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Abstract—Self Powered Neutron Detectors (SPNDs), which
are widely used in a nuclear reactor for flux measurement,
typically have different types of dynamics based on their emitter
material: one delayed, second prompt and possibly nonlinear
response characteristics. The measurement from the SPNDs
hence need compensation to obtain the actual input flux. In this
paper, we discuss the modeling of and input estimation design
for Vanadium and Cobalt SPNDs. We obtain the structure and
parameters of the Vanadium SPND model from its radioactive
decay mechanism. We then obtain the other parameters of the
model applying system identification tools on the available data
corresponding to reactor trip. For Cobalt SPND, we design two
model based input/state estimators; the nonlinearity being the
key feature: the ‘Exact Model Inversion’ and the Extended
Kalman filter. In the exact model inversion, we demonstrate
that input flux can be calculated by solving a third degree
polynomial. In the extended Kalman filter estimator, we propose
a novel approach to improve the step response of Kalman filter
algorithms by ‘resetting’ the state error covariance matrix.
We use Matlab® simulation and reactor data to compare the
advantages of the two filters. We show that in both Vanadium
and Cobalt SPND cases, Kalman filter based algorithms provide
a reasonable balance between speed and noise suppression.
While the exact inversion provides an almost prompt, but noisy
response to step changes, the modified Kalman filter has a
noise-free response with a few minutes of settling time. We also
demonstrate the ability of the proposed covariance reset Kalman
filter to track step/sudden changes in the input.

Index Terms—Self Powered Neutron Detectors, Kalman Filter,
System Identification, Current build-up, Covariance matrix
reset, Exact Inversion, Vanadium, Cobalt

I. INTRODUCTION

The power generated by a nuclear reactor is determined
by the amount of fission reaction that takes place, which in-
turn depends on the number of neutrons available to cause
fission. Therefore measurement of neutron flux is essential
for estimating reactor power. In case of reactors with large
cores, it is also necessary to know power distribution within
the reactor core. Hence an accurate estimation of the neutron
flux profile inside the reactor core is required for prompt and
accurate control of power generation. Self Powered Neutron
Detectors (SPNDs) are popularly used as in-core flux detec-
tors for flux mapping, control and protection systems. The
current generated by an SPND has typically two components:
a prompt part, which is proportional to the neutron flux now
and a delayed part, which is related to the flux in the near
past. Depending on which component is higher, the SPNDs
are broadly classified based on the characteristics of their
emitter material into prompt and delayed type SPNDs [1]. A

This work was supported by the Board of Research in Nuclear Sciences
(BRNS), India. Grant Number: 2009/39/16-BRNS

S. Krishnan and M.N. Belur are with the Department of Electrical Engi-
neering, M. Laxman with Systems & Control Engineering, and M. Bhushan
with the Department of Chemical Engineering, Indian Institute of Technology
Bombay, India. Corresponding author email: belur@iitb.ac.in

A.P. Tiwari is with Reactor Control Division, Bhabha Atomic Research
Center, Mumbai, India.

M.G. Kelkar and M. Pramanik are with Nuclear Power Corporation of
India Ltd., Mumbai, India

thorough modelling of SPNDs is critical to utilize the SPND
signal for estimation of the current neutron flux accurately for
various reasons, for example, in order to control the reactor
for regulation of total generated power.

In this paper we treat problem as an unknown input estima-
tion problem and present results obtained with a nuclear reac-
tor which uses Vanadium (delayed-type) and Cobalt (prompt-
type) SPNDs for flux measurement. While the Vanadium
SPND model is linear, the Cobalt SPND has a nonlinear
model. In Section II, we obtain an analytical model and the
model parameters for the Vanadium SPND. In Section III
we propose the state error covariance ‘reset’ approach and
describe how this method plays a key role to improve the
response of Kalman filter algorithms for sudden changes in
neutron flux. In Section IV, we investigate two approaches to
design observers for input estimation for Vanadium SPND.
Simulation results as well as the results obtained when
applied to actual measurement data from the reactor under
study are discussed. In Section V, we study two approaches to
perform inversion of Cobalt SPND signal. Simulation results
and results with actual process data are given. Finally, Section
VI summarizes the results.

