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Abstract-Network of Voltage Source Inverters (VSI) to form a 
microgrid has played a central role in providing reliable power 
supply. It is very useful to control this network of VSI using 
decentralized controllers rather than centralized controllers due 
to less dependence of decentralized controllers on communi­
cation with other systems. A difficulty frequently encountered 
when studying and designing decentralized controllers is the 
controllability of the overall network using controllers with the 
constraint of being decentralized, i.e. the constraint that each 
controller can access only local sensors and only local actuators. 
This paper proves that the droop controller and its class of 
decentralized controllers indeed allows controllability of the 
system for generically all system parameter values. While this 
has been shown for specific parameter values using numerical 
methods, the graph theoretic approach followed in this paper 
helps in proving this generically for all system parameter values. 
We apply a recent result on arbitrary pole-placement by a 
controller with structural constraints to the case of a VSI 
connected to the grid, and to the case of two VSIs to show 
that indeed pole-placement can be achieved using decentralized 
controllers. 
Keywords: voltage source inverters, droop law, decentralized 
control, bipartite graphs, behavioral theory 

I. INTRODUCTION 

In this paper we prove that the single VSI connected to 
the grid with the VSI controlled by a controller imposing a 
dynamic equation between only the P-w variables is able to 
achieve arbitrary pole-placement. 

We next prove that when two VSIs are connected and 
the two inverters are controlled using local controllers of the 
kind where a dynamic equation is imposed only on the two 
local variables: active power Pi and the frequency Wi is also 
able to achieve arbitrary pole-placement. Of course, this has 
been observed both experimentally and using simulations for 
only specific parameter values of the system. However, an 
important question is whether it is a structural property that 
such an interconnection procedure is able to achieve arbitrary 
pole-placement for (almost) all parameter values or if this is 
possible for just the specific values. We prove this property 
for 'generically' any value. More precisely, the set of values 
for which controllability is lost forms a 'thin set', i.e. a set 
of measure zero. In other words, unless parameter values are 
extremely carefully chosen and implemented with very high 
precision, the droop controller type of decentralized controller 
will always achieve pole placement. This is made precise 
within Section III. 

The paper is organized as follows. The next section (Section 
II) contains the main results of this paper: that the decen­
tralized droop controller is able to achieve arbitrary pole 

placement for the case of single VSI connected to the grid 
(Theorem 2) and for the case of a network of two VSIs 
(Theorem 3). Section III contains background about bipartite 
graphs and its links with structural controllability. Recent 
results (Proposition 7) about arbitrary pole placement with 
controller structural constraints are also reviewed in III: this 
result plays a key role in the proofs. Section IV explains about 
the inverter characteristics and the droop control law. Section 
V gives a mathematical model of the VSI. This section utilizes 
results developed in [6] in the context of the interconnection 
of a droop controller with a voltage source inverter. The proof 
of Theorem 2 for single VSI connected to the grid is in this 
section. Section VI contains the proof for the case of two 
VSIs. Conclusive remarks follow in Section VII. The rest of 
this section is devoted to the notation used in this paper. 

Notation I: lR denotes the set of real numbers and C the 
set of complex numbers. lR[s] is the set of polynomials in 
one indeterminate s over the field of real numbers. lRmxn[s] 
represents the set of matrices of dimension m x n with poly­
nomial entries. The determinant of a matrix R is represented 
as det(R). ([00 refers to the set of all infinitely differentiable 
functions. 

