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Abstract— In this paper we propose a method to find a
low order controller for a single input single output linear
continuous time system which guarantees that the closed loop
poles are placed within some pre-specified region in the complex
plane. Additionally, the method can also ensure that any subset
of the closed loop poles are placed at specific pre-designed
locations. Further, it is possible to ensure that the resulting
controller is proper. The problem is solved by formulating it
as an LMI constrained optimization problem. The proposed
method is demonstrated on a power system example.

I. INTRODUCTION

The problem of finding low order controllers for contin-

uous time linear systems for various control objectives has

proved to be difficult due to the underlying non-convexity of

the optimizations involved [1], [2], [3]. In the case of an nth

order linear time invariant (LTI) single-input single-output

(SISO) system, if all the closed loop poles are specified, then

it is well known that the minimum order of the controller

which achieves these pole locations, is (n − 1) [4], [5].

However, if there are no precise requirements on the closed

loop poles, but they are only required to belong to some

pre-specified region in the complex plane, then these extra

degrees of freedom can be used to reduce the controller order

below (n−1). We address this problem using a linear matrix

inequality (LMI) based inner convex approximation for the

closed loop characteristic polynomial stability region [6], [7].

It is shown that the low order proper controller, satisfying

any regional pole placement requirements, can be found by

solving at most (n−1) semidefinite programs (SDPs).

In addition to regional pole placement requirements, the

designer might want to specify some of the poles precisely

[8], [9], [10]. Such a situation regularly occurs in the case

of practical large order systems, where only few open loop

poles are unstable or have undesired damping. The remaining

open loop poles are, in general, stable and well damped. For

example, in the case of interconnected power systems, the

post-fault oscillatory response is specifically influenced by

few poorly damped inter-area modes [11]. In such situations

the designer wishes to place only those unstable poles

(henceforth called fixed poles) at some desired locations to

ensure desired performance following disturbances. There

is no need to worry about the remaining poles (henceforth

called free poles) as long as their damping/settling times do

not exceed those in open loop.

To address such situations, here we present a method of

obtaining output feedback low order controller which will
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ensure that (i) the fixed poles are placed at desired (precise)

closed loop locations, and (ii) the free poles are assumed

positions within some specified stable region in closed loop.

The requirements on the closed loop free poles are trans-

lated into constraints in the coefficient space of the charac-

teristic polynomial through an inner convex approximation

of the polynomial stability region [6], [7]. These constraints

define an LMI on the coefficients of the polynomials associ-

ated with the output feedback controller. Thus the problem

mentioned above is solved as a satisfiability problem with

two types of constraints: (i) linear equality constraints arising

out of the precise placement requirement of the closed loop

fixed poles, and (ii) LMI constraint arising out of the regional

placement requirement of the closed loop free poles.

The traditional approaches to find a low order controller

for a linear system are the following: i) reduce the full order

plant to a smaller order and then design a controller for the

smaller order plant, ii) design a controller for the full order

plant and then reduce this to a smaller order controller (see

[12], [13] and the references therein). The reduction of the

plant or the controller, which will satisfy the closed loop

performance restrictions, is done by various model reduction

approaches [12]. These methods provide no guarantees on the

closed loop specifications and hence are necessarily iterative.

The low order controller design with pole placement

requirements is addressed in [4], [5], where it is shown that

the low order controller for an nth order system is (n− 1).
This however turns out to be disadvantageous for systems

of large order, and hence obtaining a low order controller,

with which the transient/time response characteristics of the

closed loop system can be achieved, remains an important

problem [1]. In [14], [15], the above problem is approached

by posing it as a rank minimization problem (RMP). It is

shown that if the associated feasible set is a hyper-lattice

[14] then RMP problem can be posed as a trace minimization

problem which in turns can be solved as an SDP. Similarly in

[16], a convex suboptimal problem, associated with obtaining

low order controller, is solved by using strictly positive

realness condition. In these approaches convexification is

achieved at the cost of optimality or some special system

properties are assumed.

Many papers, like [7], [17] and [2], have focused on

obtaining a fixed order controller for a plant with polytopic

uncertainty. In [2], [3] it is shown that the set of all stabilizing

controllers for a polytopic uncertain plant is non convex.

