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Abstract— In this paper, we use Linear Discriminant Anal-
ysis (LDA) techniques to diagnose Reaction Control System
(RCS) thruster faults in a Re-usable Launch Vehicle (RLV)
upon re-enrty. An RCS thruster operates in binary mode i.e.
either ON or OFF. A mode is a particular combination of
thruster ON/OFF values which is commanded by the controller.
Different Linear Discriminant Analysis (LDA) techniques like
CLDA (Classical LDA), FSLDA (Foley- Sammon LDA), ULDA
(Uncorrelated LDA) are implemented in Matlab and used
here to estimate the mode in which the vehicle lies based on
the double derivative of pitch, roll and yaw angles. If the
estimated mode is not same as the commanded mode then
it implies a fault. Misclassification percentage of each of the
LDA techniques with respect to percentage of training samples
used, number of loading vectors, number of nearest modes
and number of instances dropped after a mode change has
occurred are evaluated and are compared to decide the one
that suits the application. A thorough comparison of the three
LDA techniques brings out a contrasting conclusion: unlike
reported in LDA literature, CLDA performs better than FSLDA
and ULDA for this RCS fault application, though FSLDA and
ULDA are advanced variants of the CLDA.

Keywords: Linear Discriminant Analysis (LDA), Fault di-
agnosis, Re-usable Launch Vehicle (RLV), Misclassification
percentage.

I. INTRODUCTION

Re-usable Launch Vehicle (RLV) are those launch vehicles
which have the capability to be used more than once. After
disengagement from the payload, they return back to earth
and during their re-entry into earth’s atmosphere there comes
a stage in which their motion is controlled by Reaction
Control System (RCS) thrusters. These thrusters are ON-
OFF kind of devices that give torque to control pitch, yaw
and roll angles of the vehicle. The performance index puts
a bound on pitch, yaw and roll angles and whenever the
vehicle crosses the bound, the controller sets a particular
combination of RCS thrusters to bring the vehicle back to
desired region. During this re-entry stage, the RLV is said
to reside in different modes where each mode is a particular
binary combination of RCS thrusters.

In this paper, we use Linear Discriminant Analysis (LDA)
techniques to diagnose Reaction Control System (RCS)
thruster faults. LDA algorithm is used to find new projection
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directions such that, when data samples are projected on
those directions, the within mode distance decreases while
between mode distance increases. Thus it helps in the
classification process. Three different Linear Discriminant
Analysis (LDA) techniques are used here. They are
• CLDA (Classical LDA)
• FSLDA (Foley-Sammon LDA)
• ULDA (Uncorrelated LDA)
These 3 LDA techniques are commonly used for classi-

fication purpose [1][7][11] and hence they are chosen here
for analysis and comparison. These LDA techniques, from
double differentiated values of pitch, yaw and roll angles, are
used to estimate the mode in which the RLV lies. Controller
commands a mode to RCS thrusters whenever the RLV
crosses its set boundary limits on pitch, yaw and roll angles.
When this estimated mode is not same as commanded mode
then it implies a fault in RCS thrusters on the assumption
that sensors are not faulty. The following is done for each
of the LDA techniques and their misclassification percentage
is compared to decide the one that best suits for this fault
diagnosis of RLV application.

1) Percentage of training samples used is varied and
the corresponding misclassification percentage is found
out.

2) The number of samples dropped after each mode
change is varied and corresponding misclassification
percentage is found out to observe the effect of inertia
and differentiation 1 of successive samples.

3) The number of loading vectors used is varied and
misclassification percentage is found out to know the
optimal number of loading vectors (and hence the
computational intensity) to be used for classification
purpose.

4) Number of nearest modes/cluster to which the new test
sample might belong to is varied and misclassification
percentage is found out. This is because the test
data, when projected onto the direction of loading
vectors, need not necessarily belong to first nearest
mode/cluster but it may belong to any of the few
nearest modes/clusters.

A thorough comparison of the three LDA techniques
brings out a contrasting conclusion: unlike reported in LDA
literature[1][10], CLDA performs better than FSLDA and

1Strictly speaking, we are dealing with samples of a continuous variable.
By differentiation we mean successive differences of samples using back-
ward difference method. We use the word ’differentiation’ to mean this for
the rest of the paper.
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ULDA for this RCS fault application, though FSLDA and
ULDA are advanced variants of the CLDA[12].