II. MAIN RESULTS: GENERIC DECENTRALIZED 

CONTROLLABILITY 

This paper addresses the question about arbitrary pole 
placement using a decentralized droop controller when dealing 
with a network of VSIs: for the case of one and two VSIs. 
More precisely, consider a VSI connected to the grid, i.e. 
a system whose frequency is constant, and we intend to 
control the system variables in general, and frequency of the 
interconnected system in particular using a 'decentralized' 
controller: a controller that has access to just local variables. 
The well-known P-w droop law is an example of such a 
decentralized controller. For example, can the decentralized 
controller achieve settling of the frequency of the various 
VSIs to the steady state frequency at a pre-specified rate 
of convergence? With just this intuitive idea of decentral­
ized control and arbitrary pole-placement, we formulate the 
following results, the main results of this paper. The next 
section contains a precise formulation of the model of the 
VSI and a precise definition of what it means for a network of 
VSIs to be controllable by the decentralized droop controller. 
Theorem 2 states that a single VSI connected to the grid 
and controlled using a decentralized droop controller allows 
arbitrary pole placement, while Theorem 3 states the same 
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Fig. I. Single VSI connected to the grid 

for two VSIs. Both theorems are proved in the later sections 
after the required preliminaries. The variables w, Vd, Vq, Id, Iq 
stand respectively for the frequency and d,q components of the 
voltage v f, current 'i f at the output of an inverter: see Figures I 
and 2. Subscript 1 and 2 for these variables make them specific 
to Inverter 1 or Inverter 2; this is for the two VSI case. These 
variables are all local variables as far as the droop controller 
for each VSI is concerned. 

Fig. 2. Two-inverter-connected micro grid 

Theorem 2: Consider the single Voltage Source Inverter 
(VSI) containing local load and connected to the grid. Suppose 
this VSI is controlled through a decentralized controller C that 
can access only the local variables: Vd, Vq, Id, Iq and w. Then 
arbitrary pole placement is achievable for the interconnected 
system, i.e. the VSI connected to the grid, using the decen­
tralized controller C. 

Theorem 3: Consider two Voltage Source Inverters (VSI) 
each containing local loads and connected to each other. Sup­
pose each VSI is controlled through a decentralized controller 
that can access only the local variables: Vd,i, Vq,i, Id,i, Iq,i and 
Wi for i = 1,2. Then arbitrary pole placement is achievable for 
the network of two VSIs using this decentralized controller. 

The above two results use the notion of arbitrary pole place­
ment being achievable through a specific class of controllers, 
in particular, the decentralized controller. See Proposition 6 
for the relation of arbitrary pole placement with controllability 
(using a specific class of controllers, in this case). We include 
a precise definition for easier reference. 

Definition 4: Suppose variable W describes the equations of 
a to-be-controlled system and W is partitioned into (c, v ) with 
c the variables accessible to any controller within a class C 
of controllers. We say arbitrary pole placement is achievable 
using a controller of class C if a set of controller equations 
described using just variables c is able to achieve arbitrary 
pole placement for the controlled system. 

In view of the close relation between arbitrary pole place­
ment and controllability, in particular, see Proposition 6, we 
use the two phrases interchangeably: 'arbitrary pole placement 
with a controller with specified structure' and 'controllable by 
a controller with specified structure'. 

Of course, in this paper, we are concerned with the con­
troller structure as 'local controller'. We deal with the overall 
system as comprising of subsystems with each subsystem 
having a pre-specified set of the local control variables. A 
decentralized controller is one that accesses just the local 
variables. Further, we ask this question in a 'generic sense'. 
This notion of genericity is made precise in in Definition 5. 

III. PRELIMINARIES 

We briefly review preliminaries required for this paper. The 
next subsection reviews the behavioral approach to modeling 
and control of dynamical systems. 

A. Behavioral approach 

A linear behavior 5]3 is defined as the subset of e:oo (JR, JRW) 
consisting of the solutions to a set of ordinary linear differen­
tial equations with constant coefficients; i.e., 

5]3:= {W E e:=(JR,JRW) I P (!) W = o}, 

where P( s) is a polynomial matrix having w number of 
columns: P E JReXW[s]. This representation is called a kernel 

representation of 5]3. We call W as the manifest variable; 

these are the variables of interest. The behavior 5]3 is called 
controllable if for any two trajectories WI, W2 E 5]3 there exists 
a h � 0 and a trajectory W E 5]3 with the property 

(I) 

P (-!ft )W = 0, P(s), E JRexw [s] is a kernel representation of a 
controllable behavior 5]3 if and only if the rank of the matrix 
P(>.) remains the same for all >. E c.. We shall assume that 
the matrix P( s) is of full row rank without loss of generality. 