Hence in [7], [17], [2], [3] a convex approximation, by fixing

a central polynomial, is obtained by imposing strictly positive

realness condition on the associated transfer function. A

similar problem is treated in [3], where a trace minimization
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heuristic is proposed to minimize the rank of the Sylvester

resultant matrix associated with plant coefficients.

Rest of the paper is organized as follows. The problem

is formulated in Section II-A after introducing some pre-

liminary notations. Following [6] and [7], a procedure to

find a stable convex LMI region in the polynomial coeffi-

cients space is included in Section II-B. In Section III, a

methodology for obtaining low order controller is presented.

It is shown that the low order controller can be obtained

by solving at most (n − 1) SDPs. A numerical example

demonstrating the application of the proposed theory on a

linearized model of a 4-machine, 2-area power system [18]

is included in Section IV.

II. NOTATION AND PROBLEM FORMULATION

A. Problem Formulation

Consider a LTI single-input single-output (SISO) system

represented by the following transfer function.

P(s) =
b(s)

a(s)
=

bn−1sn−1 + . . .+b1s+b0

sn +an−1sn−1 + . . .+a1s+a0
(1)

where the polynomials a(s) and b(s) are co-prime. Assume

that the plant P(s) is strictly proper. Let us consider an output

feedback controller of the following form:

C(s) =
y(s)

x(s)
=

ymsm + yn−1sn−1 + . . .+ y1s+ y0

xmsm + xm−1sm−1 + . . .+ x1s+ x0
(2)

with xm 6= 0 and m ≤ (n− 1). The closed loop, comprising

of plant P(s) and controller C(s), is shown in Fig. 1. Ac-

cording to the inter-connection the closed loop characteristic

polynomial would be

σ(s) = a(s)x(s)+b(s)y(s) (3)

with degree (n+m).

Controller

C(s)

Plant
P(s)

−

+
yu

Fig. 1. Closed loop system comprising of plant P(s) and controller C(s)

It is well known [4], [5] that if all the (n + m) poles
of the closed loop system are specified then the minimum
order controller is m = n− 1. However, as discussed in the
introduction, we are considering the case where a subset
of the closed loop poles are specified while remaining are
free. Let us assume that out of (n+m) closed loop poles,
q poles are free and are not associated with any desired
closed loop location, whereas the remaining (n + m − q)
poles are fixed poles and are required to be placed at
{−λ1,−λ2, . . . ,−λn+m−q} in closed loop. Note that λi’s for
i = 1, . . . ,(n+m−q) should be chosen from a set consisting
of self conjugate complex numbers. Assume that the q free
poles are required to be located inside the stable region S

of the complex plane C. Following [6], we will define S as
follows:

S=





s ∈ C :
[
1 s∗

][s11 s12

s12 s22

]

︸ ︷︷ ︸
S

[
1
s

]
< 0





(4)

where s∗ denotes the complex conjugate of s and S ∈ R
2×2.

It has been shown that this region S can be used to represent

some common stability regions in the complex plane (like

arbitrary half planes and discs [6]). So the problem described

in the introduction can simply be formulated as:

Problem 1: Find a low order (m < (n−1)) proper (i.e.

biproper or strictly proper) controller Cmo(s) such that the

closed loop poles have the following properties:

1) (n+m−q) out of the total (n+m) poles are placed at

{−λ1,−λ2, . . . ,−λn+m−q} and

2) remaining q poles are placed anywhere in S.

Denote the unspecified closed loop poles of the system as

{−µ1,−µ2, . . . ,−µq}. Hence the characteristic equation of

the closed loop system will be

σ(s) =

[
q

∏
j=1

(s+µ j)

]

︸ ︷︷ ︸
α(s)

[
n+m−q

∏
i=1

(s+λi)

]

︸ ︷︷ ︸
β (s)

(5)

where α(s) := sq +αq−1sq−1 + . . .+α1s+α0 and β (s) :=
sn+m−q +βn+m−q−1sn+m−q−1 + . . .+β1s+β0. In (5), α(s) is

a monic polynomial of unknown coefficients while β (s) is a

monic polynomial of known coefficients (completely defined

from the problem specifications). The only requirement on

α(s) is that the roots should be located in a pre-specified

region S ⊂ C defined in (4). Next, denote the set of all qth

degree monic polynomials with real coefficients as R[s] and

define the set Cs := {α(s)∈R[s] : roots of α(s)∈ S}. Then,

Problem 1 can be restated as follows:

Problem 2: Find a low order (m < (n− 1)) proper con-

troller Cmo(s) such that the closed loop has the following

properties:

1) (n+m−q) out of the total (n+m) poles are placed at

{−λ1,−λ2, . . . ,−λn+m−q} and

2) the polynomial α(s) ∈Cs.