II. VANADIUM SPND: MODEL IDENTIFICATION

A. Model structure

A first principle model of Self Powered Neutron Detectors
is obtained from the radioactive transition between different
isotopes and their β and/or γ emissions. In case of Vanadium
SPNDs, such first principle models are not available in the
literature. However, by comparing the decay mechanism with
a similar type of SPND whose model is readily available in
literature, namely, Rhodium SPND in [2] and using [3], the
model of Vanadium SPND is obtained as

dN51(t)

dt
= − σ51N51(t)φ(t) (1)

dN52(t)

dt
= σ51N51(t)φ(t)− λ52N52(t) (2)

i(t) = kpvσ51N51(t)φ(t) + kgvλ52N52(t) (3)

where
λ52 : Decay constant of 52

23V

i(t) : Current from the V-SPND

φ(t) : Input flux in the reactor

N51 and N52 : Atomic densities of 51
23V and 52

23V
respectively

σ51 : Neutron absorption cross-section of 51
23V

(microscopic)

kpv , kgv Probabilities of 51
23V neutron capture and

52
23V decay each leading to a current carrying electron
respectively

In the above description, the parameters σ51 and λ52 are
obtained from characteristics of the isotopes of Vanadium.

2012 American Control Conference
Fairmont Queen Elizabeth, Montréal, Canada
June 27-June 29, 2012

978-1-4577-1096-4/12/$26.00 ©2012 AACC 318



We used the data available from [3]. Apart from this, the
sensitivity of the Vanadium SPNDs obtained using first-
principles model [4] and verified against the experimentally
measured sensitivity is also available. These are given in the
Table I.

TABLE I
MODEL PARAMETERS : V SPND

Parameter Values & Unit

N51 6.86× 10
22 cm−3

σ51 4.9× 10
−24 cm2

λ52 0.0036 s−1

Sv 1.415× 10
−20 A·cm2

· s/n

It has been noted [5] and also observed during simulations
that, the burn-up rate of 51

23V is 0.012% per month in a typical
thermal neutron flux of 1013 n cm−2 s−1. Even if the typical
thermal neutron flux is two or three times of this value, the
burn-up rate can be neglected and hence we assume in this
paper that 51

23V is constant: this gives the following linear
model for the Vanadium SPND

dN52(t)

dt
= −λ52N52(t) + σ51N51φ(t) (4)

i(t) = kpvσ51N51φ(t) + kgvλ52N52(t), (5)

which gives the transfer function from input φ to output i as

Gv(s) = σ51N51(kpv + kgv)

[1 + s

(

kpv

λ52(kpv+kgv)

)

1 + s/λ52

]

. (6)

B. System identification approach

Measurement data from Vanadium SPND was available
during a reactor shutdown period. Since the reactor shutdown
is almost instantaneous, this is considered as a step change.
Matlab® system identification tools were used to perform
model identification using Prediction Error Methods (PEM)
[6] and with the following process model structure:

I(s)

Φ(s)
= Sv

Tzs+ 1

Tps+ 1
(7)

C. Results

The above system identification steps were applied to data
from 100 Vanadium SPNDs. Along with the Tz , Tp values
obtained through system identification, the Sv value given
in Table I was used and the model parameters obtained as
in Table II. These are the computed average values of these
model parameters.

TABLE II
COMPUTED V SPND MODEL PARAMETERS

Parameter Value & unit
Tz 26 s
Tp 313 s

kpv 3.487× 10
−21 A-s

kgv 3.846× 10
−20 A-s

III. COVARIANCE RESET MECHANISM WITH KALMAN

FILTER

The Kalman filter and Extended Kalman filter (EKF) algo-
rithms are used for input estimation in Vanadium (Section IV)
and Cobalt SPNDs (Section V) respectively. The approach

of the implementation is similar to, say [2], [7], in that we
consider the input as a constant and this is added in the state
equation of the system. This approach has been illustrated
to be superior to other approaches in these papers. However,
when there are sudden changes in the neutron flux, estimation
error is very high due to the constraint of input being constant.