A behavior 5]3 is called autonomous if one can conclude that 
WI = W2 whenever WI, W2 E 5]3 satisfy WI (t) = W2 (t) for all 
t � O. P(-!ft)w = O,P(s) E JRexq [s] is a kernel representation 
of an autonomous behavior 5]3 if and only if P has full column 
rank, i.e. rank(P) = q. A detailed exposition of the behavioral 
approach can be found in [11]. 

Definition 5: Generic property: A property P in terms of 
variables aI, ... , aN is said to be satisfied generically if the 
set of values al," " aN E JR that do not satisfy property P 
are a subset of a proper algebraic variety in JRN. 
Hence a property which is true for almost all values is 
said to be true generically. For example any two non-zero 
polynomials a( s) and b( s) are generically coprime. 

B. Pole placement 

Let R( fit)w = 0 be a minimal kernel representation of an 
autonomous behavior. The determinant of R, denoted by X is 
called the characteristic polynomial. The roots of X together 
with its multiplicities are called the poles of the behavior. 
We define the pole placement problem as follows: let 
P(fit)w = 0, P[s] E JRnxm denote the kernel representation 
of the plant. We have to find conditions under which there 
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exists, for every monic d E l!{[s], a controller behavior given 
by K (ft)w = 0 such that the controlled behavior given by 

[ P(�) ] w = 0 K(diJ 
has the characteristic polynomial, X = d and the interconnec­
tion is regular!. The solution to this problem is given in the 
following proposition by [13]. 

Proposition 6: Let the plant be given by P( ft)w = o. 
Given any monic d E l!{[s], there exists a regular controller, 
K (ft)w = 0 such that X of the closed loop system is d if and 
only if the plant is controllable. 

C. Bipartite graphs 

A graph with vertex set V and edge set E is denoted as 
o = (V, E). This 0 is bipartite if V can be partitioned into 
two sets Rand C such that no two vertices from the same set 
are adjacent. Given any polynomial matrix P[s] E l!{mxn[s], 
we can associate with it an edge weighted bipartite graph 0 = 

(R, C, E) explained as follows. The set Rand C denote the 
rows and columns of P(s). An edge in the bipartite graph 
between vertex Vi E Rand Vj E C exists if the (i, j)th entry 
of the matrix is non-zero. The degree of the polynomial in 
the (i, j)th entry is assigned to be the weight of the edge in 
the bipartite graph. Hence if the entry is a constant, then the 
weight of the edge is 0 but this does not mean that there is 
no edge. There is no edge only if the entry is O. 

A set of edges in a graph 0 = (R, C; E) is called a 
matching if no two edges have a common end vertex. The 
graph 0 has a perfect matching if IRI = ICI and the number of 
edges in the matching is IRI. We discuss the relation between 
the determinants of a square polynomial matrix P and perfect 
matchings (as we have a square matrix) of the bipartite graph 
o associated to P. Let !vI be a perfect matching in O. Then !vI 
corresponds to a non-zero term in the determinant expansion 
of !vI. The determinant expansion of P is the sum over all 
perfect matchings in 0 (with suitable signs). 

D. Structural controllability 

Let P(ft)w = 0 with P E l!{nxm[s] being full row rank, 
denote the kernel representation of the plant. We construct the 
bipartite graph op 

= (R, C : E) for the polynomial matrix 
P( s). Since the vertex set R in the graph op corresponds to 
the plant we shall denote it by Rp. Assume that the plant is 
controllable. Hence from Proposition 6 there exists a regularly 
implementable controller K(ft)w = 0, K E l!{(m-n)xm[s] 
which ensures that the controlled system has poles at the 
desired locations. The graph of the controller is denoted by 
OK. The vertex set corresponding to the rows in OK is 
represented as RK. The kernel representation of the closed 
loop, autonomous system is 

A(:t)w = 0, where A = [ ; ] E l!{mxm[s] (2) 

[The interconnection is said to be regular ( [13]) if rank of [ f�:� ] is the 

sum of ranks of F(s) and K(s). Regularity of interconnection is equivalent 
to implementability of the controller in the feedback configuration. 

