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Abstract— In this paper we address the generic pole place-
ment problem for a system represented by differential algebraic
equations. The genericity aspect is relevant when dealing with
large dynamical systems where the plant equations are sparse.
We capture the sparsity structure of the plant equations into
an edge weighted and undirected bipartite graph. We propose
an algorithm that furnishes a ‘minimal’ controller structure for
achieving generic arbitrary pole placement: minimality in the
sense of the sparsity within controller equations. More precisely,
we introduce a procedure to come up with a set of controller
equations such that, in addition to generically achieving ar-
bitrary pole placement, the bipartite graph constructed for
this controller has the minimum number of edges amongst all
controllers that generically achieve arbitrary pole placement.
The algorithm we propose involves finding a minimum number
of paths that cover a given set of vertices corresponding to plant
equations. We introduce an integer that captures the extent of
MIMO features inside the plant equations, since this turns out
to crucially decide the minimum number of required edges.

This paper’s minimal controller structure problem and the
proposed solution turn out to also solve the problem of gener-
ically completing a given rectangular polynomial matrix into
a unimodular matrix using the minimum number of nonzero
entries.

Index Terms— structural controllability, genericity, unimodu-
lar completion, bipartite graphs, maximum matching, minimum
cover.

I. INTRODUCTION

Often when dealing with large scale dynamical systems, it
is infeasible to perform numerical computation to determine
the system’s controllability properties and to compute a
controller numerically. The system equations often have a
sparsity structure that allows employing graph techniques
to study properties in a ‘structural’/generic sense. Notable
amongst work in this area is that by [Lin74] in the context
of state-space systems and later by many others for both
regular and singular descriptor state-space systems. Results
for generic solvability of various control problems are for-
mulated based on an associated graph. We refer to the survey
paper by [DCvdW03] for this.

The behavioral approach to modeling of dynamical sys-
tems has been adopted for structural studies in [vdW95]:
there the generic dimension of a minimal state space re-
alization is found by constructing a graph from the poly-
nomial matrix. In [vdWM95] the pole placement problem
with disturbance decoupling has been done for a system
in descriptor form. They use a simplified version of the
Dulmage-Mendelsohn (DM) decomposition on a bipartite
graph associated with the plant to obtain conditions for
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generic solvability of the pole placement problem by comput-
ing the maximum and minimum weights for the components
of the graph obtained from the DM decomposition.

In this paper, we deal with systems described by alge-
braic/differential equations of any order, and not just first
order differential equations. For such systems, we pursue the
problem of proposing a controller that generically achieves
arbitrary pole placement and further has ‘highest sparsity’
structure in the controller equations. More precisely, amongst
all controllers that generically achieve pole placement, we
seek to construct a controller which has the least number of
variables for each equation, totalled across equations. This
problem is motivated by a minimality during design of a
sensor-actuator network. We use the behavioral approach
and associate the system equations to a polynomial matrix.
An undirected and bipartite graph is constructed for the
plant based on this associated polynomial matrix. Notion of
minimality here refers to the graph of the controller having
minimum number of edges.

The paper is organized as follows. Section II has problem
formulation and statement of our main result under certain
simplifying assumptions. Section III explains the preliminar-
ies on behavioral theory, bipartite graphs and genericity. In
Section IV some preliminary results are stated. This main
result is generalised in Section V and Section VI. Section
VII infers the graph theoretic results based on the MIMO
characteristics of the plant. Section VIII contains concluding
remarks.

II. PROBLEM FORMULATION & MAIN RESULT

We consider systems which are described by a set of
ordinary linear differential equations with constant coeffi-
cients. The system behavior B is defined to be the subspace
of C∞(R,Rm) consisting of the solutions to the system
equations: let P (s) ∈ Rn×m[s].

