the active power flowing
from Inverter 1 to Inverter 2 through the cable connecting
them.p1, p2, p3, p4 andp5 are the active powers supplied by
the inverters.pℓ1, pℓ2, pℓ3, pℓ4 and pℓ5 are the active power
demanded by the loads connected locally to the five inverters.

The following assumptions will be made that simplify the
derivation of the mathematical model:

1) The internal dynamics of the inverters are very fast as
compared to the dynamics of the interaction between
the inverters due to the droop control laws. Therefore,
the inverters are assumed to be ideal voltage sources
whose output voltages are determined by the references
generated by the droop control laws.

2) The inverters are further assumed to be controlled power
sources that have the capacity to change their power
output as desired. This assumption is an essential re-
quirement in the mathematical formulation using power
balance laws.

3) The loads in the microgrid are assumed to draw a total
three phase active and reactive power that has a constant
value. This is the case with loads that are balanced linear
passive loads.

4) This paper will focus on thep-ω droop control laws
since these are known to have a strong impact on the
stability of the microgrid. The magnitudes of the inverter
output voltages will be considered constant as theq-V

droop control laws are neglected.

From Fig. 1, the following active power balance equations
are written

p1 = p12 + p13 + p15 + pℓ1,

p2 = p21 + p23 + p25 + pℓ2,

p3 = p31 + p32 + p31 + pℓ3,

p4 = p43 + p45 + pℓ4,

p5 = p51 + p52 + p54 + pℓ5.

(1)

It is to be noted that the assumption of balanced three phase
three wire system is important. In such a balanced three phase
system, the power flows marked in Fig. 1 will be constant
values. However, if the system is unbalanced due to inequality
of the line resistances or inductances in the three phases or due
to the connection of unbalanced or non-linear load, the power
flows will not be constant values.
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Fig. 2. Inverter output voltage vectors

Fig. 2 shows a sample case of output voltage vectors of
the inverters as complex quantities in polar form. The exact
placement of the voltage vectors will depend on the loading
conditions at the inverters and thep-ω droop control gains
of the inverters. The output voltages of the inverters shown
are V f1 = V1∠δ1, V f2 = V2∠δ2, V f3 = V3∠δ3, V f4 =
V4∠δ4, V f5 = V5∠δ5. The magnitudesV1, V2, V3, V4, V5

are assumed to be the Root-Mean-Squared (R.M.S) values of
the line-to-neutral output voltages. The anglesδ1, δ2, δ3, δ4,
δ5 are measured with respect to an arbitrary reference frame
and in the figure are shown in an arbitrary manner. Moreover,
the vectors are shown widely for clarity in display though
the phase angle differences between the vectors is very small
due to small cable impedances in the microgrid. The voltage
vectorsV f1, V f2, V f3, V f4, V f5 are rotating with angular
frequencies ofω1, ω2, ω3, ω4, ω5 respectively. The reference
frame is rotating with an angular frequency ofω. However, at
steady stateω1 = ω2 = ω3 = ω4 = ω5 = ω, i.e all the vectors
and the reference frame are rotating with the same angular
frequency. This vector diagram will be used to compute the
power flows between the inverters as will be discussed soon.

Fig. 1 shows the active power flows between the inverters.
The active power flowing in the interconnecting cable between
Inverterm and Invertern is

pmn =
3Vm(Vm − Vn cos δmn)Rmn

R2
mn + (ωLmn)2

+
3VmVnωLmn sin δmn

R2
mn + (ωLmn)2

(2)
where δmn = δm − δn. As can be seen from (2), the
active power flowing in the interconnecting cable between
any two invertersm andn is dependent on the magnitude of
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output voltagesVm, Vn of the inverters and the phase angle
differenceδmn = δm − δn between the inverters. Assuming,
the resistances of the interconnecting cable to be negligible,
the active power flowpmn can be approximated to

pmn ≈
3VmVn

ωLmn
sin δmn (3)

The p-ω droop control law for Inverterm is written as

ωm = ω0 − kpmpm (4)

whereω0 is the nominal frequency of the microgrid,ωm is the
frequency of Inverterm, pm is the active power supplied by
Inverterm andkpm is thep-ω droop control gain of Inverter
m. The strong coupling between the phase angle difference
and the active power flow will decrease if R/X ratio of the
cables is considered as is evident from (2). The effect of R/X
ratio of the cables will be considered at a later section after
the basic proof has been completed.

