
A data-driven adaptive model-identification based large-scale sensor
management system: application to Self Powered Neutron Detectors

Nahit Pawar M.N. Belur M. Bhushan A.P. Tiwari M.G. Kelkar M. Pramanik and Virendra Singh

Abstract—In this paper we propose an adaptive approach to
manage large number of correlated sensors. Our approach is able
to extract information (models) from these sensors that is relevant
for performing fault diagnosis of these sensors. Such a situation
involving large number of correlated sensors is encountered in
large core nuclear reactors, for example. Since fault diagnosis
methods are computationally intensive, it is helpful to organize
the sensors into groups such that strongly correlated sensors
belong to the same group. However, the groups/clusters need to
be reorganized depending on operating conditions. We propose
an adaptive method that is scalable to a large number of sensors
and can adapt to changing operating conditions. Also, within
each cluster, it is often required to adaptively rebuild new
models/relations for sensors inside that cluster. We use the k-
means algorithm for obtaining clusters and Principal Component
Analysis (PCA) for finding relations between the sensors within
a cluster. We demonstrate that significant speedup is achieved by
parallelizing the various aspects of the above computation.

A key requirement in managing a large number of sensors
is the data and processing management. We demonstrate and
compare a serial and parallel implementation of this method
using SQLite for database management, Python for numerical
computations, the Pycluster module for clustering and the Python
multiprocessing module for code parallelization. The method is
demonstrated for the above nuclear reactor application: with 140
sensors and 14,000 measurements for each sensor. The method
turns out to scale very easily to such a large number. The
implementation codes of our approach have been made available
online. The utilized packages all being open source (FOSS) helps
in the use of these codes in various safety critical applications
which typically require complete verification/ratification. The cost
saved due to the FOSS aspect of our implementation is another
advantage.

Keywords: Clustering, Principal Component Analysis, Adaptive
re-clustering, Fault diagnosis, Parallel Implementation, FOSS

I. INTRODUCTION

When dealing with a large number of sensors in real-time
estimation and control problems, it is often computationally
infeasible to build linear relations adaptively for all of them
together. Sensor Management is crucial when dealing with
such large network of sensors, as has been rightly emphasized
in the literature, for example in [8] and [3]. We elaborate on
the various issues in Sensor Management using the example

N. Pawar and V. Singh are in the Department of Electrical Engineer-
ing, and M. Bhushan is in the Department of Chemical Engineering at
the Indian Institute of Technology Bombay. A.P. Tiwari is in the Reactor
Control Division, Bhabha Atomic Research Center, Mumbai. M.G. Kelkar and
M. Pramanik are in the Nuclear Power Corporation of India Ltd. (NPCIL),
Mumbai, India. M.N. Belur is in the Department of Electrical Engineering and
in the Centre for Technology Alternatives for Rural Areas (CTARA), Indian
Institute of Technology Bombay. The research was supported by the Board
for Research in Nuclear Sciences (BRNS), India. Corresponding author email:
belur@iitb.ac.in.

of Self Powered Neutron detectors (SPNDs) which play an
important role in on-line neutron flux estimation, safety and
control of large core nuclear reactor. A typical nuclear reactor
contains several of these sensors for measuring flux at different
locations inside the reactor. Measurement of neutron flux pro-
vides a direct measure of reactor power and thus measurements
from these sensors are used for safety, regulatory and control
purposes. Thus healthy operation of SPNDs is important for
safe reactor operation.

In case of a fault in the SPND due to various reasons
the usual practice is to manually rectify the fault as soon
as possible and this involves unscheduled reactor shutdown
which will be time consuming and have cost and personnel
safety implications. Hence in the typical situation of evolving
reactor operating conditions, there is a strong need to develop
self-monitoring and evolving strategies that can effectively
monitor the health of these sensors using the available on-line
measurements. In the context of computational aspects, which
is very relevant for online and real-time management of sen-
sor measurements, [3] discusses the computational feasibility
of scaling present methods to large-scale problem involving
sensing system with fast changing operating conditions.