B :=

{
w ∈ C∞(R,Rm) | P

(
d

dt

)
w = 0

}
. (1)

This representation is called a kernel representation of B.
Since we seek only ‘generic’ results, we consider just the

structural aspects of the system. In this context, we associate
a weighted bipartite graph to the given system. A graph
G = (V,E) with vertex set V and edge set E is said to be
bipartite if V can be partitioned into two subsets R and C
such that no two vertices from the same subset are adjacent.
We associate an edge weighted bipartite graph G(R, C;E) to
a polynomial matrix P (s) ∈ Rn×m[s] as follows. The sets R
and C denote the rows and columns of the polynomial matrix
and are the two disjoint vertex sets of the bipartite graph G,
i.e. |R| = n, |C| = m. By definition of G, an edge exists in
the bipartite graph between vertex ui ∈ R and vj ∈ C if the
(i, j)th entry of the matrix P is nonzero. It turns out that
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all nonconstant polynomial entries in P (s) contribute to the
results in the same manner irrespective of the degree. The
constant polynomial entries are different since their roots
are an empty set, and these entries have fewer conditions
to satisfy. Hence we distinguish only between constant and
nonconstant entries of the matrix. In this regard the edge set
is classified into two types.
• Constant edge: if the entry in P (s) corresponding to

this edge is a nonzero constant.
• Nonconstant edge: if the entry in P (s) corresponding

to this edge is a polynomial of degree one or more.
Note that there is no edge between two vertices vi and vj if
and only if the (i, j)th entry of P (s) is 0. The degree of a
vertex v in the graph is the number of edges incident on v,
equivalently, the number of ‘neighbors’ of v.

For a bipartite graph G(R, C;E), we need the subgraph
induced due to a subset of edges E1 ⊆ E: the bipartite
graph G[E1] denotes the subgraph consisting of edges from
E1 and their endpoint vertices. A set of edges M in a graph
G is called a matching if every vertex of the subgraph of G
induced by M has degree at most 1. A maximum matching
is a matching with maximum number of edges. A graph
can have more than one maximum matching. An edge e in
G is called inadmissible if e does not occur in any of the
maximum matchings of G. See [ADH98, Section 10.3]. The
cardinality of a matching M , denoted by |M |, is defined
as the number of edges in M . In this paper, we consider
polynomial matrices P (s) ∈ Rn×m[s] with n 6 m, i.e. the
graph G satisfies |R| 6 |C|. A matching M is said to be R-
saturating if |M | = |R|. A C-saturating matching is defined
similarly. The special case when G satisfies |R| = |C|, an
R-saturating matching is also C-saturating matching: we call
such a matching a perfect matching. A detailed exposition of
matching theory can be found in [LP86]. With the above brief
preliminaries we come to the formulation of the problem.
Let P ( d

dt )w = 0, with P ∈ Rn×m[s] being full row rank,
denote a kernel representation of the plant. We construct the
bipartite graph for the plant, Gp(RP , C;EP ) corresponding
to the polynomial matrix P (s). The graph of the controller
is denoted by Gk(RK , C;EK). The vertex set RP in Gp

and RK in Gk correspond to plant and controller equations
respectively. The second set C corresponds to the variables
that the equations involve. An edge e ∈ EP is called plant
edge and an edge e ∈ EK is called controller edge.

The problem we address is to propose a controller structure
which generically achieves arbitrary pole placement and such
that the graph of the controller has minimum number of
edges. This is motivated by a minimum sensor network
design issue, for example. We state this as two problems:
one from a control viewpoint and another, graph theoretic.

Problem 2.1: Given a plant P ( d
dt )w = 0, find a regular1

controller structure, i.e. a graph Gk(RK , C;EK) correspond-
ing to K( d

dt )w = 0, which satisfies the following properties.

1The interconnection is said to be regular if rank of
[

P (s)
K(s)

]
is the

sum of ranks of P (s) and K(s). Regularity of interconnection is closely
related to implementation of controller in the feedback configuration. See
[Wil97]. It’s key role in the equivalence of controllability and arbitrary pole
placement is brought out in Proposition 3.2.

