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Abstract— We consider multi-port RLC circuits and study
the problems of charging the circuit to a specified state with the
minimum supply of energy and that of discharging the circuit
from a specified state with maximum energy extraction. These
are known to be respectively the anti-stabilizing and stabilizing
solutions of the associated Algebraic Riccati Equation (ARE).
For the special case of states being physical states, i.e. capacitor
voltages and inductor currents, several interesting properties
are shown. Using Hamiltonian matrix arguments, we prove that
for multi-port RLC circuits, the state space realizations of the
impedance Z(s) and the admittance Y (s) are related such that
they both admit the same stabilizing solution of the ARE. The
same holds for the anti-stabilizing solution too. We next show
that the corresponding ‘closed loop state transition matrices’
computed using Z(s) or Y (s) are equal too.

We next consider single-port RLC circuits, for which we
provide capacitor/inductor loop/cut-set conditions with respect
to the port that result in a pole at the origin or a pair of
purely imaginary poles. In this case we show, using network
topological arguments, that all the ARE solutions and the
corresponding closed loop transition matrices share common
eigenvectors. We give physical RLC-circuit based insights for
these results. These results have potential implications for port-
controlled Hamiltonian matrices.
Keywords: passivity, storage functions, impedance, admittance,
cutset, loop, open-circuit, short-circuit, Hamiltonian matrix

I. INTRODUCTION

This paper deals with energy considerations (optimal
charging/discharging) of multi-port RLC circuits that have
a biproper impedance and admittance transfer matrices. We
use the relation of the optimal energies with the extremal
storage functions, which are also the extremal solutions of the
Algebraic Riccati Equation (ARE) to infer various interesting
properties, like independence of the maximal ARE solution
with respect to the state space realizations of the admittance
or impedance of the RLC circuit: as long as states correspond
to the physical states, i.e. capacitor voltages and inductor
currents. We use these states throughout the paper. We further
show that the ‘closed loop dynamics’ too is the same as
obtained from either the admittance and impedance state
space descriptions. While these results appear reasonable
using intuitive arguments based on the behavioral approach as
noted in Remark 4.2, we use Hamiltonian matrix arguments
to prove these properties. We next show that for single-port
networks, under suitable locations of the capacitor/inductor
with respect to the port, all the ARE solutions and the
corresponding closed loop state transition matrices share
certain common eigenvectors related to capacitor voltages and
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inductor currents. We formulate and prove this using network
topology arguments.

In order to describe the main results, we define the relevant
matrices here. Suppose x(t) denotes the vector of all capacitor
voltages and inductor currents at time t: the states of the RLC
system. Let n be the total of the number of capacitors and
inductors. The following five square matrices, each of size
n×n, play a central role in this paper.

1) Ka, the diagonal and positive definite matrix such that
xT

0 Kax0/2 is the actual (physical) energy in the system
when the state x is x0 ∈ Rn: the diagonal elements are
the capacitances and inductances.

2) Kmax: the symmetric and positive definite matrix such
that xT

0 Kmaxx0/2 is the minimum energy required to
charge the (initially discharged) circuit to state x0.

3) Kmin: the symmetric and positive semi-definite matrix
such that xT

0 Kminx0/2 is the maximum energy that can
be extracted from the circuit from state x0 (to finally
discharged state x = 0).

4) AKmax : the ‘closed loop’ state transition matrix that
‘achieves’1 the minimum energy required while charg-
ing: see equation (5) for the definition of AK .

5) AKmin : the closed loop state transition matrix that
achieves the maximum energy extractable while dis-
charging.

Of course, these matrices are well-studied (in, for example,
[13], [16]) using the theory of ARE, LMIs and Hamiltonian
matrices: these matrices depend on the state space realization
of the system and the transfer function. The earlier part of
this paper concerns proving independence of these matrices
whether the state space realization is constructed from the
RLC system’s admittance2 Y (s) or from its impedance Z(s).
The later part of this paper concerns proving that certain
locations of capacitors/inductors with respect to the port result
in common eigenvectors of the above five matrices.