Let OA denote the bipartite graph constructed from the rows 
and columns of the polynomial matrix A. The vertex set R is 
divided into two sets R p and R K corresponding to the plant 
equations and controller equations respectively. 

In the bipartite graph an edge which is incident on Rp is 
called a plant edge and an edge which is incident on RK is 
called a controller edge. A plant edge with non-zero weight 
will be called as non-constant plant edge. In our problem we 
are given with a controller which has a specific structure. We 
use the following necessary and sufficient condition from [8] 
for arbitrary pole placement with the given controller structure. 

Proposition 7: Let P(ft)w = 0 with P E l!{nxm[s] being 
full row rank, denote the plant. Let OK, the graph of a 
controller K be given. Let � denote the set of controllers with 
graph OK. Consider the bipartite graph OA 

= (R, C; E) of 
the controlled system, constructed from the rows and columns 
of [pT KT 1 T. Then the following are equivalent. 

1) In OA every non-constant plant edge is either part of 
some cycle involving controller edges or does not occur 
in any perfect matching. 

2) Arbitrary pole placement is possible generically using 
the given controller with graph OK. 

IV. INVERTER MODEL AND DROOP CONTROL LAW 

This section reviews the model of an inverter that we use 
in this paper. We then briefly describe the droop controller. 

A. Inverter model 

Figure 3, has the topology of a standard Uninterrupted 
Power Supply (UPS). An inverter converts the dc output 
voltage Vdc across the dc capacitor to a three phase ac output 
voltage. Insulated Gate Bipolar Transistors (IGBTs) are used 
as a switching device. Switches 81 to 86 are IGBTs. The 
switches operate at a frequency of approximately 5 kHz. The 
inductor L j and the capacitor C j form a low pass L - C 
filter that removes the high frequency switching harmonics 
generated by the inverter. The voltages Vja, Vjb, Vjc across 
the filter capacitor Cj bank are the output voltages of the 
inverter while the currents ica, icb, icc are the output currents 
of the UPS. 

In the circuit in Figure 3, the ac part is a three phase circuit. 
The three phase variables are output voltage v j, output current 
ic and the current through the inductor L j which is i j. Each 
variable consists of three components a, band c. Example for 
Vj the three components are Vja, Vjb and Vjc. We use Clarke's 
transformation to transform the three phase variables so as to 
obtain the complex variables. For example, the transformed 
output current is ic = icd + jicq . Subscripts 'd', 'q' refer to 
the real and imaginary components respectively. 

B. Droop control law 

In distributed electric power systems, a droop control strategy 
is popular. In the droop control strategy [7], [2]-[5], [10], 
[12],the frequency wand the magnitude V of the UPS output 
voltages are varied as follows. The frequency w is varied with 
respect to the active power p supplied by the UPS while the 
magnitude V is varied with respect to the reactive power q 
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Fig. 3. Topology of the Uninterrupted Power Supply (UPS) 

supplied. Mathematically, the droop controller equations for 
inverter m are written as follows [7], [2]-[5], [10], [12]: 

Wm = 86m = Wo - kpmPm 
Vm = Vo - kqmqm 

(3) 

(4) 

where wo, Vo are the nominal values of angular frequency 
and voltage magnitude, respectively. Pm, qm are the active and 
reactive power supplied by inverter, respectively, while kpm' 
kqm are the droop coefficients. The first equation is called the 
p-W droop control law and the second equation called q-V 
droop control law. 