• Arbitrary pole placement is generically achievable with
this controller structure.

• The total number of non-zero entries in K is minimum.
Proposition 4.1 and some more preliminaries help in under-
standing the equivalence of Problem 2.1 with the following
problem. Condition 1 below ensures a regular controller,
while condition 2 ensures arbitrary pole placement.

Problem 2.2: Given a graph Gp(RP , C;EP ). Find a
graph Gk(RK , C;EK) such that the following are satisfied.

1) In G(RP ∪ RK , C;EP ∪ EK) there exists a perfect
matching.

2) Every edge e ∈ EP that is admissible in G(RP ∪
RK , C;EP ∪ EK) is in some cycle involving an edge
eK from EK such that eK is admissible in G(RP ∪
RK , C;EP ∪ EK).

3) Gk(RK , C;EK) has the minimum number of edges
amongst all graphs that satisfy condition 1 and 2.

Of course, it is possible that G(RP ∪ RK , C;EP ∪ EK)
is disconnected, or its subgraph of admissible edges is
disconnected: this suggests, loosely speaking, decoupled
subsystems whose poles are assigned arbitrarily. This does
not affect our results nor the proofs. The following theorem
is one of the main results of this paper. We solve the problem
for the special case when the graph of the plant has no
cycles and no constant edges. The more general results
(i.e with cycles and both constant and non-constant edges)
follow later: Theorem 5.4 and Theorem 6.2. We assume that
the graph of the plant after removing inadmissible edges
is connected. In case there are many components, then it
can be shown that the minimum number of edges is just
the sum of edges required for each component. Therefore,
without loss of generality, most of the results in this paper
address the case of the graph being connected. We define
a parameter emimo, which can be interpreted as the extent
of MIMO characteristics of the plant. This is elaborated in
Section VII and Remark 8.1.

Theorem 2.3: Let Gp(RP , C;EP ) denote the graph of
a controllable plant after removing the inadmissible edges.
Assume Gp(RP , C;EP ) is connected and has no cycles and
no constant edges. Suppose at least Np paths are required
to cover the RP vertices. Let Cp ⊆ C denote the vertices
that are covered by the Np paths and define emimo := |Cp|−
|RP |. Suppose nt denote the set of degree one vertices in
Cp. Define ep by

(i) ep := |nt| − emimo, if emimo < Np and
(ii) ep := emimo, if emimo > Np.

Then there exists a controller that generically achieves
arbitrary pole placement and whose bipartite graph
Gk(RK , C;EK), with |RK | = |C| − |RP |, has number of
edges |EK | = ep + |RK |. Moreover, any controller that
generically achieves arbitrary pole placement has at least
ep + |RK | edges in its bipartite graph.
The proof of this theorem is skipped due to space constraints.
Section IV has some preliminary results that will provide an
insight to the proof.

III. PRELIMINARIES

Subsections III-A and III-B respectively elaborate about
behavioral theory and generic aspects in polynomial matri-
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ces.

A. Behavioral approach

In the previous section on problem formulation, the con-
cept of behavior of a system was introduced. A behavior B
is controllable it is possible to patch from any past trajectory
to any other desired trajectory using a another trajectory that
satisfies the system laws, perhaps with some finite delay.
A behavior B is called autonomous if w1 = w2 whenever
w1, w2 ∈ B satisfy w1(t) = w2(t) for all t 6 0. We state the
required results from behavioral literature in the following
proposition for easy reference: see [PW98].

Proposition 3.1: Consider P ∈ Rn×m[s] and let behavior
B have the kernel representation P ( d

dt )w = 0. Then,
1) B is autonomous if and only if P has full column rank.
2) B is controllable if and only if P (λ) has constant row

rank for every complex number λ ∈ C.
The above kernel representation is called minimal if P has
full row rank: this can be assumed without loss of generality.