While these results are interesting in their own right, they
have applications in more general port-controlled Hamilto-
nian systems, of which RLC circuits form a central structured
class of systems: see [12]. Closely related is the approach
followed in bond-graphs where the power is a product of
a ‘flow’ variable and an ‘across’ variable: see [2] and the
references therein. Energy storage elements are often of the
type where energy is a constant times the square of either the

1Note that we are aiming at only an infimum and one might not be able
to achieve the minimum: see equations (6), (7) and (5). This is indeed the
situation for the problems addressed in this paper. This is elaborated on in
Section VIII.

2One may note that, although we work with just admittance or impedance
in this paper, using [17, Proposition 2, Page 71], it is possible to state all
our results in more general hybrid transfer matrices also.
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flow-variable or the across-variable of the storage element.
Our results are extendable to this class of systems too.

The paper is organized as follows. The rest of this section
deals with notation. The following section contains the neces-
sary preliminaries about network topology, Hamiltonian ma-
trices and the Algebraic Riccati Equation. Section III contains
various assumptions for the results in this paper and also their
system-theoretic justifications. Section IV contains our main
results about independence of the solution to the ARE and the
closed loop transition matrix with respect to the state space
realizations of the admittance and the impedance. Section V
contains our main results on conditions under which all the
ARE solutions, together with the corresponding closed loop
transition matrices, share a few common eigenvectors. Section
VI contains an example demonstrating the results of this
paper. While we provide results for the case of imaginary axis
open-loop poles in Section V, we investigate in Section VII
certain limiting case behavior as the dominant pole (i.e. the
pole that is closest to the imaginary axis) approaches the
origin. We end the paper with a few concluding remarks and
scope for future work in Section VIII.

The notation we use is standard. The set of real numbers
is denoted by R and that of complex numbers by C. The set
of n-tuples of real numbers is denoted by Rn and we assume
an element v ∈ Rn is a column vector. The set of matrices
with entries from R and having m rows and n columns is
denoted by Rm×n. The n×n identity matrix is denoted by In
and its i-th column by ei. For a matrix K ∈Rn×n, Ki j refers to
the entry in the i-th row and j-th column. The block diagonal
matrix diag(A1,A2) contains as its diagonal blocks the square
matrices A1 and A2 (of possibly unequal sizes).

II. PRELIMINARIES

This section first covers preliminaries of network topology
and later briefs regarding solutions of the Algebraic Riccati
Equation (ARE) and the Hamiltonian matrix.

A. Network topology
We consider an electrical network whose topology is

described by a directed graph G with vertex set V and edge
set E. The graph G has no self-loops (i.e. both terminals of
a device connected to the same node), but can have multiple
edges across a pair of nodes; this is typical of electrical
networks. One or more of these edges is a ‘port’, and the
remaining edges are either resistors, inductors or capacitors.
While there can be any number of resistors, there is an upper
bound on the number of capacitors and on the number of
inductors: this bound gets imposed by further assumptions on
the network and the associated state space realization. This
is elaborated on in Section III.

A loop is defined as a collection of edges that form a cycle:
the directions of the edges are ignored for this purpose. In this
paper, we deal with only connected graphs. A cutset C is a
subset of edges such that C has the property that C’s removal
causes the graph to become disconnected, and further, no
proper subset of C has this property.

When analyzing the situation at DC, i.e. at s = 0, we
consider all the capacitors as open and all the inductors as
short. When analyzing the situation at s = ∞, i.e. at very

high frequencies, we assume all capacitors are short and the
inductors are open.

B. Hamiltonian matrix and ARE solutions
Dissipative systems theory and the link between storage

functions and Algebraic Riccati Inequality is well-studied in
the literature: see [16], [13], for example. We cover only the
very essential preliminaries here. Consider an RLC system
with minimal input/state/output representation

ẋ = Ax+Bu, y =Cx+Du, (1)

with port variables v (voltage) and i (current) and A ∈ Rn×n

and B,CT ∈ Rn×p where p is the number of ports. Thus,
v(t), i(t) ∈Rp and one of these is an input u, and the other is
output y: this depends on whether the state-space realization
is of the impedance or the admittance. Define the supply rate,
i.e. power P(v, i) := uT y = vT i. For the RLC system, because
it is ‘dissipative’ with respect to this supply rate, there exists
a real symmetric solution K = KT ∈ Rn×n to the following
Linear Matrix Inequality (LMI)[