Equation (3) shows that active powerpmn flowing between
Inverterm and Invertern is a nonlinear function of the phase
angle differenceδmn between the inverter output voltages.
Therefore, in order to develop a mathematical model using
droop control laws and power flow equations, the equations
are linearized about an equilibrium point and the variables
are expressed in the small signal domain. The variables are
expressed as small deviations about the equilibrium point. For
example, variableδmn is replaced byδmn + ∆δmn with δmn

being the value of the phase angle difference at the equilibrium
point and∆δmn is the deviation of the phase angle difference
from its value at the equilibrium point. Similarly, variablepmn

is replaced bypmn +∆pmn, variableωm by ωm +∆ωm. The
inverter output voltage magnitudesVm and Vn are assumed
to be constant at this point since theq-V droop control laws
are neglected. Thep-ω droop controller can be written in the
small signal sense as

∆ωm = −kpm∆pm (5)

The deviation in the angular frequency∆ωm can be written
in terms of the deviation in the phase angle as

∆ωm =
d

dt
(∆δm) (6)

The power balance laws of (1) can be linearized and expressed
in the small signal sense as follows

∆p1 = ∆p12 + ∆p13 + ∆p15 + ∆pℓ1

∆p2 = ∆p21 + ∆p23 + ∆p25 + ∆pℓ2

∆p3 = ∆p31 + ∆p32 + ∆p31 + ∆pℓ3

∆p4 = ∆p43 + ∆p45 + ∆pℓ4

∆p5 = ∆p51 + ∆p52 + ∆p54 + ∆pℓ5

(7)

The deviation in the active power flowing between Inverterm

and Invertern can be derived from (2) as

∆pmn =
3VmVn cos δmn

ωLmn
∆δmn

= cmn∆δmn

(8)

where
cmn =

3VmVn cos δmn

ωLij
(9)

From the above expression forcmn, it is evident thatcnm =
cmn. Therefore, from (8),∆pnm = cnm∆δnm = cmn∆δnm.
This relation can also be explained with respect to power
balance laws since there is no power loss in the interconnecting
cables with their resistances being neglected.

Combining (5), (6), (7), (8) the following matrix equation
can be written

d

dt
∆δ = Akp(−Ap∆δ + ∆pL) (10)

where

∆δ = (∆δ1, ∆δ2, ∆δ3, ∆δ4, ∆δ5)

Akp = diag(kp1, kp2, kp3, kp4, kp5)

∆pL = (∆pℓ1, ∆pℓ2, ∆pℓ3, ∆pℓ4, ∆pℓ5)

Ap =




c12+c13+c15 −c12 −c13 0 −c15

−c12 c12+c23+c25 −c23 0 −c25

−c13 −c23 c13+c23+c34 −c34 0

0 0 −c34 c34+c45 −c45

−c15 −c25 0 −c45 c15+c25+c45





(11)

where “diag” implies a diagonal matrix with the specified
vector along the diagonal of the matrix. The above state
dynamical equation has been derived for the microgrid of
Fig. 1. However, the derivation of the mathematical model
can be generalized for any arbitrary microgrid as follows.

For any general microgrid with a large number of inverters
and complex interconnections between the inverters, the fol-
lowing observations can be made. The deviation in the power
supplied by a Inverterm is written as

∆pm =
∑

{n}

∆pmn + ∆pℓm (12)

where {n} is the set of inverters which are connected to
Inverterm excluding Inverterm. The above equation can be
simplified to

∆pm =

(

∑

{n}

cmn

)

∆δm −
∑

{n}

cmn∆δn + ∆pℓm (13)

Since, d
dt(∆δm) = −kpm∆pm constitutes a row of the

representation similar to (10), it can be observed from (13)
that the sum of elements along each row of the matrixAp

will be zero. The matrixAp will have for elementmn, the
term −cmn if Inverter m and Invertern are connected. If
Inverterm and Invertern are not connected, the elementmn

of Ap will be 0. Since,cmn = cnm, the matrixAp will be
symmetric. Therefore, the sum of elements along each column
of Ap will also be zero. This special property of the matrix
Ap is utilized in proving the stability of the microgrid as will
be described in the next section.