1) Pole placement: Let A( d
dt )w = 0 be a kernel represen-

tation of an autonomous behavior B. The determinant of A,
called the characteristic polynomial (assumed monic, without
loss of generality) of the system, is denoted by χ(B). The
roots of χ counted with multiplicities are called the poles of
the behavior. The following proposition gives a necessary and
sufficient condition for pole placement using the behavioral
approach.

Proposition 3.2: [Wil97] Let P ( d
dt )w = 0, P (s) ∈

Rn×m[s] denote a minimal kernel representation of the plant.
Then, the plant is controllable if and only if, for any monic
d(s) ∈ R[s], there exists a regular2 controller K( d

dt )w = 0
such that the corresponding closed system has characteristic

polynomial d(s), i.e. det
[
P (s)
K(s)

]
= d(s).

In the state space case, the polynomial d is of the same
degree as the size of A. Unlike the state space case, the
above result allows d to be of higher/lower degree. Of
course, d of a lower degree requires the feedback to allow
differentiating of the output: just like a PD controller would.
This option is practically relevant when some measurements
are noiseless. Since we focus on generic arbitrary pole
placement, which is nothing but assigning the roots of χ
counted with multiplicity, we ignore the ‘monic’ aspect of
χ for the rest of this paper.

B. Generic Properties of polynomial matrices

Definition 3.3: A property P in terms of variables
a1, . . . , an is said to be satisfied generically if the set of
values a1, . . . , an ∈ R that do not satisfy property P form
a non-trivial algebraic variety in Rn.
Since a non-trivial algebraic variety in Rn forms a ‘thin set’,
i.e. a set of measure zero, a property P is said to be true
generically in Rn if P is satisfied for almost all values in Rn.
For example any two nonzero polynomials a(s) and b(s) are

2 The interconnection is said to be regular if rank of
[

P (s)
K(s)

]
is the

sum of ranks of P (s) and K(s). See Willems [Wil97]. In this paper, all
interconnections are regular. Given a plant system, a controller is called
regular if the interconnection between the plant and that controller is regular.

generically coprime. In this case, n=deg a(s)+deg b(s)+
2. Generic coprimeness follows since the set of coefficients
have to satisfy a nontrivial algebraic relation for the two
polynomials to be coprime: the algebraic relation is nothing
but the resultant [Kai80, Section 2.4.4] of a(s) and b(s).

The notion of an inadmissible edge plays a central role in
this paper. Recall from Section II that in a graph G(R, C;E)
constructed from P ∈ Rn×n[s] an edge e which does not
occur in any maximal matching is called an inadmissible3

edge of G. Consequently, the entry in P corresponding to
this edge e does not play a role in the determinant expansion
of any maximal minor of P . After removing the inadmissible
edges from G the resulting subgraph is denoted as Ga.
Clearly, G has an R-saturating matching if and only if Ga

has one. Due to the genericity assumption on P , and since
the non-zero entries in Pa corresponding to Ga are also in
P , we have the genericity property for Pa also.

IV. PRELIMINARY RESULTS

This section gives some preliminary results that help in
proving the main result of the paper about constructing a
minimal controller structure which achieves arbitrary pole
placement for the situation when the graph of the plant has
no cycles as well as no constant plant edges.

We begin with some standard definitions. A path P in a
graph G is a finite sequence of distinct vertices and edges,
P : v0e1v1 . . . envn, where edge ei connects vertices vi−1
and vi, for each 1 6 i 6 n. Further, P is not properly
contained in another path. The initial vertex, v0 and final
vertex, vn are called the terminals of the path. The degree of
incidence of a vertex refers to the number of edges incident
on that vertex. We shall henceforth refer vertices with degree
of incidence equal to one as degree-one vertices. Since all
paths are in some sense maximal, the terminals of every path
are degree-one vertices. Conversely every degree-one vertex
is a terminal of some path. A cycle C in a graph G is a finite
sequence of vertices and edges, C : v0e1v1 . . . envn, where
edge ei connects vertices vi−1 and vi, for each 1 6 i 6 n,
with v0 = vn and all other vertices and edges distinct.