V. PROOF OF CONTROLLABILITY FOR GRID-VSI NET WORK 

In this section we review the mathematical model of a 
single UPS and construct the bipartite graph corresponding to 
the system of equations of a VSI connected to the grid. The 
equations we use are those that have been derived in [6] for 
a linearized model: they were validated against experimental 
and simulation results. We then apply Proposition 7 above to 
infer that the decentralized droop controller indeed achieves 
arbitrary pole placement. 

A. Mathematical model: UPS 

This section consists of mathematical model of a line inter­
active UPS (in Figure 3) connected to a three phase ac grid, 
system equations of controlled system, kernel representation 
of the system as shown in Figure 1. In the previous section, 
the topology of the UPS has been described. In the Figure 1, a 
line interactive UPS is connected to a three phase ac grid. The 
UPS has a local load that is connected to a ac grid through 
a cable which has inductance Ll and resistance RIg. RIg is 
the parasitic resistance of this cable. The load of the UPS is 
normally supplied by ac grid but if ac grid fails, then load is 
supplied by UPS. The UPS is interfaced to the grid and load 
by a inductance Lc1. Vg is the three phase ac grid voltage. 

We review the model of the to-be-controlled system, the 
plant. The complete derivation is given in the reference [6], 
[7]. The mathematical model of the micro grid is written using 
the system variable w. 

w = [Vf1 'icl Vpl 'ill Ul Vg 'i1g] (5) 

where Vfl, ic1, Vpl and ill are the three phase variables in 
d-q complex form. We have Vfl:= Vfld + vflq, ic1:= ic1d +  

'ic1q, Vpl := Vpld + Vplq, and 'ill := iZ1d + 'iZ1q . The variable 
Ul = 61 - jV1 is also local to the UPS, where 61 is defined as 
the phase angle of complex variable Vfl while VI is defined 
as the magnitude [3], [7], i. e. 

(6) 

where Vf1d and Vf1q are the values of v fld and v flq at the 
equilibrium point about which the equations are linearized. 61 
and VI are the inputs to the system. The current flowing in 
the cable between UPS to grid is i1g := i1gd + j'i1gq and the 
voltage of ac grid is Vg := Vgd + jvgq .  The grid voltage Vg is 
external input to the system because the grid and the UPS are 
two independent entities. The input-output partitioning of the 
manifest variable w makes this clear. 

The variables in w defines the behavior of the system in 
(Figure 1). It is clear from (6) that the relations of 61 and 
VI are non-linear. We use the standard network laws such 
as Kirchoff's Voltage Law and Kirchoff's Current Law to 
obtain the other variables of w and hence are related by 
linear differential equations. Therefore we linearize the entire 
system about an equilibrium point so that we can define the 
behavior of the system as the solution set of equations and 
express all components of the vector w as deviations about the 
equilibrium point. The symbol � denotes the deviation of the 
variables from the equilibrium point. The system equations, 
after careful manipulations as elaborated in [6], are described 
in terms of the variables: �Vfl' �ic1, �Vpl' �ill, �Ul' �Vg 
and �ilg. These are the deviations of the concerned variables 
in Figure 1. 

The behavior of the system can be written as 

'B = { [�:�] E C=(ll{, en) I Atotal (!) [�:�] = 0 } 
(7) 

The equations describing the controlled system after careful 
manipulation as elaborated in [7] turn out to be: 

(8) 
where �61 is a deviation in angle. Note that due to the P-w 
droop law, �61 is an integral function of the variables �Vfld, 
�Vflq and �ic1d, �ic1d while �Vl depends linearly on these 
variables. 

We use the above system of equations (8) to construct a 
bipartite graph as shown Figure 4. The matrix K in the kernel 
representation for the controller has ten non-zero elements. 
Hence there will be ten edges from RK to C. In the plant 
equations, the matrix P has twelve non-zero elements among 
which four elements have degree zero. The bipartite graph for 
the plant and the controller is given in Figure 4. 