A. Objective

As mentioned above, real-time data-driven self-monitoring
and adaptive techniques are required when dealing with large
number of sensors. Such situations also require that the sen-
sors be clustered into smaller groups based on their time-
series response. Clustering techniques in the context of sensor
management have been proposed in [1], where the authors
discuss and compare different clustering algorithms for sensor
management. The focus of this paper is about adaptive methods
to recluster and to rebuild models within a cluster. For a smaller
group of sensors obtained by clustering, it is often required
to adaptively build linear models (using Principal Component
Analysis (PCA), for example) on the sensors in each group.
The models are then utilized for data reconciliation, fault
detection and diagnosis of SPNDs. It is also essential to evolve
triggering mechanisms for re-clustering and re-development of
models due to the changes in reactor operating regime. A key
requirement is the constant validation of current data against
various models available in the database to detect and diagnose
faults. In order to effectively implement the above proposed
methods for on-line monitoring, it is essential to use modern
database management systems for creation and maintenance of
a database of the large number of sensor values and models.
For safety critical applications, it is essential to first simulate
various scenarios by setting up a client computer for on-line
data generation which emulates the existing systems in the
control room of nuclear power plant. This further requires the
setting up of an interface for data-acquisition on the computer

hosting the standalone software so that it can receive data
from the client. The standalone aspect is essential for complete
ratification of the developed codes: this is again relevant
in safety critical operations. This paper addresses the above
objectives of a typical large scale adaptive sensor management
system. The paper’s contribution and organization of the paper
is as follows.

B. Organization of the paper and summary of contribution

This paper is organised as follows. Section II presents
SPNDs data management with particular focus on use of
SQlite database engine for handling data. Section III presents
clustering method and the use of Pycluster module [15] and
Python for grouping SPNDs. In Section IV we first review
PCA techniques followed by model identification and residual
calculation using numpy.linalg module [12] and Python on
clusters developed in Section III. Section V summarizes the
data reconciliation and gross error detection technique using
the relationship developed in Sections III and IV. Section
VI explains the proposed adaptive model updating and re-
clustering technique, server-client interaction, followed by
overall software flowchart. Section VII contains the profiling
results. Finally, Section VIII contains future work and con-
cluding remarks. The FOSS aspect of the packages used is
central for a complete ratification of the codes when using
such adaptive sensor network management system in safety
critical applications: the codes have been available online at
[10], [11].

When compared with other methods in the literature about
sensor management (for example, [1], [3], [8]), the approach
in this paper is different in the sense that for applications
involving large-scale sensors network which demand efficient
sensor management and data fusion, we propose a scalable
method (of adaptively reclustering and model identification
techniques) and demonstrate it by a parallel implementation in
packages that are more preferred for safety critical applications
(due to their FOSS aspect).

II. SPNDS DATA MANAGEMENT

In this section we elaborate on the typical difficulties faced
in the context of management of a large number of sensors.
We use the case of SPNDs in a large core nuclear reactor as
an example to highlight the challenges faced.

A. Characteristics of SPND data

SPNDs are characterized [19] as prompt SPNDs or delayed
SPNDs depending on whether the major component of the
signal is prompt or delayed. For example, SPNDs having
Cobalt as emitter material are prompt in nature whereas SPNDs
having Vanadium as emitter material are delayed in nature thus
have delayed response to external neutron flux. The SPND data
used in our work corresponds to an Indian Pressurized Heavy
Water Reactor (PHWR). The reactor consists of a cylindrical
core with 42 Cobalt and 102 Vanadium SPNDs. The core of
PHWR for which data is available to us, is considered to be
divided into fourteen control zones with each zone containing
three Cobalt SPNDs. The 144 SPNDs are labeled using serial
numbers, since data from SPNDs provided for this study are
in the form of text file and according to the format of text

file Vanadium SPNDs are labeled from 29 to 130 and Cobalt
SPNDs from 1 to 42. For example, V35 and Co26 represents
Vanadium SPND number 35 and Cobalt SPND number 26
respectively, the same naming scheme is used to locate sensor
in database. Data from SPNDs sampled at 1 minute intervals
is available for a period of 10 days.

B. Characteristics of missing observation

Out of 14,400 data points some observations are missing
which are labeled as ‘BAD’ or ‘NOREPLY’ in text files. (This
is possibly due to communication delays at that time instant,
for example.) These observation are replaced by −1 while
creating database of SPNDs. Since nature of missing observa-
tion in Vanadium and Cobalt datasets falls under the category
Missing Completely At Random (MCAR) [18], therefore these
data points are discarded from our work.