However, note that the set Cs ⊂ R[s] in Problem 2 is not a

convex set for q ≥ 3 (see [19], [6]) which leads to a non-

convex satisfiability problem. Hence, to make it convex, we

replace Cs with an inner convex approximation of Cs. For

this purpose, we briefly discuss a result from [6], [7] in the

next section.

B. LMI stability region in the polynomial coefficient space

Assume that α̂(s) be a polynomial in the stability region
Cs. Define the coefficient vectors corresponding to α̂(s) and

α(s) (defined in (5)) as follows α̂ :=
[
α̂0 α̂1 . . . α̂q−1

]T
∈

R
q and α :=

[
α0 α1 . . .αq−1

]T
∈R

q respectively. Further, let

αe :=
[
αT 1

]T
∈ R

q+1 and α̂e :=
[
α̂T 1

]T
∈ R

q+1. For a

given α̂(s) ∈Cs define the following set:

SLMI :=
{

α(s) ∈ R[s] : αeα̂T
e + α̂eαT

e −ΠT (S⊗P)Π ≥ 0
}

(6)
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for some P = PT ∈ R
q×q. In the above inequality ⊗ refers

to the Kronecker product, ≥ 0 implies a positive semidefinite

matrix, S ∈R
2×2 refers to a symmetric matrix introduced in

the definition of S given in (4), and Π ∈ R
2q×(q+1) denotes

a projection matrix given by

Π =




1 0 · · · 0

. . . 1

1
. . .

0 · · · 0 1




T

(q+1)×2q

It was shown in [6, Theorem 1] that for any given stable

polynomial α̂(s) ∈ Cs, the polynomial α(s) is also in Cs

provided there exists a symmetric matrix P∈R
q×q satisfying

the matrix inequality αeα̂T
e +α̂eαT

e −ΠT (S⊗P)Π≥ 0. Hence

corresponding to each α̂(s)∈Cs there exists a set SLMI ⊆Cs.

Furthermore, the inequality αeα̂T
e +α̂eαT

e −ΠT (S⊗P)Π≥
0, introduced in (6), is linear in the unknowns αe and P. This

helps us to convexify Problem 2 by replacing Cs with SLMI .

Now, since SLMI ⊆Cs we can pose the following problem.

Problem 3: Find a low order (m < (n− 1)) proper con-

troller Cmo(s) such that the closed loop has the following

properties:

1) (n+m−q) out of the total (n+m) poles are placed at

{−λ1,−λ2, . . . ,−λn+m−q} and

2) the polynomial α(s) ∈ SLMI .

However to compute SLMI explicitly we still need a priori

a polynomial α̂(s) ∈ Cs. This is referred to as the “central

polynomial” in [6] and [7] where various domain dependent

heuristics are provided for design choices for α̂(s). In our

case α̂(s) can be chosen to be any qth degree polynomial

with roots in the stability region S. Note that the convex

stability region SLMI is sensitive to the choice of central poly-

nomial α̂(s) (see [6], [7]) and hence some conservativeness

is introduced in to the proposed methodology due to this

dependence.

III. MAIN RESULTS

In this section we will show that Problem 3 can be re-
written as an SDP. Before that let us define the following
Toeplitz matrix

T (a) :=




a0 0 · · · 0
a1 a0 · · · 0
...

...
. . .

...
an−1 an−2 · · · a0

1 an−1 · · · a1

0 1 · · · a2

...
...

. . .
...

0 0 · · · 1




(n+m+1)×(m+1)

(7)

corresponding to the polynomials a(s) in (1). Similarly,

corresponding to the polynomials b(s), define the following

Toeplitz matrix.

T (b) :=




b0 0 · · · 0
b1 b0 · · · 0
...

...
. . .