LDA is also usually used for image processing appli-
cations like face recognition[7]. It is also used for object
tracking applications[8]. Fault diagnosis is mostly done using
artificial neural networks [9]. Techniques like support vector
machines are also used for fault diagnosis applications[6].

The paper is organized as follows. Section II discusses
the assumptions made, input data processing done and fault
detection procedure used. Section III explains about the three
different LDA techniques i.e. CLDA, FSLDA and ULDA.
Section IV gives the results and discussion while section V
serves as the conclusion to the paper.

II. MODEL, ASSUMPTIONS, INPUT DATA PROCESSING
AND FAULT DETECTION

A. Model

The RLV simulator model, a software simulated one, is
governed by its six degree of freedom equations. These
equations basically describe the RLV dynamics. They give
the dependence of rate of change pitch, yaw and roll angles
on the pitch, yaw and roll angles, moment of inertia about
body axis of the vehicle and pitch, yaw and roll moments
due to RCS thrusters. There are also equations governing the
rate of change of side slip angle, rate of change of angle of
attack and rate of change of vehicle velocity.

The model gives time, ON/OFF combination of thrusters,
pitch, yaw and roll angles, their corresponding rate of change
and their double differentiated values (with respect to time)
as its output. There is a bound specified on these pitch, yaw
and roll angles whose values is based on the performance
index required. The pitch, yaw and roll angles from the
output of the model is fedback and compared with these
bounds. Necessary action (firing of appropriate thrusters)
is then done to ensure that the pitch, yaw and roll angles
stay within these bounds. The double differentiated values
of pitch, yaw and roll angles, thruster ON/OFF combination
and the corresponding time obtained from the model is used
in this paper for fault diagnosis in the RLV.

B. Assumptions

Actual vehicle and the model has 12 thrusters out of
which 4 are used to control pitch, 4 to control yaw and 4 to
control roll angle. Each of these 4 act in pairs i.e. 2 are for
rotation along clockwise direction and 2 for rotation along
anticlockwise direction. Here in this paper it is assumed that
only 6 thrusters are there by combining a pair of thrusters
into one. Hence there are only 2 thrusters to control pitch
(one for each direction), 2 to control yaw and 2 to control
roll angle. Further, for control of a particular angle (pitch or
roll or yaw) it is assumed that there are only 3 combinations
namely both the thrusters are ‘OFF’ or one of them is ‘ON’
and other one is ‘OFF’ as the effect both the thrusters are
‘ON’ is same as both the thrusters ‘OFF’. Figure 1 shows
the pitch, yaw and roll control of a flight along with two
thrusters (marked circle) to control roll angle.

Fig. 1. Schematic figure showing roll control thrusters and pitch, yaw and
roll angles of a flight

C. Input data processing

Input data available from the model (RLV simulator) are
• Binary combinations of RCS thrusters that gives the

mode in which the RLV lies.
• Corresponding double differentiated values of pitch,

yaw and roll angles.
• Corresponding time values.

These double differentiated values are differentiated further
to check their effect on classification. Here the number of
modes are 33 (3 combinations for each of 3 angles). The
data is separated according to their mode. Hence now each
mode consists of 6 columns first three corresponding to triple
differentiated values of pitch, yaw and roll angles and next
three columns corresponding to double differentiated values
of pitch, yaw and roll angles. These six column vectors
are fed into the different classification algorithm (CLDA,
FSLDA, ULDA) for training and testing purpose. Input data
processing, implementation of different LDA algorithms and
comparison of their performance measures to find the best
one that suits the application are done in Matlab. The binary
combination of RCS thruster and their corresponding mode
number is given in table I. Here 0 and 1 correspond to OFF
and ON of RCS thruster respectively.

The reason for using double and triple differentiation of
pitch, yaw and roll is as follows. Double differentiation of
angle is proportional to torque, while impulse imparted is
proportional to triple differentiation of angle. The effect of
including them is discussed in section IV-F.