C. Use of SQlite and Python for managing SPND data

We have used SQlite [22] database engine which pro-
vides lightweight disk-based database and allows accessing the
database using nonstandard variant of SQL query language. We
used sqlite3 module [23] of Python which provides interface
for using SQlite database engine in Python. In our work
this interface is used to maintain three different database
one for storing SPND data and other two for storing cluster
and model information as descried in Sections III and IV
respectively. Each row of the SPND database contains single
observation from 144 SPNDs along with time-stamp. Initial
part of the database is created off-line for storing training data,
for this purpose we have created graphical user interface (GUI)
in Figure 1 using Python’s Tkinter module which provides
operator with user friendly interface for storing and viewing
SPND data off-line. The source code for this interface is made
available at [10].

Fig. 1: Snapshot of user interface for creating database

D. Training and test data

Operator can select different sets of training data for
clustering (Section III) and model identification (Section IV).
In this paper, we have used first 7000 data points, which is
about half of the data points available to us for clustering and
model identification, and the rest half as test data.

III. CLUSTERING OF SPNDS

SPNDs which are in the same zone or close to each other
are expected to be subjected to similar variation in the neutron
flux. However, it is also possible that SPNDs in different zones

gives correlation measurements depending on the operating
regime of the reactor. So using the data available to us, we
group the SPNDs into smaller groups such that those SPNDs
with strongly correlated measurements are grouped together.
This allows us to work on individual clusters of SPNDs rather
than entire set of SPNDs. For more details, the interested
readers are referred to [17].

The clustering is performed using Pycluster module [15]
of Python which uses k-means algorithm [4], [20]. The aim
of this algorithm is to partition set of points into specified
number of clusters such that the sum of distances of each
point from its cluster centroid in minimized. For our case,
the time series (training data) of single SPND is taken as a
point. Since we require those SPNDs having high correlation
between each other to be grouped together i.e. two points are
close to each other if the correlation between them is high
therefore we used absolute Pearson correlation distance for
defining distance between two SPNDs as [17]:

dA,B = 1− |rA,B | (1)

where dA,B denotes distance between SPND A and SPND
B; rA,B denotes the Pearson correlation coefficient between
SPND A and SPND B and is defined as:

rA,B =
1

n

n∑
i=1

(
ai − ā
σa

)(
bi − b̄
σb

)
(2)

where ā, b̄ denotes sample mean of SPND A and SPND
B respectively; σa, σb denotes sample standard deviation of
SPND A and SPND B respectively; n denotes number of
observations.

The input to the k-means algorithm consist of training
data on which the clustering is to be performed and the
number of cluster k, where k is chosen suitably [17]. Since
clustering solution depends on the initial assignment of SPNDs
to clusters, kcluster routine in Pycluster module repeats k-
means algorithm many times, each time starting with different
initial random clustering. The sum of distances of SPNDs to
their clusters center is saved for each run and the solution with
smallest value of this sum is returned as the overall clustering
solution. This is done automatically by kcluster routine.
A routine build cluster written in Python which uses kcluster
routine for the purpose of partitioning SPNDs into clusters.
The first step in this routine is to read training data from
database followed by generating data matrix - data[i][j]. Each
row of data matrix represents observations from single SPND
in which missing observations is stored as -1. Information
pertaining to missing observation in the data matrix is used
to create mask matrix - mask[i][j], such that mask[i][j] = 0
if data[i][j] is missing otherwise mask[i][j] = 1. Given the
distance function (equation 1) and how the center of the cluster
is found in our case (arithmetic mean), kcluster routine is
called with data and mask matrix as input. The output of
kcluster routine is used to create clusterId to SPND map, i.e.
given the cluster number it will show which SPNDs belongs
to this cluster. Finally the clusterId to SPND map is stored
in database with time-stamp. The overall flow of build cluster
routine is shown in Figure 2.

Start

Read Training Data

from Database

V & Co

SPND

Database

Generate Matrix

from Sensor Data

Generate Mask

Call kcluster routine

Create clusterId

to Sensor Map

Store & Re-

turn ClusterId

ClusterId

Database

Stop

Fig. 2: build cluster - flow chart

IV. IDENTIFYING MODELS ON CLUSTERS

Once the clusters are obtained, we use the PCA technique
to identify linear models on a single cluster of SPNDs. We
review this in the following subsection. Sections IV-B and
IV-C discuss procedures to identify the model and residual
calculation respectively.