In order to improve the promptness of the response of the
algorithm during step changes in neutron flux, we modify the
state error covariance matrix when a sudden and significant
change in the neutron flux is detected. This detection is done
by monitoring the innovation and by resetting the state error
covariance matrix to a value depending upon the magnitude
of change. The resetting is typically done to a ‘large’ positive
definite matrix: this resetting mechanism thus allows for
renewed (and temporary) trackability of the input flux despite
the sudden change. The subsequent sections describe the
result of this modification to Vanadium and Cobalt SPNDs.

IV. VANADIUM SPND: INPUT ESTIMATION

Existing literature on the SPNDs propose different ap-
proaches to design compensation for delayed-type SPNDs,
but they focus on Rhodium SPNDs. In [2], three approaches:
dominant pole method, direct inversion and Kalman filter
are studied. In [9], a similar inversion of transfer function
is discussed where appropriate inverse transfer functions are
realised using Inverse Function Amplifier (IFA). A discrete
time Kalman filter is implemented in [7] for Rhodium SPND
and the response of the filter is compared with that of ‘exact
inversion’. In [10], the authors propose an H∞ filtering
approach which reduces ‘worst case’ estimation error using
a a Linear Matrix Inequalities (LMI) formulation. Dynamic
compensation techniques using rank order filtering of Vana-
dium SPNDs have been addressed in [8] and [11].

In this paper we propose two approaches for input esti-
mation for Vanadium SPND in the following subsections:
the exact inversion and the Kalman filter methods. These
approaches have similarity to the methods proposed in [2] and
[7] for a Rhodium SPND, in that we consider the input as one
of the states with no dynamics. However, the covariance reset
mechanism proposed in this work is not in these references.

A. Exact Model inversion

Since the Vanadium SPND model Gv(s) is linear and
proper, inverting the model to obtain the input is possible,
with the zeros of Gv(s) determining the stability. The initial
delay in convergence of the estimated flux to the actual flux
is typically due to difference in initial conditions.

Model

Using equation (7), the state space model of the Vanadium
SPND and the corresponding inversion assuming x := N52

is:

ẋ(t) = −
1

Tz

x(t) +

(

Tz − Tp

SvT 2
z

)

i(t) (8)

φ̂(t) = x(t) +
Tp

SvTz

i(t) (9)

Simulation results

• System Simulation Parameters

– To make a comparison between the exact model
inversion and Kalman filter approaches, the system
simulation was performed in the same way consid-
ering input also as one of the states of the system.
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Fig. 1. Input estimation using exact inversion approach

– Process Noise Variance: diag(1024,1022 )
– Measurement Noise Variance: 10−16 (we generated

noise ranges between 1-5% of the measurement
current amplitude)

Figure 1 shows the simulation results for the exact
inversion method. Note that, except during the initial
period (which is due to inexact initial conditions of the
observer), the estimation promptly tracks the unknown
input. The drawback is that the filter, due to its lead
compensation characteristics, results in noisy estimate.
In the simulation results throughout this paper, the term
scaled measurement is used to denote output of the
sensor scaled by a fixed number. That is, when no
compensation is used, the estimated flux is a scaled value
of the current measured by the sensor. It shall also be
considered as measurement without compensation.

B. Kalman filter

Problem formulation

The Kalman filter implementation for input estimation of
Vanadium SPND is based on the idea of assuming the input
as one of the states subject to the dynamic constraint of it
being constant. The system model (with the first equation the
same as (1)) is then given by

[

ẋ(t)

φ̇(t)

]

=

[

−λ52 σ51N51

0 0

] [

x(t)
φ(t)

]

(10)

y(t) = [kgvλ52 kpvσ51N51]

[

x
φ

]

(11)

where y(t) is the current generated by the SPND.
A discrete Kalman filter implementation was used for

solving this problem which used the discretized system rep-
resentation given by
[

x(n+ 1)
φ(n+ 1)