In order to achieve arbitrary pole placement for a given
plant it is not always required that each controller equation
involves every variable. In graph theoretic terms this means
that there need not be an edge from RK to every vertex in C.
Hence for a given controller structure, i.e. the graph of the
controller, the following proposition from [KB11] states a
necessary and sufficient condition for feasibility of arbitrary
pole placement.

Proposition 4.1: Let P ( d
dt )w = 0, with P ∈ Rn×m[s]

being full row rank, denote a plant. Let Gk, the graph of a
controller K( d

dt )w = 0 with K ∈ R(m−n)×m[s] be given.
Consider the bipartite graph Gaut(R, C;E) of the controlled
system, constructed from

[
PT KT

]T
. Let Gaut

a represent
the graph obtained after removing the inadmissible edges.
Then the following are equivalent.

1) Every non-constant plant edge in Gaut
a is in a cycle

containing an admissible edge from Gk.

3Admissible/inadmissible edge have also been referred to respectively as
allowed/forbidden in the literature: see [LP86], for example.
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2) Arbitrary pole placement is possible generically with
the given Gk.

In the problem considered in this paper we do not have
any controller structure to begin with, rather we propose a
controller structure which is minimal and at the same time
ensures that each edge of the plant satisfies the conditions
stated in the above proposition. In this regard a relevant ques-
tion is about the structural controllability of the plant. The
following lemma gives a necessary and sufficient condition
for the plant to be controllable under the assumption that the
graph of the plant has no cycles.

Lemma 4.2: Assume a plant P ( d
dt )w = 0. Let

Gp(RP , C;EP ) be the bipartite graph associated to P (s)
with all inadmissible edges removed. Assume Gp has no
cycles. Then plant is structurally controllable if and only if
every path whose terminal is in RP has length one and is a
constant edge.
From the above lemma it follows that if the plant is control-
lable, then in the graph of the plant Gp all paths containing
at least one non-constant plant edge has both its terminals
in C. The next major step is to complete all these paths to
cycles using controller edges.

Lemma 4.3: Assume the graph of a controllable plant
Gp(RP , C;EP ) is connected, has no cycles and has no
constant plant edges. Let d := |C| − |RP |. Suppose at least
Np paths are required to cover the RP vertices in Gp. Let
Cp ⊆ C denote the vertices that are covered by the Np

paths and define emimo := |Cp| − |RP |. Then 1 6 emimo 6
min (d, 2p− 1).

The proofs of both the above lemmas are skipped due to
space constraints.

V. BIPARTITE GRAPH WITH CYCLES

In this section we deal with the case when there are cycles
in the graph of the plant. We first find the merged-cycles
graph defined as follows.

Definition 5.1: Let Ga(R, C;E) denote the graph ob-
tained from G(R, C;E) by removing all inadmissible edges.
The merged-cycles graph Gmc is defined by the bipartite
graph obtained from Ga by repeating the following steps till
there are no cycles in the graph. Initialize Gmc := Ga.
While there exists a cycle in Gmc, repeat:
• Consider a cycle in Gmc formed by a set of edges, ei ⊂ E

which connect vertices in the set ri ⊂ R and ci ⊂ C
and |ei| = |ri|+ |ci| and |ri| = |ci|.

• Merge and replace all vertices in ri into one single vertex
rmi

and vertices in ci to one vertex cmi
.

• The edge emi between rmi and cmi is representative of
all the edges in the ei.

• If at least one of the edges in the cycle which was merged
is a non-constant plant edge, then the edge emi is also
labelled a non-constant plant edge.