A. Review: Principal Component Analysis

We give only a brief description of this well-known
technique. A detailed description can be found [2], [5], for
example. PCA is a data driven modeling technique that allows
us to transform a set of correlated variables into a new
set of uncorrelated variables. These new variables are such
that the first principal component direction has the largest
variance and each succeeding component in turn has highest
variance possible under the constrain that it be orthogonal to
preceding component. These principal component directions
are the eigenvectors of the data covariance matrix and the
variance along each direction is given by the corresponding
eigenvalue.

Let X be an N × n data matrix where N is the number
of observations and n is the number of variables. Let P =
[T |Q] where T is an n× d matrix containing the d significant
eigenvectors and Q is an n× (n− d) matrix with the (n− d)
least significant eigenvectors as its columns. Then X can be
decomposed as:

X = X̂ + E,

where the matrices X̂ and E represent modeled and unmodeled
variations of X , respectively:

X̂ = X(TTT),

E = X(QQT).

The matrix TTT is orthogonal projection matrix and X̂ is
the projection of X on the d dimensional subspace known as
principal component space or estimation space. If we assume
true variation in measurement data are along these d significant
principal axes, then we have for the true data

XQ = 0 or QTXT = 0. (3)

Thus if x(t) is the true measurement vector (n × 1) at some
instant t, we have a relation

Ax(t) = 0. (4)

Here A = QT contains the least significant n−d eigenvectors
along the rows. For any given measurement vector y(t) =
x(t)+e(t), where e(t) is the measurement noise. The residual
is given by

r(t) = Ay(t) (5)

A is called the constraint matrix or model matrix. The residuals
r(t) are used for fault detection purpose as explained in Section
V. The eigenvectors of the covariance matrix can be obtained
by computing Singular Value Decomposition (SVD) of the data
matrix X . If SVD of X is given by X = USV T , then the
columns of U are eigenvectors of the data covariance matrix.

B. Model Identification

The first 7000 points are used as training data for building
models on each single cluster. For this, the linear algebra
module (numpy.linalg) [12] in Python is used for computing
SVD on the clusters. The relations are the eigenvectors corre-
sponding to the least significant eigenvalues. Those eigenvalues
that are less than the average are typically considered as less
significant: see [2, page 441] and [9]. A routine build model
has been written in Python that uses numpy.linalg [12] and
sqlite3 [23] module for identifying models and storing it in
database. The first step in build model is to decide on whether
to build cluster from scratch using training data or to use
already built clusters from database both of which result in
clusterId to SPND map. For each cluster in the map it prepares
data matrix from database of SPND measurements it then uses
this data matrix to compute model matrix using SVD function
(numpy.linalg.svd) in numpy.linalg module. Finally it returns
and stores all the computed models in the database of model
matrix. The overall flow of build model routine is shown in
Figure 3.

Since the model identification on individual cluster is
inherently independent of each other, we used Python’s multi-
processing capability to compute each model in parallel. The
overall flow of our parallel code is same as Figure 3 except
for: preparation of data matrix, model computation (by SVD
computation) and storage of model matrix; this is done in
parallel for each cluster.

Start

Build cluster

from scratch?

Call build cluster()

to get clusterId-

to-SPND map

Get clusterId-

to-SPND map

from Database

Prepare data ma-

trix from database

V & Co

SPND

Database

ClusterId

Database

Compute

model matrix

Store model matrix
Model

Database

For each cluster

in map do

Return all

model matrices

Stop

Yes

No

Fig. 3: build model - flow chart

C. Residual Calculation

As explained in Section IV, given the constraint matrix A
and measurement vector y(t) the residual is given by equation
(5). Let R be the matrix of residuals given by:

R = AY (6)

where Y is matrix of measurement vectors or the training data.
The residual R is used for calculating the noise covariance
matrix Σε as explained in Section V. A routine calc residual
written in Python uses output of build model and numpy.linalg
module [12] to calculate R on each model as shown in Figure
4.