D. Fault diagnosis

After feeding the training samples to LDA classification
algorithms, a set of loading vectors are obtained. The loading
vectors are such that when the training samples are projected
onto the direction of loading vectors, samples of any partic-
ular mode are close together while the individual modes are
well separated from the other modes. The training samples
are now projected onto the direction of loading vectors where
each mode gets clustered appropriately. When a new test data
comes in, it is projected onto the direction of loading vectors
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Fig. 2. Clusters of two modes in new coordinates V 1 and V 2.
• ≡ mean of cluster and ×≡ new data point

and its distance with mean of each of the clustered modes
is found out. The new data is estimated to belong to the
mode to which it is closest. This is shown in figure 2. This
estimated mode may not be same as the commanded mode
given by the controller to the RCS thrusters. This mismatch
between estimated mode and commanded mode implies that
a fault has occurred. For example, if the estimated mode
is 1 while the commanded mode is 2, then from table I it
is possible to conclude that thruster 6(Roll -) is faulty. By
using a similar analysis, any number of thruster faults can
be diagnosed explicitly using this algorithm.

The block diagram of the overall procedure is given figure
3. The lower part of the block diagram i.e. input data
processing, LDA blocks and comparison of estimated and
commanded mode to detect fault are the one that is explained
in this paper. Controller and sensor values are simulated
using the model (RLV simulator). Upper part of the block
diagram consist of the real hardware i.e. the plant (RLV)
along with RCS thrusters. RCS thruster ON or OFF values
produce forces that acts on the plant to change its pitch,
yaw and roll angle which is then sensed by sensors. Further
any variation between the estimated mode and actual mode
implies a misclassification due to the LDA algorithm.

III. LINEAR DISCRIMINANT ANALYSIS TECHNIQUES

Three main types of Linear Discriminant Analysis (LDA)
techniques are used here. They are

1) Classical Linear Discriminant Analysis (CLDA)
2) Foley- Sammon Linear Discriminant Analysis

(FSLDA)
3) Uncorrelated Linear Discriminant Analysis (ULDA)

All these LDA techniques focus on finding the loading
vectors that maximizes the Fisher criteria function (J). Max-
imizing the Fisher criteria implies maximizing the between
class distance while minimizing the within class distance[4].
Let n be the number of observations, m be the number of
measurements and p be the number of classes/modes. The
Fisher criteria function (J) is given by the determinants,

J(W ) =
|W T SBW |
|W T SWW |

(1)

TABLE I
MODE NUMBER AND BINARY COMBINATION OF THRUSTERS

Mode number [Pitch+ Pitch- Yaw+ Yaw- Roll+ Roll-]
1 [0 0 0 0 0 0]
2 [0 0 0 0 0 1]
3 [0 0 0 0 1 0]
...

...
27 [1 0 1 0 1 0]

where,
W ∈ Rm×m is the loading vector matrix
SB ∈ Rm×m is the between scatter matrix
SW ∈ Rm×m is the within scatter matrix.

The loading vector matrix on which the data set is pro-
jected is specific for the particular LDA technique used. Here
m is six as we have six measurements to be fed into the
algorithm namely three corresponding to double derivative
of pitch, yaw and roll angles and three corresponding to
derivative of double derivative of pitch, yaw and roll angles.
The procedure to find the scatter matrices is common for
all the three methods [2]. The procedure to find the loading
vectors by the three different methods is given below.

A. Classical Linear Discriminant Analysis (CLDA)

This is also called as Fisher Discriminant Analysis (FDA).
This technique focuses on finding the vector w that maxi-
mizes the Fisher criteria (J) given by,

J =
wT SBw
wT SW w

(2)

Hence the objective of the first FDA vector is to maximize
the scatter between classes while minimizing the scatter
within classes. The second FDA vector does a similar job
in a direction other than the direction of first FDA vector.
It turns out that the FDA loading vectors are equal to the
eigenvectors wk of the generalized eigenvalue problem

SBwk = λkSW wk (3)

where the eigenvalues λk indicate the degree of overall
separability among the classes when projecting the data
onto wk [2]. Thus the first loading vector is the eigenvector
associated with the largest eigenvalue, the second loading
vector is the eigenvector associated with the second largest
eigenvalue and so on. A large eigenvalue indicates that when
the data in the classes are projected onto the associated
eigenvector then there is overall a large separation of class
means relative to class variances and consequently, a large
degree of separation among the classes along the eigenvector
direction.