The resulting graph is called the merged-cycles graph Gmc.
Since a cycle is ‘merged out’ in each run of the above

algorithm, we end in a ‘merged-cycles’ graph Gmc with no
cycles in a finite number of operations, and moreover, for the
new bipartite graph Gmc(R,C;E), the difference |C| − |R|
is same as that in Ga. We illustrate this with the following
example as shown in Figure 1. One can check that the final

r1

r2

r3

r4

c2

c3

c4

r3

r4

c3

c4

rm1
Cm1

G Gnc

c1

Fig. 1. Graph with no cycle

graph Gmc is independent of the sequence of merging the
cycles. For arbitrary pole placement, all non-constant plant
edges in Gp

a should form a cycle with controller edges or be
inadmissible in Gaut. It is enough to perform this check on
the simplified graph Gmc, due to the following result from
matroid theory (in the context of ‘circuits’): see [Nar97].

Proposition 5.2: Consider cycles C1, C2 in a bipartite
graph G(R, C;E). Let e(C ) denote the set of edges in C .
Then the set e(C1) ∪ e(C2)− e(C1) ∩ e(C2) is also a cycle.
In the context of maximizing the usage of merged vertices
as terminals of paths which are to be completed to cycles
we require the following definition of distance between two
vertices.

Definition 5.3: In a graph G, the distance between two
vertices v1 and v2 denoted as dist(v1, v2) is defined as the
minimum number of edges between v1 and v2.
We state our next main result about the minimal controller
structure for pole placement when the graph of the plant is
not acyclic. In this case the minimum number of controller
edges required is possibly more because a merged plant edge
ought not be made inadmissible.

Theorem 5.4: Let Gmc(RP , C, EP ) denote the graph of
a controllable plant obtained after merging cycles. Suppose
Gmc is connected and has no constant plant edges. Assume
at least Np paths are required to cover the RP vertices. Let
Cp ⊆ C denote the vertices that are covered by the Np paths
and define emimo := |Cp| − |RP |. Suppose nt denotes the
set of degree-one vertices in Cp. Define ep by

(i) ep := |nt| − emimo if emimo < Np.
(ii) ep := emimo if emimo > Np.

Define γ through the sets Cm and A as follows:

Cm := {v ∈ C\Cp | v is a merged vertex in Gmc}.
A := {v ∈ nt | v is not a merged vertex and

dist(v, v1) = 2 for some v1 ∈ Cm}.
γ := |Cm| − |A|.

Then there exists a controller that generically achieves
arbitrary pole placement and whose bipartite graph
Gk(RK , C;EK), with |RK | = |C| − |RP |, has number of
edges |EK | = ep + γ + |RK |, and moreover, bipartite graph
of any controller that achieves arbitrary pole placement has
at least ep + γ + |RK | edges.

VI. BIPARTITE GRAPH WITH CONSTANT PLANT EDGES

In this section we consider the case when the graph of
the plant has constant plant edges. As explained in the
previous section we first find the merged-cycles graph and
then proceed to find the Rc

P vertices defined below.
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Constant Plant Edge

Non Constant Plant Edge

Controller Edge

Fig. 2. Gp with constant edge

Definition 6.1: Let Gp(RP , C;EP ) denote the graph of a
controllable plant. A maximal constant vertex set, denoted
by Rc

P ⊂ RP , is such that it satisfies the following:
1) There is at least one non-constant edge incident on each

of the vertices in Rc
P .

2) The vertex in C corresponding to each of the above
non-constant edges, denoted as Cc, are distinct.

3) The set Rc
P is not a proper subset of any other set

satisfying the above two properties.
Define corresponding to the maximal constant vertex set a
minimal non-constant vertex set Rc

P := R\Rc
P .

Since our problem is to minimize the number of controller
edges the above classification of constant vertices is helpful:
It is no longer required to cover vertices in Rc

P by paths thus
resulting in a possible reduction of controller edges. This is
illustrated in the following figure. Here if all RP vertices
are to be covered, then Np = 2 and hence kmin = 3. Since
there is a constant plant edge we cover only Rc

P vertices and
hence Np = 1 and consequently kmin = 2. The following
theorem is the main result for the general case when there
are cycles as well as constant plant edges.