V. DATA RECONCILIATION AND GROSS ERROR
DETECTION

The total error in the sensor measurements can be repre-
sented as sum of the contribution from two types of errors:
random error and gross error. Random error are inherently
unpredictable and are always present in the measurement.
Gross error are caused by non-random events and occur as a
result of sensor malfunctioning and at any given time error has
certain magnitude and sign. This section summarizes the data

Start

For each model
Prepare data ma-

trix from database

V & Co

SPND

Database

Compute

R=A×Y

Return all

R matrices

Stop

Fig. 4: calc residual - flow chart

reconciliation and gross error detection techniques that exploits
the relationship developed in Sections III and IV between
SPND to reduce the effect of both types of errors. We used
data reconciliation techniques (Section V-A) that explicitly
make use of model constraints (equation (4)) and estimate the
output of SPNDs by adjusting the measurement so that the
estimates satisfy the constraints. Data reconciliation technique
works when there is no gross error [6], therefore we used
gross error detection techniques (equation (V-B)) to identify
and remove gross error in the measurement.

A. Review: Data reconciliation

Given the model constraint matrix A and noisy measure-
ments, the estimate of true value of measurement is given by
following weighted least square optimization problem:

min
x(t)

(y(t)− x(t))TW(y(t)− x(t)), (7)

with the constraint Ax(t) = 0,

where W is an n × n weighting matrix usually taken as the
inverse of the noise covariance matrix Σε as defined after
equation (6). The solution to the above optimization problem
[6] is given by:

x̂ = y(t)−W−1AT (AW−1AT)−1Ay(t) (8)

where x̂ are the reconciled estimate of the true measurement
at time t. For more details, the interested readers are referred
to [6].

B. Review: Gross error analysis

In our work, we considered gross error to be constant
biases and zero output from the sensors. Consider a gross error
scenario, where we assumed the gross error to be constant
biases in pk number of sensors, with the indices of these
pk sensor stored in set Pk. Hence, the measurement vector
becomes:

y(t) = x(t) + ε(t) +
∑
jεPk

bjej (9)

where bj is the gross error in the jth variable, ej is the
unit vector with 1 at the jth location and 0’s elsewhere and
ε(t) is the random error component of the measurements as
before. The method for gross error analysis (i.e. detection,
identification and estimation) based on individual observation
reviewed below is elaborated in [6].

Given the model constraint matrix A and the measurement
y(t), the residual is given by equation (5). For gross error
detection the following test statistic has been considered:

γ(t) = r(t)TV −1r(t) (10)

where V is the noise covariance matrix of residuals (see
equation (6)). In the absence of any gross error equation
(10) follows a χ2-distribution with m degrees of freedom.
Choosing a confidence level α, we then obtain a threshold
value as χ2

1−α,m. Among all clusters, a gross error is detected
within a cluster if γ(t) ≥ χ2

1−α,m: we use statistical module
(scipy.stats) [13] of Python to implement this. We then use
Generalized Likelihood Ratio (GLR) method [7] for identify-
ing those sensors inside the cluster with gross error along with
estimate of the gross error. For more details, we refer to [6]
and [7].

VI. ONLINE FAULT ANALYSIS

This section explains the proposed on-line adaptive tech-
niques related to model updating and re-clustering in dealing
with widely varying operating conditions, server-client inter-
action and the overall software flowchart.

A. Adaptive model updating

The linear model (equation (4)) identified on each cluster
in Section IV-B is typically valid only in a limited range of
operating conditions. As the operating conditions change, new
models are required on existing cluster/clusters or re-using
those existing models in the database which best describes
the current operating condition. The following rule is used to
trigger new model identification on-line: Due to dynamic op-
erating conditions there can be a possibility of large residuals
(equation (5)), we then check for residuals from all models

in the database for a given cluster. If any model results in
small residual, then no fault is declared and this matched model
becomes our current model. On the other hand if none of the
models in the database explains the magnitude of residuals,
then we declare the fault, identify the faulty sensor and
estimates its true value (Section V). The information related
to faulty sensor is then displayed to operating personnel. An
input from this person will then be required to validate the
result in terms of whether a fault has actually occurred or
not. If the operator specifies that no fault has occurred, which
means the data coming from that sensor is normal and there
is no model in the database which can describe the current
operating conditions. In this situation new model is identified
and is then added to the database of models.

Model DB
A1,1,1x = 0

...