III. STABILITY PROOF USING CONCEPTS FROMGRAPH

THEORY

A graph is defined as a mathematical structure used to model
pairwise relations between objects from a certain collection.
The objects are represented by nodes while the interaction
between objects is represented by a branch. Fig. 3 shows an
example of a graph consisting of five nodes (objects) numbered
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from one to five interacting through weighted branches. The
interaction between objectsm andn has weightamn. Since the
graph is undirected,amn = anm. This section will describe
how a graph is used to depict the microgrid with its power
flows.
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Fig. 3. A connected graph depicting system interaction

For the connected graph of Fig. 3, the following definitions
will be provided and details can be found in [2]. The adjacency
matrix of the graph is

A =





0 a12 a13 0 a15

a12 0 a23 0 a25

a13 a23 0 a34 0

0 0 a34 0 a45

a15 a25 0 a45 0



 (14)

Because the graph is undirected, the adjacency matrix is
symmetric i.e A = AT . A matrix D will be defined such
that D is a diagonal matrix and the diagonal elements ofD

are the sum of all the elements ofA in that row.

dmm =
5
∑

n=1
n6=m

amn (15)

The Laplacian of the connected graph of Fig. 3 is defined
asL =: D − A.

L =




a12+a13+a15 −a12 −a13 0 −a15

−a12 a12+a23+a25 −a23 0 −a25

−a13 −a23 a13+a23+a34 a34 0

0 0 −a34 a34+a45 −a45

−a15 −a25 0 −a45 a15+a25+a45





(16)

The LaplacianL is also symmetric. Furthermore,L has the
property that the number of eigenvalues equal to zero is equal
to the number of disjoint parts of the graph. In case of the
graph of Fig. 3, there is a single eigenvalue equal to zero. The
remaining eigenvalues ofL are real and positive andL satisfies
L ≥ 0 [2]. On comparing (16) with the matrixAp of (11),
Ap can also be interpreted as the Laplacian of a connected
graph. The following proof will describe how the property of
the Laplacian is used to prove the stability of the microgrid
with respect to thep-ω droop control law.

Theorem 1: The mathematical model of the microgrid with
respect top-ω droop control laws is expressed in the form of
(10). This representation results in a stable controlled system
due to the property of the matrixAkpAp having real and non-
negative eigenvalues. Furthermore, the non-zero eigenvalues of
AkpAp will tend to +∞ as the control gains inAkp tend to
+∞.

Proof: The mathematical model of the microgrid with
respect to droop control laws are presented in (10). The
discussion above has provided a comparison of (10) for Fig. 1
and (16) for Fig. 3. The matrixAp of (10) therefore is equal

to the Laplacian of the graph of the microgrid. The matrixAp

therefore has an eigenvalue equal to zero and the remaining
non-zero eigenvalues are real and positive. The eigenvalues of
AkpAp will be determined as follows.

The eigenvalues ofAkpAp are obtained as follows

roots[det(λI − AkpAp)] (17)

The above equation can be rewritten as

roots[det(λA
1/2

kp A
−1/2

kp − AkpAp)] =

roots[det(A
1/2

kp )det(λI − A
1/2

kp ApA
1/2

kp )det(A
−1/2

kp )]
(18)

For non-negative droop control gains inAkp, the eigenvalues
are obtained from

roots[det(λI − A
1/2

kp ApA
1/2

kp )] (19)

The eigenvalues ofAkpAp are the same as the eigenvalues
of A

1/2

kp ApA
1/2

kp . The matrixA1/2

kp ApA
1/2

kp is observed to be
symmetric and positive semi-definite sinceAp ≥ 0. Therefore,
the eigenvalues ofA1/2

kp ApA
1/2

kp are real and non-negative. As
a result, the non-zero eigenvalues ofAp are observed to get
scaled by the transformationAp 7→ A