From Proposition 7, we have that the controllability of the 
plant with respect to the above controller is ensured if the 
following conditions are satisfied. First there should exist a 
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RK 
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......... Constant plant edges 
-- Non-constant plant edges 
- - - - Controller edges 

Fig. 4. Bipartite graph for single VSI connected to the grid 

perfect matching, i.e. a one-to-one correspondence between 
vertices on the left: and right. Then check for the following 
condition on all plant edges that correspond to non-constants 
(the thick, red edges in Figure 4). Amongst these plant edges, 
every edge either occurs in a cycle involving the controller 
edges (thick, blue, dashed in the figure) or does not occur in 
any perfect matching. We proceed to check this condition: this 
would complete the proof of Theorem 2. 

In Figure 4 there are eight non-constant plant edges shown 
by red dashed lines which are emerging from plant row 
vertices Rpl, Rp2, Rp3, Rp4 to column vertices Cs and C6. 
These plant edges are non-constant edges and are part of cycle 
with controller edges. Therefore from Proposition 7, we have 
arbitrary pole placement. Here the eight non-constant plant 
edges are in one or more of eight cycles involving two or 
more of the ten controller edges. These cycles are as follows: 
Cycles starting with controller vertex Rkl are as follows: 

1) Rkl - Cs - Rpl - Cl - Rkl. 
2) Rkl - Cs - Rp2 - C2 - Rkl. 
3) Rkl - Cs - Rp3 - C3 - Rkl. 
4) Rkl - Cs - Rp4 - C4 - Rkl. 

and cycles starting with controller vertex Rk2 are as follows: 
1) Rk2 - C6 - Rpl - Cl - Rk2. 
2) Rk2 - C6 - Rp2 - C2 - Rk2. 
3) Rk2 - C6 - Rp3 - C3 - Rk2. 
4) Rk2 - C6 - Rp4 - C4 - Rk2. 
In all eight cycles, at least one controller edge is a part of 

cycle with one non-zero weighted plant edge. Therefore the 
condition in Proposition 7 is satisfied. Hence the system has 
arbitrary pole placement. 

VI. PROOF OF CONTROLLABILITY FOR T WO VSI 
NET WORK 

In [6], from the topology of three-inverter-ring-connected 
microgrid the derivation for the mathematical model of that 
system has been explained. Here we do the derivation of two­
inverter-connected system in a similar manner. In Figure 2, 

inverters are denoted by "Inv 1", "Inv 2" and they have local 
loads Zll, Z12. These loads are linear passive loads consisting 
of resistances Rll, Rl2 and inductances Lll, Ll2 and the cable 
connecting the two inverters has inductance L12. 

A. Mathematical Model of the system 

Inorder to reduce the complexity we consider the system 
as two subsystems. Similar to the single inverter case, we 
use Clarke's transformation on the three phase variables to 
transform them into complex variables. 

Now we explain how the complex variables of the micro 
grid are grouped. The vector containing all the variables of 
micro grid is 

x = [u Xv Xc Xl Xint] (9) 

where the variables are further defined as: u := (Ul' U2), Xv := 
(Vfl, Vf2), Xc := (ic1, ie2)' Xl := (ill, i12) and Xint := i12. 
The variables in above equations are complex, e. g. , Vfl = 
Vfld + jVfld . The complex variable Ul = 51 -jVl. U2 follows 
similarly. 