Theorem 6.2: Let Gmc(RP , C, EP ) denote the graph of
a controllable plant obtained after merging cycles. Suppose
Gmc is connected and at least Np paths are required to cover
the Rc

P vertices in Gmc. Let Cp ⊆ C and R(p) ⊆ RP denote
the set of vertices that are covered by the Np paths and
emimo = |Cp|−|R(p)|. Suppose nt denotes the set of degree-
one vertices in Cp. Define ep by

(i) ep := |nt| − emimo, if emimo < Np and
(ii) ep := emimo, if emimo > Np

Define γ through the sets Cm and A as follows:

Cm := {v ∈ C\Cp | v is a merged vertex in Gmc}.
A := {v ∈ nt | v is not a merged vertex and

dist(v, v1) = 2 for some v1 ∈ Cm}.
γ := |Cm| − |A|.

Then there exists a controller that generically achieves
arbitrary pole placement and whose bipartite graph
Gk(RK , C;EK), with |RK | = |C| − |RP |, has number of
edges |EK | = ep + |γ| + |RK |, and moreover, bipartite
graph of any controller that generically achieves arbitrary
pole placement has at least ep + |γ|+ |RK | edges.

Hence a minimal controller structure is proposed which
achieves arbitrary pole placement in a generic sense.

VII. EXTENT OF MIMO, emimo: SPECIAL CASES: SERIES
CASCADE (SISO), MISO, SIMO

In the previous section we stated the result for the mini-
mum number of controller edges required for pole placement
for a given plant structure. It is clear from Theorem 2.3
that for the minimum number, in addition to the number
of paths that are to be completed to cycles, the index emimo

also played an important role. The result was solely graph
theoretical and provided less insight about the system. In this
section we illustrate how the index emimo is suggestive of the
extent of MIMO characteristics of the plant. We also bring
out the significance of the number of paths.

A. Significance of emimo and Np

We assume that the graph Gmc constructed for plant is
connected. From Definition 5.1 it follows that this graph has
only paths and no cycles. Let d(v) denote the degree of
incidence of a vertex v. There could be just one path or if
there are more than one path, then the paths have common
vertices and edges as the graph is assumed to be connected.
The presence of more than one path in a component of Gmc

implies that there are vertices in Gmc with d(v) > 2. We
restrict our analysis to the following three cases.

1) d(v) 6 2 for all v ∈ RP ∪ C.
2) d(v) 6 2 for all v ∈ C.
3) d(v) 6 2 for all v ∈ RP .

Hence in the first case there is only one path in a component.
It turns out that the above cases translate to the following
conventional types of input-output structure.

1) Series cascade: SISO
2) MISO
3) SIMO

We explain this translation by considering three subsystems
of the plant that are connected in each of the above cases
as shown in Figures 3(a), 4(a) and 5(a). Assume each

S1 S2 S3y1

u2 u3
y2 y3

u1

1 1

2 2

3 3

4

RP C

(b)(a)
emimo = 1 kmin = 2 Np = 1

Fig. 3. Series cascade: SISO

S1

S2

S3

+

u1

u2

u3

y2

y3

y1

y

1 1

2 2

3 3

4 4

5

6

7
(a)

RP C

(b)

emimo = 3 kmin = 6 Np = 2

Fig. 4. MISO

subsystem Si has transfer function ni(s)
di(s)

. Hence the differ-
ential equation for each Si is d( d

dt )yi = n( d
dt )ui. Suppose

P ( d
dt )w = 0 is the kernel representation for the plant then

the matrix P in each of the above cases is given below. The
non-zero entries are denoted as ∗.