...
bn−2 bn−3 · · · b0

bn−1 bn−2 · · · b1

0 bn−1 · · · b2

...
...

. . .
...

0 0 · · · bn−1

0 0 · · · 0




(n+m+1)×(m+1)

(8)

The Sylvester’s resultant matrix associated with T (a) and

T (b) can be defined as follows:

Sl(a,b,2(m+1)) :=
[
T (a) T (b)

]
(n+m+1)×2(m+1)

(9)

Let us define a vector

σ =:
[
σ0 σ1 · · · σn+m−1 σn+m

]T
∈ R

n+m+1

associated with the closed loop characteristic polynomial

σ(s) := σn+msn+m +σn+m−1sn+m−1 + · · ·+σ1s+σ0. Define

following vectors

x :=
[
x0 x1 · · · xm

]T
∈ R

(m+1)

y :=
[
y0 y1 · · · ym

]T
∈ R

(m+1)

corresponding to the polynomial x(s) and y(s) as defined in

(2). Further define the controller coefficient vector

υ :=
[
xT yT

]T
∈ R

2(m+1)
. (10)

Now, according to [4], [5], arbitrary pole placement with

the controller C(s) can be achieved from the following

relation:

[Sl(a,b,2(m+1))]υ = σ (11)

From (11) it can be verified that when m = n−1 the matrix

Sl(a,b,2(m+ 1)) is square and also non-singular (a(s) and

b(s) are co-prime). Hence there is a unique controller coef-

ficient vector υ corresponding to the specified σ . However,

we are interested in finding a low order biproper or strictly

proper controller Cmo(s) i.e. for m < (n − 1), which will

assure the pole placement requirements. Such a situation can

be addressed in following way.

Recalling the expression for the required closed loop char-

acteristic polynomial (5), the coefficients could be written as

follows:

σ0 =β0α0

σ1 =β0α1 +β1α0 (12)

...

σn+m−1 =βn+m−q−1 +αq−1

σn+m =1

Since (−λ1,−λ2, . . . ,−λn+m−q) are specified by the

designer, the coefficients β0,β1, . . . ,βn+m−q−1 in

(12) are known quantities. However, the free poles

−µ1,−µ2, . . . ,−µq are unspecified, so that α0,α1, . . . ,αq−1

are unknown.
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First note that σ0,σ1, ...,σn+m can be eliminated from

equations (11) and (12) to get (n+m+1) number of linear

equations:

a0x0 +b0y0 = β0α0

a1x0 +a0x1 +b1y0 +b0y1 = β0α1 +β1α0 (13)

...

xm−1 +an−1xm +bn−1ym = βn+m−q−1 +αq−1

xm = 1

From (13), it is possible to express α j ( j = 0,1, . . . ,q−1) in

terms of variables xi’s and yi’s (i = 0,1, . . . ,m). Compactly

this can be written as α = Fυ +g where F ∈R
q×(2m+2) and

g ∈ R
q.

Now, excluding xm = 1, the coefficients α0, . . . ,αq−1 can

be back-substituted in the set of (n + m) equations (13)

to get (n + m − q) linear equations in xi’s and yi’s (for

i = 0,1, . . . ,m). These equations can be written in the form:

Eυ + h = 0 where E ∈ R
(n+m−q)×(2m+2), h ∈ R

(n+m−q) and

0 is a zero vector of appropriate dimension. Including the

equation xm−1= 0 to the above set of equations, Eυ+h= 0

can be written as Ẽυ + h̃ = 0. Hence, we get the following

set of equations:

α = Fυ +g and Ẽυ + h̃ = 0 (14)

from the set of (n+m) equations in (13). Corresponding to

the relation α = Fυ +g, define αe as

αe = F̃υ + g̃ where F̃ =

[
Fq×(2m+2)

01×(2m+2)

]
and g̃ =

[
g

1

]
(15)

By using (15), the LMI introduced in the definition of

SLMI (see (6)) will be

F̃υα̂T
e + α̂eυT F̃T + g̃α̂T

e + α̂eg̃T −ΠT (S⊗P)Π ≥ 0 (16)

Then the following result holds:

Theorem 1: For any fixed α̂(s) ∈ Cs, if for some υ ∈
R

2m+2 and for some P = PT ∈ R
q×q, the relations (16) and

Ẽυ + h̃ = 0 hold, then the closed loop poles (roots of the

polynomial defined in (3)) satisfy the following properties:

1) (n + m − q) out of the total (n + m) poles are

{−λ1,−λ2, . . . ,−λn+m−q}.