]

=Ad

[

x(n)
φ(n)

]

+

[

w1(n)
w2(n)

]

(12)

y(n+ 1) = [kgvλ52 kpvσ51N51]

[

x(n+ 1)
φ(n+ 1)

]

+ v(n+ 1)

(13)

where Ad :=

[

e−λ52Ts σ51N51

λ52

[1− e−λ52Ts ]
0 1

]

and w and v

are process and measurement noise respectively.
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Fig. 2. Input Estimation using Kalman Filtering
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Fig. 3. Illustration of the effect of State Error Covariance Reset in Input
Estimation during a step change in flux

Simulation results

The following parameters were used in the Kalman filter
and we used the filter over the data generated using the
simulation as discussed in Subsection IV-A above.

• Kalman Filter Parameters

– Process Covariance matrix: diag(1,1)
– Measurement Covariance matrix: 10−16

– Initial State Error Covariance matrix: diag(1016,
1014).

• Simulation Results: Figure 2 shows the simulation re-
sults of the designed Kalman filter for the above param-
eters.

– Settling time (±2% of final value): ≈ 3.5 minutes.
– Root Mean Square (RMS) error of flux (after

the settling time when the input flux is 2 ×

1014 n cm−2 s−1) is equal to 1012 and decreasing
with respect to time.

• As discussed in Section III, a state error covariance
matrix reset mechanism was employed in cases where
there is a sudden and significant change in the neutron
flux. The mean value of the residue of Kalman filter
is monitored for a fixed window of 50 seconds. The
results of Kalman filter response to a step change with
and without covariance reset mechanism is illustrated
in Figure 3, where part of a simulation involving step
change in flux is shown: the estimate is able to track the
input.
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Fig. 4. Comparison of compensation technique responses for simulation
data
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Fig. 5. Comparison of compensation technique responses for reactor trip
data

C. Comparative results for the two approaches

Figure 4 gives a comparative analysis of the response of
Exact Inversion and Kalman filter (along with the scaled
measurement) for a simulated data. It shows that the prompt-
ness of Kalman filter approach (with the covariance reset)
is comparable to that of Exact Inversion approach, but with
lesser noise. There is also an overshoot of about 15 % in both
the Exact Inversion and the Kalman Filter.

Figure 5 gives qualitative comparison of the two ap-
proaches, when applied to actual reactor data dynamics. A
lower limit of 104 was imposed on the estimated input flux
to rule out possible undershoots. The Kalman filter provides
a prompt response and is almost noisless compared to Exact
Inversion.

V. COBALT SPND: MODEL BASED OBSERVERS

Cobalt SPND model

The model of Cobalt SPND used in this paper is as in
[12]. Along with these model parameters, experimentally
determined Cobalt sensitivity (Sc), given in the Table III, are
used in this paper. The N59 burn-up (0.094% per month [5])
is neglected along with the prompt gamma component, to

TABLE III
PARAMETERS VALUES IN COBALT SPND MODEL

Parameter Values & Unit

N59 8.843× 10
22

σ59 37× 10
−24 cm2

σ60 2× 10
−24 cm2

λ60 1.501 ×10
−5 hr−1

λ61 0.420 hr−1

k60 1.358× 10
−32 A

k61 3.7996× 10
−27 A

Sc 0.813× 10
−20 A-cm2-s/n

obtain the following reduced model:

dN60(t)

dt
=N59σ59φ(t)− λ60N60(t)−N60(t)σ60φ(t) (14)

dN61(t)

dt
=N60(t)σ60φ(t)− λ61N61(t) (15)

i(t) =k60N60(t) + k61N61(t) + Scφ(t) (16)

In [12], the author shows a detailed analysis of Cobalt
SPND model and illustrates the effects of background build-
up components and emphasizes the importance of compensat-
ing for them to prolong the SPND life. However attempts for
this compensation have been limited. In [1], the authors build
a Cobalt SPND which has a reduced background buildup.
However, effective computational compensation techniques
have not been investigated for the problem of reducing the
effect due to build-up of current. This paper illustrates the
feasibility of designing compensation techniques using model
based observers. The challenge in this case is the nonlinearity
in Cobalt SPND model. In this section, two approaches to
design model based observers for the Cobalt SPND model
(14)−(16) are described and compared.