B. Foley-Sammon Linear Discriminant Analysis (FSLDA)

FSLDA can get perpendicular loading vectors [11][5].
FSLDA has the same first loading vector as CLDA. That is,
its first loading vector maximizes the Fisher criterion given
by Equation 1. Then the next loading vector that maximizes
Fisher criterion is obtained by imposing a constraint that it
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Fig. 3. Block diagram of the overall process

should be perpendicular to the first loading vector. Thus in
general if f1..... f j are the loading vectors then the constraint
is

f j+1
T fk = 0,k = 1,2... j (4)

It turns out that every ( j+1)th loading vector is the eigenvec-
tor corresponding to the largest eigenvalue of the generalized
eigenequation

MSB f = λSW f (5)

where

M = I−D(DT SW
−1D)

−1
DT SW

−1,D = [ f1, f2.... f j],( j > 1)
(6)

and I is the identity matrix sharing the size of SW .

C. Uncorrelated Linear Discriminant Analysis (ULDA)

ULDA ensures that the variables in the projected space are
uncorrelated [11][7]. ULDA has the same first loading vector
as CLDA. That is, its first loading vector(u1) maximizes the
Fisher criterion given by Equation 17.

After obtaining the first j loading vectors u1,u2,..... u j the
( j+1)th loading vector is obtained by maximizing the Fisher
criterion along with the following uncorrelation constraint

u j+1
T ST ui = 0,(i = 1,2.... j) (7)

It turns out that the jth loading vector is the eigen vector
corresponding to the maximum eigenvalue of the generalized
eigenequation

U jSBu = λSW u (8)

where
U1 = IN

U j = IN−ST D j
T (D jST SW

−1ST D j
T )
−1

D jST SW
−1,

D = [u1,u2....u j],( j > 1) (9)

where IN is the identity matrix sharing the size of SW .

ULDA is same as CLDA [11] if

1) Rank(SB) = c−1, where c is the number of classes.
2) SW is non-singular.
3) All c− 1 non zero eigenvalues of matrix S−1

W SB are
distinct.

IV. RESULTS AND DISCUSSION

Misclassification is said to have occurred when the mode
to which the new test data point gets classified as (estimated
mode) is not same as the mode to which it should belong
to (actual mode). Estimated mode and actual mode are those
mentioned in figure 3. For example if the test data belonging
to mode 2 is classified as mode 3 then misclassification
is said to have occurred. How a mode classification takes
place was already explained in the section II.D. The LDA
techniques mentioned in section III are evaluated based on
four different criteria and their effect on misclassification
percentage is found out. The following subsections explain
this.

A. Effect of percentage of training samples

Here the training data percentage is varied and fed into
the 3 classification algorithms. The remaining data is used
for testing. All the 6 loading vectors obtained are used here
for classification. Further the data samples are such that after
a mode change has occurred 2 data samples are dropped.

From figure 4 it can be observed that the misclassification
percentage is almost constant for CLDA while for FSLDA
and ULDA they seems to decrease with increase in training
sample percentage beyond 70. The spread of data across
different time ranges gets accounted automatically when the
percentage of training data is increased.

B. Effect of number of instances dropped after mode change

Whenever a mode change occurs by change in the thruster
combination that are ON/OFF, the vehicle does not respond
immediately due to its inertia. Hence immediately after the
mode change, the double differentiated2 values of pitch, yaw

2Note that difference between consecutive samples is used to approximate
the derivative (see footnote 1)
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Fig. 4. Misclassification percentage versus percentage of training samples
used

Fig. 5. Misclassification percentage versus number of instances dropped
after mode change

and roll angles may neither correspond to the present mode
nor to the previous mode. Further, when there is a mode
change, the derivative calculated from successive samples to
obtain triple differentiated pitch, yaw and roll angles may
vary from that of those values in the present and previous
mode.