2) the remaining q poles −µi ∈ S for i = 1, . . . ,q.

Furthermore, the resulting controller will be a mth order

biproper or strictly proper controller.

Proof: Let us first fix α̂(s) ∈ Cs. Assume that some

υ ∈ R
(2m+2) and P = PT ∈ R

q×q satisfy (16). Then

αeα̂T
e + α̂eαT

e −ΠT (S⊗P)Π ≥ 0.

Hence the polynomial α(s) ∈ SLMI . But SLMI ⊆ Cs, so the

roots of α(s) lie in S. The (n+m−q) equations Ẽυ + h̃ = 0

imply that the (n+m−q) roots of polynomial β (s) (see (5))

are placed at {−λ1, . . . ,−λn+m−q}.

Since xm = 1 (see (13)), the corresponding coefficient

vector associated with polynomial x(s) would be x =[
x0 x1 · · · xm−1 1

]T
. Hence the denominator polyno-

mial x(s) of the controller Cmo(s) is a monic polynomial

of degree m. The polynomial y(s), on the other hand is of

degree not more than m, since there are only m+ 1 entries

in vector υ corresponding to the polynomial y(s). Hence the

resulting controller will either be a biproper or strictly proper

controller.

Note that, for m < (n − 1) the corresponding Sylvester

resultant matrix Sl (a,b,2(m+1)) is a tall matrix and hence

(11) might not have a solution for specified σ . However,

the problem we are interested in, does not have fixed σ
(because of the unknown coefficients polynomial α(s)) and

hence there is a possibility that for some vector υ , (11) will

be satisfied. According to Theorem 1, the controller vector υ
satisfying the relations (16) and Ẽυ + h̃ = 0, will guarantee

that the pole placement requirements are achieved as well as

(11) is satisfied. The conditions of Theorem 1 can be checked

by solving the following SDP for increasing values of m.
Problem 4: Find maxP,υ ,γ γ subject to

(i) Ẽυ + h̃ = 0

(ii) ΠT (S⊗P)Π− F̃υα̂T
e − α̂eυT F̃T − g̃α̂T

e − α̂eg̃T + γIq+1 ≤ 0

To obtain a low order controller we have to start with a

first order controller (m = 1) and check whether the solution

γ to Problem 4 satisfies γ > 0. If this condition is not

satisfied then we should increase the order of the controller

by one and recheck the satisfiability condition. At the stage

of m = (n− 1) it is guaranteed that the above problem has

a feasible solution and hence to obtain the lowest order

controller achievable through this method, we need to solve

at most (n−1) SDPs.

The above problem is an LMI constrained optimization

with variables γ , υ and P and can be solved by using

solvers like SeDuMi in MATLAB environment [20], [21]. It

should be noted, however, that this formulation is sensitive

to the choice of the stability region SLMI , which in turns

depend on the selection of the central polynomial α̂(s). This

observation is verified through numerical examples. At the

current state of research, the central polynomial needs to be

chosen heuristically. Hence it is possible for the proposed

algorithm to produce a slightly higher order controller than

the actual minimum possible, because of a bad choice of the

central polynomial.

The controller design procedure described above is sum-

marized in the following four steps:

Design Steps

1) Start with a first order controller m = 1.

2) Form the Toeplitz matrices according to (7) and (8) of

appropriate dimension and the corresponding Sylvester

resultant matrix Sl(a,b,2(m+1)).
3) Define a stability region S in the complex plane for

the free poles according to the requirement. Choose

poles (equal to the number of free poles) from S to

form a central polynomial α̂(s). Some trial and error

adjustment may be required here for the choice of α̂(s).
Solve Problem 4. If there is no feasible solution then

go to Step-4.

4) Increase the order of the controller by one and go

to Step-2. The increment of the controller should be

6705



followed until m ≤ (n−1) condition is satisfied.