A. Exact Inversion

This method utilizes the model structure of the Cobalt
SPND and performs an inversion with the help of mea-
surement derivatives. To obtain a unique estimate of flux,

a dynamic constraint, φ̇ = 0 is considered. Unlike the
Vanadium SPND which could be modelled fairly accurately
using a linear model, the build-up component in the Cobalt
SPND, which contributes significantly to the SPND current,
causes the Co SPND model to be nonlinear. The Exact
Inversion approach cannot yield an inverse ‘transfer function’
due to this nonlinearity. This subsection proposes a novel
approach to deal with the Co SPND nonlinearity: we describe
how under the constant flux assumption, the flux satisfies1 a
cubic polynomial that can be found from the measurements
and model parameters.

The approach can be summarized as follows. We impose

the constraint φ̇ = 0. This leads to a 3rd degree polynomial,
say p0 + p1φ + p2φ

2 + p3φ
3, one of whose roots is the

actual flux. We show that the coefficients of this polynomial
are dependent on model parameters and the first and second
derivatives of present measurement: thus the coefficients are
functions of time. For this cubic polynomial, while one root is
guaranteed to be real, extensive simulation shows that exactly
one root is close to the actual value of φ. The coefficients pi

1For an LTI system excited by a constant and unknown input, with
unknown initial conditions, assuming observability of a closely related LTI
system, one can use a linear combination of the output and its derivatives
to give values of the input and the current states immediately.
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of the above equation are as follows.
p3 := σ60g1g2 + σ59N59g

2
1

p2 := 2σ59N59g1g3 + g2(σ60g3+λ60g1)−σ60g1(ẏ+λ61y)
p1 := σ59N59g

2
3 + λ60g2g3 − g1ÿ − ẏ

−(σ60g3 + λ60g1 + λ61g1)− λ61y(σ60g3 + λ60g1)
p0 := −[g3ÿ + (λ61 + λ60)g3ẏ + g3 + λ60λ61y].

Simulation parameters

For the purpose of simulation of the continuous time model
of Cobalt SPND and for sampling the necessary variables,
we used Matlab® ODE solvers: ode45 and ode15s. The
derivatives of the measurements were obtained using first and
second difference methods. The maximum of the three roots
was chosen as the estimated flux.

Simulation results without noise

Figure 6 shows the simulation results for the estimation of
input using exact inversion, when no noise is assumed to be
present. It expectedly takes three measurements to achieve
convergence of estimated input, since the first difference
method used to compute first and second derivatives requires
three measurements.
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Fig. 6. Estimated Input with Exact Inversion (case for no noise)

Simulation results with noise

It has been observed that the algorithm does not con-
verge when measurement noise of even negligible variance
is present. This is expected due to the involvement of dif-
ferentiation in computing the estimated inputs. Using better
differentiation techniques results in a marginal improvement.

One possible option to overcome this problem is, instead of
sampling the system every second, the measurement and the
computation of estimated input is done at a lower sampling
rate. This can reduce the effects that noisy measurements have
on the estimated input computation. In Figure 7, a sampling
rate of 1 hour was used and the estimated input, though noisy,
yielded accurate results. The added measurement noise had
variance 10−18. For the same noise characteristics, sampling
measurement each second gives unsatisfactory results.

In Figure 8, the estimated output after passing through a
first order low pass filter (with a time constant of 10 hours) is
shown. This demonstrates that a more refined filtering method
achieves better input estimation. We describe the extended
Kalman filter in the following subsection.
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Fig. 7. Estimated Input with a 1 hour sampling rate for simulations with
measurement noise
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Fig. 8. Estimated and Filtered Input for simulations with measurement noise

B. Extended Kalman filter

Problem formulation

One of the ways to overcome the problem faced by the
exact inversion’s noisy response is to use a Kalman filter.
Since the Cobalt SPND has a nonlinear model, we use an
extended Kalman filter (EKF). In formulating the problem for
using EKF for input estimation, we consider the augmented
system by considering the input as one of the states of the

system and imposing the dynamics constraint φ̇ = 0.