Hence, here the number of samples dropped after mode
change is varied from 0 to 4 and misclassification percentage
is found for each of the three LDA algorithms. 30% training
sample is used and rest is used for testing. All the six loading
vectors are used for classification. From figure 5 it is clear
that CLDA misclassification percentage is very less when
compared with FSLDA and ULDA.

C. Effect of number of loading vectors

Here the number of loading vectors used for classification
is varied from 1 to 6 in the order starting from the one
corresponding to maximum Fisher criteria. 30% training
sample is used and the rest is used for testing. Further the
data samples are such that after a mode change has occurred
2 data samples are dropped.

Fig. 6. Misclassification percentage versus number of loading vectors
considered

It is evident from figure 6 that CLDA has lower mis-
classification percentage when compared with FSLDA and
ULDA. Also the misclassification percentage decreases until
first three loading vectors are considered and after that it is
almost constant. Hence the loading vectors corresponding top
three eigenvalues are good enough for classification. The top
three eigenvalues are 2.17×105, 28.12 and 9.67. This says
that the first loading vector is able to separate different modes
and reduce the variance within each mode much better than
the others[2].

D. Effect of number of nearest modes considered

In the above three variants, misclassification is said to have
occurred if the nearest mode to which the new test data point
gets classified as is not same as the actual mode to which the
test data should belong to. Assuming that the test data point
could belong to any of the few nearest modes/clusters instead
of only the first nearest mode/cluster (for example one among
the top 3 nearest modes from the test data point), the number
of nearest modes is varied from 1 to 5 and misclassification
percentage is plotted in figure 7. It was also observed that
whenever the second nearest mode is classified as the correct
mode, the first nearest mode remains the same corresponding
to the second mode. For example when the second nearest
mode is 19 the first nearest mode is 21, for 11 it is 10, for
6 it is 4 etc.,.

E. Misclassification with respect to time

The actual mode to which the data belong to and the
estimated mode are compared with respect to time and graph
is plotted. This is shown in figure 8. CLDA is the method
used here to find the estimated mode. X- axis shows time
in seconds and Y-axis shows the mode number (1 to 27).
Further, the misclassification persist for utmost 2 seconds
after a mode change.

F. Effect of a particular variable in classification

The relation between highest magnitude in the loading
vector and dominant variables of classification remains to be
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Fig. 7. Misclassification percentage versus number of nearest modes
considered

Fig. 8. Misclassification with respect to time

studied more thoroughly though some of the observations
made are presented here. The top three loading vectors
corresponding to top three eigenvalues of CLDA are


−16.91 −55.31 −14.34

4.99 −4.47 −9.19
−7.22 −6.29 0.15
−207.19 0.04 0.03
−0.09 35.90 −3.65
0.06 −6.97 −29.80

 (10)

The first loading vector (first column) corresponds to
the largest eigenvalue and it gives more weight (Fourth
row) to the value corresponding to double differentiation
of pitch (Fourth column in data matrix fed to LDA al-
gorithm). This value seems to dominate the classification
in the direction of first loading vector. The second vector
has relatively more weight for double differentiation of yaw
and triple differentiation of pitch angle. Third vector gives
more weight to double differentiation of roll angle. Hence
it can be said that the double differentiated angles dominate
the classification much more than the triple differentiated

angles. Normalization of loading vectors does not affect the
classification as the loading vectors gives only the direction
[2]. RCS thrusters provide torque that changes pitch, yaw and
roll angle and torque is proportional to double derivative of
angle (angular acceleration). This is also evident from the
loading vectors given in 10 as the double derivative of pitch,
yaw and roll angles dominate the classification .

V. CONCLUSIONS
A. Conclusions

CLDA does not impose any constraint to find its loading
vectors that maximizes the Fisher criteria. As observed from
the previous section CLDA seems to have lower misclassi-
fication percentage, for this fault diagnosis of RLV thrusters
application, compared to FSLDA and ULDA techniques
(advanced variants of CLDA) with respect to the following
criteria.

1) Percentage of training samples
2) Number of instances dropped after mode change
3) Number of loading vectors
4) Number of nearest modes considered

By knowing the commanded mode and the mode estimated
from the classification it is possible to say which RCS
thruster is faulty on assumption that there is no sensors are
faulty.
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