Note: We have assumed that the plant is strictly proper. Also

the resulting controller is biproper or strictly proper. Now,

according to [5, Chapter 3, Theorem 3.26], since all the

closed loop poles are in the stable region of complex plane,

the inter-connection shown in Fig. 1 is internally stable.

IV. NUMERICAL EXAMPLES

Example 1: The transfer function associated with a lin-
earized model of 4-machine, 2-area power system [18] is
given below.

P(s) =
−0.03s4 −13.02s3 −28.74s2 −1323.29s+9.83

s5 +34.44s4 +1529.92s3 +825.27s2 +23419.86s+2350.48

The open loop poles of the plant P(s) are given in Table I.

Let us find out a low order controller which will guarantee

that in the closed loop, two poles are placed at −0.4000±
3.9352i and the settling time of the remaining poles (free

poles) is not more than 8 second. Such requirements on the

free poles can be achieved by choosing the stability region

as closed left half of a vertical line at −0.5 in the complex

plane. Hence (4) will take the following form:

S=

{
s ∈ C :

[
1 s∗

][1 1
1 0

][
1
s

]
< 0

}
(17)

According to the design steps, we first try with 1st order

controller to achieve our objective. However, there does not

exist a feasible solution to the Problem 4 at this stage. Hence

the next step is to try with 2nd order controller and it is

observed that the Problem 4 has a feasible solution. The

results are discussed in the next section.

Second order controller : The order of the plant P(s) is

n = 5. The order of the controller Cmo(s) is m = 2 and hence

the corresponding Sylvester matrix would be

[Sl(a,b,6)](8×6) =


2350.48 0 0 9.83 0 0
23419.86 2350.48 0 −1323.29 9.83 0

825.27 23419.86 2350.48 −28.74 −1323.29 9.83
1529.92 825.27 23419.86 −13.02 −28.74 −1323.29
34.44 1529.92 825.27 −0.03 −13.02 −28.74

1 34.44 1529.92 0 −0.03 −13.02
0 1 34.44 0 0 −0.03
0 0 1 0 0 0




The number of closed loop poles is seven. Among them two

poles are already specified. The remaining five poles can take

any positions in the stability region defined in (17).

To form the central polynomial α̂(s), −2.5, −3.5±1i and

−5±2i are chosen inside the stability region S. Correspond-

ing to these poles the central polynomial would be

α̂(s) = s5 +19.50s4 +154.75s3 +616.12s2 +1223s+960.62

Following the discussion in Section III, (14) will take the

following form:
[
α0 α1 α2 α3 α4

]T
=




150.23 0 0 0.62 0 0
1489.19 150.23 0 −84.61 0.62 0
−33.00 1489.19 150.23 2.44 −84.61 0.62

4.29 −33.00 1489.19 4.44 2.44 −84.61
4.09 4.29 −33.00 −0.38 4.44 2.44


υ +




0
0
0
0
0




TABLE I

POLE LOCATIONS TABLE

Open loop poles Closed loop poles

−17.1230±35.8508i −0.4±3.9352i

−0.0468±3.9352i −7.0538±6.6492i

−0.1007 −2.0457±2.6052i

−13.8114

and


−6.56 64 67.12 −4.14 −6.04 69.6
−4.09 −3.29 67.44 0.38 −4.44 −2.4

0 0 1 0 0 0


υ +



−15.6
−0.8
−1


=




0
0
0




where υ =
[
x0 x1 x2 y0 y1 y2

]T
. Solving Problem

4, the resulting controller coefficient vector

υ =
[
88.6643 1.6827 1 1463.3813 6.9415 93.7103

]T

and hence the corresponding 2nd order controller would be:

Cmo(s) =
93.71s2 +6.94s+1463.38

s2 +1.68s+88.66

The closed loop poles are given in Table I. Notice that two

poles are placed at −0.4000± 3.9352i and free poles have

assumed positions in S as defined in (17). Hence all the

requirements on closed loop poles are achieved with a 2nd

order controller.

V. CONCLUSION

The problem of obtaining a low order biproper/strictly

proper controller for a SISO LTI system is studied here. It is

shown that a low order controller can be obtained by solving

at most (n− 1) SDPs. The resulting controller ensures that

the fixed poles are moved to the desired locations in the

complex plane while the free poles are placed anywhere

within the pre-specified stable region.
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