1/2

kp ApA
1/2

kp .
The mathematical model of (10) has been derived by

combining active power balance laws with the droop control
laws. As shown by (13), the property ofAp being Laplacian
is for any microgrid with any finite number of inverters
connected in an arbitrary manner. Therefore, a microgrid
where inverters are controlled byp-ω droop control laws will
be stable for non-zero positive values of droop control gains.
The matrixAp will contain a number of eigenvalues equal
to zero corresponding to the number of disjoint parts of the
microgrid. These eigenvalues equal to zero are an indication
of the number of degrees of freedom in the model and do not
play a role in the stability of the microgrid. The stability of the
microgrid is decided by the non-zero eigenvalues ofAkpAp

that are positive and real.
The above theorem states that for the model under con-

sideration we have stability for arbitrary positivep-ω droop
control gains. The above proof of the stability of multi-inverter
microgrids has certain limitations that will be discussed in
detail in the next section.

IV. L IMITATION OF THE MATHEMATICAL MODEL

In order to examine the limitation of the mathematical
model of (10), a simple microgrid will be considered to
examine the manner in which its poles will change as the
p-ω droop control gain changes. Fig. 4 shows a single inverter
“Inverter 1” connected to a main ac grid. The main ac grid
has a fixed frequency and is considered as the reference for
measuring the phase angle of the inverter. The inverter feeds
a load and is connected to the main grid through a cable with
negligible resistance and inductance ofL1g.

Fig. 4 shows the inverter output voltage vectors in polar
form. The grid voltage vector has been considered to be the
reference for phase angle measurement of the inverter output
voltage vector. Moreover, the grid is assumed to be stiff and
frequency of the grid voltage remains constant. As a result,
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Fig. 4. Single inverter connected to a grid

the only variable in the above system is the phase angle of the
inverter output voltage vectorδ1.

The mathematical model of (10) can be written for the above
simple microgrid. The matrices of (10) are scalars and are as
follows:

Akp = kp1

Ap =
3V1Vg

ωL1g
cos δ1

(20)

Since, the matrix equation of (10) is a single differential
equation for Fig. 4, the controlled system can be represented
by the block diagram of Fig. 5. In Fig. 5, the1s denotes the
integral operator. For the block diagram of Fig. 5, a root locus
diagram can be drawn as shown in Fig. 6. The integral operator
1

s is considered to be part of the plant along withAp. The
control gain of the controlled system is thep-ω droop control
gain Akp.

d
dt(∆δ1)

∆δ1
Akp

1

s Ap

∆p

∆pL1

+
+

+

-

Fig. 5. Block diagram ofP -ω droop

Pole at originDirection of
root locusReal(s)

Imag(s)

×

Fig. 6. Root locus plot with respect top-ω droop

Fig. 6 shows the single pole at the origin due to the integral
operator. The zero of the plant is ats = −∞. Therefore, the
root locus moves from the plant pole to the plant zero askp1 →
∞. From the root locus plot, it can be concluded that the
controlled system will be stable for all positive values ofkp1.
However, in practical cases, even a single inverter connected
to a main grid can become unstable for large values ofkp1 [3],
[4]. Therefore, the root locus plot of Fig. 6 does not provide
the stable boundary of the microgrid.

The derivation of (10) assumes that the resistance of the
interconnecting cables is negligible. The assumption is relaxed
at this point to examine the effect of non-zero R/X ratio of the
cables on the stability results obtained above. The active power
flowing between the inverter and the grid when the cable has
a non-zero R/X ratio can be written along the same lines as
(2):

p1g =
3V1(V1 − Vg cos δ1)R1g

R2
1g + (ωL1g)2

+
3V1VgωL1g

R2
1g + (ωL1g)2

sin δ1 (21)

The equation can be linearized to obtain the following expres-
sion in small signal sense:

∆p1g =
3V1Vg

R2
1g + (ωL1g)2

(

R1g sin δ1 + ωL1g cos δ1

)

∆δ1

(22)
Under the assumption thatsin δ1 ≈ δ1, cos δ1 ≈ 1, the closed
loop equation after applying thep-ω droop control law is:

d

dt
(∆δ1) =

− kp1

[

V1Vg

R2
1g + (ωL1g)2

(

R1gδ1 + ωL1g

)

∆δ1

]

− kp1∆pℓ1

(23)