A1,1,kx = 0

Group 1

Model DB
A1,j,1x = 0

...

A1,j,kx = 0

Group j

. . .

...

Model DB
Ai,1,1x = 0

...

Ai,1,kx = 0

Group 1

Model DB
Ai,j,1x = 0

...

Ai,j,kx = 0

Group j

. . .

C
lu
st
er

1
C
lu
st
er

i

Fig. 5: Adaptive model updating and re-clustering

B. Adaptive re-clustering

As explained in Section III the clusters configuration is
based on the sensors’ time series data. As the plant behavior
changes which results in different normal mode of plant
operating condition, the optimal clusters configuration may
also change. The decision on when to change current clusters
configuration is at the higher level than updating model. The
following rule is used for re-clustering sensors on-line: We
propose to trigger re-clustering if faults are detected in multiple
clusters simultaneously as this most likely indicative of models
in those clusters not reflecting the current process condition.
Before re-clustering, once again feedback will be taken from
operating personnel. For every set of clusters, a database of
models is maintained as shown in Figure 5 and as discussed
in Section VI-A.

C. Emulating server-client interaction and summary of the
software flow

We have set-up a client computer which is responsible for
sending test data samples at one minute interval, this emulates
the behavior of the system in the control room of nuclear power
plant. Server side is equipped with our standalone software
which handles all the request from client and performs fault
analysis for each incoming test data. The server and client
interact with each other through Local Area Network (LAN),
the interface for the same is designed using socket module [21]
in Python.

The overall abstract view of our software is as follows.
The complete source code is made available at [11]. After
building initial set of clusters and models using training data,
our software then responds to incoming stream of on-line
sensor data from client system by performing on-line fault
detection and analysis (Sections V and VI) on each cluster
using the residuals calculated on current models. Each step in
the software is dealt using the database of sensor data, model
and cluster information.

VII. RESULTS

A. Profiling

The module cProfile [16] of Python is used to profile differ-
ent sections of our standalone software. Table I shows system
specifications on which profiling is done. For cluster building,
model building and residual calculation 7000 data points is
used as training data. Table II shows the clustering parameters
used to build clusters. Table III shows profiling results of
build cluster routine for both Cobalt and Vanadium SPNDs.
Table IV shows profiling results of serial and parallel version
of build model routine for both Cobalt and Vanadium SPNDs.
Table V shows profiling results of calc residual routine for
both Cobalt and Vanadium SPNDs.

TABLE I: System Specifications

Operating System CPU RAM HDD

Linux (Ubuntu 12.04) Intel core i7 2.3 GHz 8 GB 1TB

TABLE II: Clustering Parameters

SPND Num. of clusters npass nfound

Cobalt 7 100 13

Vanadium 20 100 1

TABLE III: Timing Analysis - Cluster building

SPND Time (sec) - build cluster Time (sec) - kcluster

Cobalt 4.192 3.292

Vanadium 25.278 23.277

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed adaptive techniques to manage
a large number of correlated sensors. To efficiently extract
meaningful information from these sensors, it is important to

TABLE IV: Timing Analysis - Model building

SPND Time (sec) - Serial Code Time (sec) - Parallel Code

Cobalt 0.428 0.015

Vanadium 1.314 0.058

TABLE V: Timing Analysis - Residual Calculation

SPND Time (sec) - calc residual

Cobalt 0.322

Vanadium 0.657

cluster these sensors into smaller groups of strongly correlated
sensors. This in-turn also enables parallel implementation of
model building and mode verification in real-time. To account
for changing process operations, the sensors often need to
be re-clustered thereby leading to the adaptive framework
proposed in this work. Within a cluster too, it is essential to
adaptively identify linear models in case the existing models
are not able to satisfactorily obtain the given observations. In
our work, this model identification is triggered by changing
statistical properties of the residuals. Currently, the decisions
are required to be ratified by the operating personnel since the
thresholds in the residuals might require fine-tuning based on
extensive testing based on the application: thus our method
is currently semi-supervised. Once the thresholds are tuned,
we expect this method to be a fully adaptive system for re-
clustering and re-building of models.