ẋ1(t)
ẋ2(t)

φ̇(t)



 =ACo(t)

[

x1(t)
x2(t)
φ(t)

]

+

[

w1

w2

w3

]

(17)

y(t) = [k60 k61 Sc]

[

x1(t)
x2(t)
φ(t)

]

+ v (18)

where ACo(t) :=

[

−λ60 − σ60φg 0 σ59N59 − σ60x1g

σ60φg −λ61 σ60x1g

0 0 0

]

and w and v are the process and measurement noises. The
variables φg and x1g are the estimated flux and state values
from the previous step.

Simulation details and results

• The Kalman filter implementation was in discrete time
and hence the linearized system was discretized using
the zero-order hold method.
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Fig. 9. Input Estimation by EKF Algorithm for a simulated input

• The process covariance matrix used is
diag(1030,1028,1022) .

• The initial conditions used for the system simulations
corresponded to the values of N60 and N61 attained after
two years with a constant flux of 1014 n cm−2 s−1.

• Process and measurement noise variances used were
diag(1,1,1) and 10−16 respectively.

• The estimated input was restricted to values above 104

so as to avoid impractical values. Similarly, the other
states were restricted to positive values.

• Figure 9 shows results of EKF algorithm on a simulated
data where the initial guess of φ to start with was
1013. Settling time (to within 2% of final value) is
approximately 2 minutes. The Root Mean Square (RMS)
error of flux (after the settling time when the input flux
is 2 × 1014) is approximately 1012 n/cm2

− sec and
decreasing with respect to time.

• In Figure 10, the EKF algorithm is applied to reactor
trip measurement data obtained from an actual reactor.
Notice that the algorithm is able to track the scaled
measurement within the settling time of two minutes.

• Covariance Reset: As elaborated in Section III, to im-
prove the response of EKF output for sudden changes in
input flux we propose a covariance reset procedure. As
in the Vanadium SPND case, here too the promptness of
the response was comparable to that of Exact Inversion.

• Dependence on initial conditions: The input estimation
was not affected by the inexact initial estimate of N60,
N61. However, such inexact estimates adversely affected
the estimation of the states.

VI. CONCLUDING REMARKS

In this paper, we have discussed the model based observers
for Vanadium and Cobalt SPNDs. For Vanadium SPNDs,
we derived the analytical model and its parameters and
then designed two types of observers based on exact model
inversion and Kalman filter. We employed a modification of
the Kalman filter algorithm which involves a resetting in
the error covariance matrix when the innovation indicates
step changes in the input. For Cobalt SPNDs, despite its
nonlinearity, we showed that when the flux is constant, the
flux satisfies a third order polynomial whose coefficients can
be found from the measurement and model parameters: we
called this the Exact Inversion method. We also designed an
Extended Kalman Filter with covariance reset for the Cobalt
SPND. Some of the key results are summarized as follows.

For Vanadium SPND, the response of the exact inversion
was prompt, but noisy. The Kalman filter with the covariance
reset provided a step response settling time of few minutes
with negligible RMS error (3.5 mins and 1% respectively for
the case shown in this paper). The results here are shown
for a model of Vanadium SPND with average parameter
values, and appropriate tuning of this covariance reset for
individual SPND models could improve the response time.
The modified Kalman filter with covariance reset can be used
as the observer for Vanadium SPND.

For Cobalt SPND, the new approach of exact model
inversion response was prompt when there was no noise, but
was illustrated to be prone to noise due to its dependence
on derivatives. The extended Kalman filter algorithm with
the covariance reset provided a step response settling time of
few minutes with negligible RMS error (2 minutes and 1%
respectively for the case shown in this paper). The extended
Kalman filter was found to be more suitable as an observer
for the Cobalt SPND.
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