The above controlled system equation for a microgrid with
cables having non-zero R/X ratio differs from the case where
R/X ratio was zero in the aspect that instability is now possible
for positive values ofkp1. When the following condition is
satisfied, the poles of the controlled system will be in the
right half of the complexs plane resulting in instability:

δ1 < −
ωL1g

R1g
(24)

In order to interpret the above condition, the equilibrium state
about which the system is linearized will be described. If
the only load in the microgrid is connected locally at the
inverter, the droop control laws will cause the load active
power demand to be shared equally between the inverter and
the grid. Therefore, active power will flow from the grid to the
inverter and the output voltage of the inverter will lag behind
the grid voltage by phase angleδ1. Since the grid has been
assumed to be the reference for measurement of phase angle
of the inverter,δ1 < 0. Under these circumstances, if the above
condition in (24) is satisfied, the microgrid will be unstable
for any value ofp-ω droop control gain.

However, for a microgrid where the above condition is not
satisfied, the system will be stable for all positive values of
kp1. This result is again contrary to the practical results, where
the microgrid is known to become unstable askp1 increases
beyond a certain value irrespective of the resistance of the
interconnecting cable. This clearly indicates that the approach
of mathematical modeling used in this paper has resulted in a
few critical modes being omitted.

V. CONCLUSIONS

The stability analysis of large multi-inverter microgrids
where droop control laws are implemented at each inverter
is extremely important if microgrids are to be a feasible
alternative towards reliable and expandable power supplies.
This paper proposes a mathematical proof of stability of
microgrids. In this paper, only thep-ω droop control laws have
been included in the model and the voltage magnitude of the
inverters have been assumed to be constant at their nominal
values. The loads in the microgrids have been assumed to draw
only active power. The approach undertaken in this paper has
several significant contributions and limitations which will be
described in detail below.
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The mathematical model uses steady state power flow
equations since the droop control laws require as inputs the
power supplied by the inverter. Using power balance laws
and power flow equations, the mathematical model developed
exhibits a very elegant matrix structure. The structure of the
matrix allows an analogy to the Laplacian of an undirected
connected graph. Using this analogy, the poles of the microgrid
have been proved to be stable for all positive values of the
p-ω droop control gains. The mathematical model therefore
conclusively proves the applicability ofp-ω droop control laws
to a multi-inverter microgrid. Furthermore, the model includes
large microgrids with meshed interconnections and hence the
proof is independent of topology.

The derivation of the mathematical model using steady
state power flow equations assumes that the inverters are
controllable power sources. As shown in the previous paper,
the inverters are controlled as voltage sources and the output
currents of the inverter are strongly dependent on the inter-
connections between inverters and the droop control laws. As
a result, the dynamics of the inverter output current have been
neglected in this model. A simplified model with a single
inverter connected to the grid helps to illustrate this issue.
The dynamics present in the controlled system are the poles
at origin solely due to the integral action of thep-ω droop since
frequency is varied to vary phase angle differences between
inverters.

However, it has been reported in literature that large values
of p-ω droop control gain result in instability of the microgrid.
This is intuitive when multi-inverter microgrids are compared
with conventional power systems. Large rates of change of the
speed of generators will cause the generators to swing out of
synchronism resulting in large power oscillations in the power
system and finally a blackout. In a multi-inverter microgrid,
large p-ω droop control gains cause power oscillations that
increase in magnitude until the inverter protection trips the
inverters to safeguard against overcurrents. While designing a
multi-inverter microgrid, it is of utmost importance to ensure
that thep-ω droop control gains of the inverters do not result
in instability during operation. Therefore, any mathematical
model for the microgrid must be able to provide the stable
boundaries of the microgrid with acceptable accuracy.

The mathematical model presented in this paper shows
the microgrid to be stable for all positive values of droop
control gains. Therefore, the model does not provide the stable
boundaries of the microgrid. The previous section considers
the effect of cable R/X ratio of the simple case of a single
inverter connected to a main ac grid. However, it has been
found that though certain R/X ratio that violate a derived
condition can result in instability, the microgrid will remain
stable in other cases for all values ofp-ω droop control gain.
Therefore, the limitation of the approach lies in the assumption
that the inverters are controllable power sources which leads
to loss of important modes of the system.
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