SISO MISO SIMO[ ∗ ∗
∗ ∗
∗ ∗

] [ ∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗

] [ ∗ ∗
∗ ∗
∗ ∗

]
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emimo = 1 kmin = 3 Np = 2

Fig. 5. SIMO

The bipartite graph constructed for each of these cases are
given in Figures 3(b), 4(b) and 5(b) along with the values
of emimo, Np and minimum number of controller edges
required, kmin. Lemma 4.3 provides an upper and lower
bounds for the index emimo. In the series cascade: SISO
and SIMO case the lower bound of emimo is achieved. In the
MISO case, the upper bound of emimo, i.e. min (d, 2p−1) =
min (3, 2 × 2 − 1) = 3, is achieved. Hence we conclude

that when a fixed number of subsystems are interconnected,
the MISO input-output structure requires more controller
edges for pole placement. In general several subsystems are
interconnected in various combinations in a plant. A higher
value of emimo suggests that in the given plant, majority of
the interconnections have MISO type input-output structure.
Similarly a lower value of emimo indicates the prominence
of series cascade: SISO input-output structure in plant. In
our example with three subsystems kmin for series cascade:
SISO case is 2 and for MISO case is 6.

In the SIMO case emimo = 1; this is same as series
cascade: SISO case. However, the number of controller edges
required is 3 which is more than the SISO case. Here the role
played by the number of paths Np is evident: more controller
edges are required for pole placement. This is summarized
in the following theorem and elaborated in Remark 8.1.

Theorem 7.1: Assume a controllable plant with n sub-
systems interconnected with the input-output structure as
series cascade:SISO, MISO and SIMO. Then in the bipartite
graph associated with the plant, the value of emimo (extent of
MIMO), the number of paths Np and the minimum number
of controller edges required for pole placement kmin for each
case are given in the following table.

Table I: SISO, MISO, SIMO: key parameters

Type emimo Np kmin

SISO 1 1 2

MISO n n even: n/2 n odd: (n+ 1)/2 2n

SIMO 1 n even: n/2 n odd: (n+ 1)/2 n

The proof of this is skipped as it can be verified directly
from the graph associated with the plant. The series cascade:
SISO case covers the series cascading of many subsystems.
In case of parallel interconnection the merged-cycles graph,
Gmc results in the SISO type again.

VIII. CONCLUDING REMARKS

In this paper we considered the generic pole placement
problem. The structural aspects of a given plant were incor-
porated in a bipartite graph which was used for all analysis

of the problem. The main results of this paper was about
proposing a minimal controller structure for a given plant
such that arbitrary pole placement is achieved: Theorems
2.3, 5.4 and 6.2. An explicit expression was given for the
minimum number of controller edges in the graph of the
controller in terms of the number of paths and the index
emimo of the plant graph. Achieving arbitrary pole placement
is same as ensuring the polynomial matrix corresponding
to the closed loop is square, nonsingular, and, in fact,
unimodular. Thus we addressed the question of unimodular
completion using the least number of nonzero entries in the
completion.

Remark 8.1: For a given MIMO system, our main results
crucially used two parameters: emimo, the ‘extent of MIMO
characteristics’, and Np the number of paths required to
cover the vertices corresponding to plant equations. In this
remark, we explain the significance of these parameters.
Table I suggests that more paths Np cause more number
of nonzero entries kmin in the controller equations due
to the requirement to ‘feed back’ more number of plant
outputs or assign larger number of plant inputs. Of course,
by Proposition 4.1, since every inadmissible plant edge is
required to be in a cycle containing controller edges, more
Np clearly causes more kmin. The role played by emimo is
less obvious. As depicted for the special cases in Table I, the
index emimo is higher if the plant is more under-determined,
i.e. more number of controller equations are required in order
to make the closed loop system autonomous. Of course, these
arguments are applicable after the merging of cycles. In this
sense, emimo gives an idea of the extent of Multi-Input-Multi-
Output structure within a system.
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