In this paper, we also described the newly developed
database management (involving SQLite) and computational
tool (involving Pycluster/NumPy) for handling large datasets
due to a typical large scale sensor network: these codes
have been made available online [10], [11]. The technique
entails significant computation in real-time when the residual
is matched to the best possible model from the database of
models. A key challenge would be to implement the above
proposed techniques real-time but on processors with limited
memory and limited processing power. The optimum number
of models and clusters might have to be tailored depending on
the limitations. In a typical application, the actual interaction
with the client system and remotely situated server requires
knowledge of the network protocol and thus establishment of
real-time communication between the two systems. Finally we
compared parallel implementation of the proposed method and
showed the speedup in Table IV versus serial implementation
on a system having specification listed in Table I.

REFERENCES

[1] A.A. Abbasi and M. Younis, A survey on clustering algorithms for
wireless sensor networks, Computer Communications Journal, vol. 30,
pp. 2826-2841, 2007.

[2] H. Abdi and L.J. Williams. Principal component analysis. Wiley
Computational Statistics, vol. 2, pp. 433-459, 2010.

[3] A.O. Hero III and D. Cochran, Sensor management: past, present, and
future, IEEE Sensors Journal, vol. 11, pp. 3064-3075, 2011.

[4] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data, Prentice
Hall Advanced Reference Series, Prentice Hall, 1988.

[5] I.T. Jolliffe, Principal Component Analysis, Springer Series in Statistics,
2002.

[6] S. Narasimhan and C. Jordache, Data Reconciliation and Gross Error
Detection: an Intelligent Use of Process Data, Gulf Pub. Co., 2000.

[7] S. Narasimhan and R.S.H. Mah, Generalized Likelihood Ratio Method
for Gross Error Identification, AIChE Journal, vol. 33, pp. 1514-1521,
1987.

[8] G.W Ng and K.H Ng, Sensor management: what, why and how,
Information Fusion Journal, vol. 1, pp. 67-75, 2000.

[9] P.R. Peres-Neto, D.A. Jackson and K.M. Somers, How many principal
components? Stopping rule for determining the number of non-trivial
axes revisited, Computation Statistics & Data Analysis, vol. 49, pp.
974-997, 2005.

[10] N. Pawar, SQLite for Data Management, [Online], available:
https://github.com/leonahi/SensorDataManagement.git.

[11] N. Pawar, Cluster and Model Building, Residual Calculation and Error
Detection [Online],
available: https://github.com/leonahi/SensorProject.git.

[12] Python linear algebra module: numpy.linalg
http://docs.scipy.org/doc/numpy/reference/routines.linalg.html.

[13] Python statistical module: scipy.stats,
http://docs.scipy.org/doc/scipy/reference/stats.html.

[14] Python multiprocessing module: Multiprocessing, [Online],
http://docs.python.org/3.2/library/multiprocessing.html.

[15] Pycluster module: The C clustering library,
https://pypi.python.org/pypi/Pycluster.

[16] Python profiling module: cProfile,
http://docs.python.org/3.2/library/profile.html.

[17] R.A. Razak, M. Bhushan, M.N. Belur, A.P. Tiwari, M.G. Kelkar
and M. Pramanik, Data reconciliation and gross error analysis of
self powered neutron detectors: comparison of PCA and IPCA based
models, International Journal of Advances in Engineering Sciences and
Applied Mathematics, vol. 4, no. 1-2, pp. 91-115, 2012.

[18] D. B. Rubin, Inference and missing data, Biometrika, vol. 63, pp. 581-
592, 1976.

[19] K. Srinivasarengan, L. Mutyam, M.N. Belur, M. Bhushan, A.P. Tiwari,
M.G. Kelkar and M. Pramanik, Flux estimation from Vanadium and
Cobalt Self Powered Neutron Detectors (SPNDs): nonlinear exact inver-
sion and Kalman filter approaches, Proceedings of the IEEE American
Control Conference (ACC), Montreal, Canada, pp. 318-323, 2012.

[20] H. Spath, Cluster Analysis Algorithms for Data Reduction and Clas-
sification of Objects, Computers and their Applications Series, E.
Horwood, 1980.

[21] Socket module: http://docs.python.org/3.2/library/socket.html.
[22] SQlite: SQL database engine (http://www.sqlite.org/).
[23] Sqlite3 module: Python DB-API 2.0 interface for SQLite databases

http://docs.python.org/3.2/library/sqlite3.html.