The next set of equations is formed by the load laws at the 
two inverters. For example, load law at Inverter 1 is written 
in the small signal sense as follows: 

flVfl - Zllflill = O. 

where Zll = Rll + jwLll. The load laws at each of the 
two inverters, the KCL and KVL at the nodes and around 
loops together give the following system of equations for the 
controlled system, i.e. the plant and controller equations: 

-A� Ai 
u I 0 0 0 fl5 

_Ai 
u -A� 0 I 0 0 flV 

-A�mp A�mp 0 0 I 0 flXvd = 0  
-A�mp -A� 0 0 0 I flxvq 

sI 0 Cvd Cvq Cid Ciq flXcd 
0 I DVd Dvq Did Diq flXeq 

(10) 
where Aimp Az - AintAz, matrices A�mp and A�mp 
are the real and imaginary components of Aimp, A� and 
A� are the real and imaginary components of AU) and the 
vectors are defined as: 5 := [51 52], V := -[VI V2], 
Xvd := [Vfld Vf2d], Xvq := [Vflq Vf2q]' Xed := [ic1d Vc2d] 
and Xeq .- [ic1d ie2q]. Further, the constant matrices 
Cvd, Cvq, Cid, CiqDvd, Dvq, Did, Diq are each 2 x 2 diagonal 
matrices that contain the droop values and the voltage/current 
d-q values at the operating point. The above system (10) has 
twelve real variables, and the matrix in Equation (10) is of 
size 12 x 12. The first eight equations represent the plant 
equations and the last four represent the controller equations. 

B. Bipartite graph 

Here again we construct an edge weighted bipartite graph 
from the kernel representation of the system in (10). The poly­
nomial matrix from which the bipartite graph is constructed 
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Rows Columns 

Constant plant edges 
-- Non-constant plant edges 
- - - - Controller edges 

Fig. 5. Bipartite graph for network of two VSI system 

for the plant and controller which are P and K respectively 
are given below. 

* 0 * 0 1 0 0 0 0 0 0 0 
0 * 0 * 0 1 0 0 0 0 0 0 
* 0 * 0 0 0 1 0 0 0 0 0 

p= 
0 * 0 * 0 0 0 1 0 0 0 0 
* * * * 0 0 0 0 1 0 0 0 

(11) 

* * * * 0 0 0 0 0 1 0 0 
* * * * 0 0 0 0 0 0 1 0 
* * * * 0 0 0 0 0 0 0 1 

[� 
0 0 0 * 0 * 0 * 0 * 

�l K =  
* 0 0 0 * 0 * 0 * 0 
0 1 0 * 0 * 0 * 0 * 
0 0 1 0 * 0 * 0 * 0 

(12) 

where * denotes the entries that are non-constant. The matrix 
K has twenty non-zero elements. Hence there will be twenty 
edges from RK to C. P has thirty two non-zero elements 
among which eight elements have degree zero. The bipartite 
graph for the plant and the controller is given in Figure 5. 
We are to verify that in addition to existence of a perfect 
matching, each non-constant plant edge is either in a cycle 
involving controller edges or in none of the perfect matchings. 
This condition can be inspected visually for all the thick­
red edges in Figure 5. For example: CI-Rpl-C3-Rp3-C7-Rkl­
C1 is a cycle that contains a few plant thick-red edges and 
also contains controller edges (dashed blue). Similarly, every 
thick-red plant edge needs to be contained in some such 
cycle involving controller edges too, unless such a thick-red 
plant edge occurs in none of the perfect matchings. After 

the straightforward verification, one deduces that the two­
VSI network is also controllable using the decentralized droop 
controller. 

VII. CONCLUSION AND FUTURE WORK 

In this paper we proved that decentralized controllers of 
the form of the droop controllers can indeed achieve pole­
placement of the micro grid. Of course, droop controllers are 
special in the sense that they impose a static law between 
the variables, unlike a dynamic law that, depending on the 
location of the specified poles, might have to be imposed 
in order to achieve these poles. This procedure for proving 
that generically the droop controller can achieve arbitrary 
pole placement can be easily extended to a network with 
any number of inverters by systematically constructing the 
bipartite graph and verifying that every plant edge satisfies the 
conditions listed in Proposition 7. We emphasize that while 
controllability using the droop controller has been observed 
for specific system parameter values, we have proved this to 
be the case for almost all system parameter values, and almost 
all operating conditions. Moreover, this check was performed 
without recourse to extensive computation. 
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