(AT K +KA) (KB−CT )
(BT K−C) −(D+DT )

]
6 0. (2)

The set of all trajectories (u,x,y) that satisfy the state space
description (1) is defined as the behavior B of the system.
For this system, with K satisfying LMI (2), the state function
xT Kx is a storage function, i.e. d

dt xT Kx6 2uT y for all x,u and
y that satisfy equation (1). Assuming D+DT > 0, the Schur
complement with respect to D+DT in the matrix of equation
(2) gives the Algebraic Riccati Inequality (ARI)

(AT K +KA)+(KB−CT )(D+DT )−1(BT K−C)6 0. (3)

Instead of the inequality in (3), we need the equality more
frequently: the Algebraic Riccati Equation (ARE); we will
refer to equation (3) as the ARE (3). Corresponding to the
ARE (3), the Hamiltonian matrix H ∈ R2n×2n is defined as

H :=
[

A−B(D+DT )−1C B(D+DT )−1BT

−CT (D+DT )−1C −
(
A−B(D+DT )−1C

)T

]
. (4)

It is straightforward that if two state space realizations have
the same Hamiltonian matrix, then all the corresponding ARE
solutions are the same: we use this fact later. Each solution
K of the ARE gives rise to what we will call a closed loop
state transition matrix AK corresponding to an n-dimensional
invariant subspace of H; we define AK as

AK := A−B(D+DT )−1C+B(D+DT )−1BT K. (5)

The set of ARE solutions (for the controllable/observable
case) is known to be a bounded set with a maximum Kmax
and a minimum Kmin with respect to the partial ordering
defined by sign-definiteness on the real symmetric matrices.
Further, the maximum and minimum ARE solutions have the
following significance. For a given a ∈ Rn, consider Ba, the
set of all continuous system trajectories (u,x,y) satisfying
equation (1) with x(0) = a. Then,

aT Kmaxa = inf
(u,x,y) ∈Ba,

x(−∞) = 0

∫ 0

−∞

2uy dt (6)
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and

aT Kmina = sup
(u,x,y) ∈Ba,

x(∞) = 0

∫
∞

0
−2uy dt. (7)

See [16, Section 6] for a detailed treatment and the proofs.

III. NETWORK ASSUMPTIONS AND SIGNIFICANCES

We make a few assumptions on the RLC network: while
most of these can be justified as reasonable system-theoretic
properties, some of them are restrictive and have been as-
sumed for simplicity of exposition. These assumptions hold
for the rest of this paper. See [3], [8] for a detailed exposition
on the link between electrical networks and graph theory.

1) We assume there are a total of n components consisting
of capacitors and inductors, and there are p ports.
Hence A∈Rn×n, B,CT ∈Rn×p and D∈Rp×p. Resistors
do not affect the state space matrices’ sizes. In order
to provide an energy interpretation, capacitor voltages
and inductor currents are used as states.

2) We assume all inductances and capacitances are of
value one. This helps by Ka = In. Many of the results
are unaffected by this assumption since this amounts to
normalizing the inductor currents and capacitor volt-
ages. Each resistor has an arbitrary but positive and
finite resistance.

3) We assume that the multi-port network is such that the
port edges do not form a cutset nor a loop. This ensures
that both the admittance and the impedance transfer
matrices exist.

4) We assume that the capacitors do not form a loop.
Also we assume that the inductors do not form a
cut-set. Further, the capacitances and the port edges
together are assumed to not form loops nor do the
inductors and port edges form cutsets. This ensures
existence of a regular state space realization, instead
of a singular/descriptor state space form. These two
assumptions also impose restrictions on the maximum
number of capacitors and the maximum number of
inductors. See also Assumption 6 below.

5) We assume that none of the capacitor edges form a
cutset and none of the inductors form a loop. This is
necessary for the eigenvalues at the origin, if any, to
be controllable. Further, again for controllability, we
assume that the edges comprising of just the capacitor
edges and the port edges are such that, if any cutsets
are formed by them, then there exists an independent
set of cutsets such that each cutset contains at least
one port edge. We assume the same for the inductor
edges and the port edges in the context of loops. This
is equivalent to controllability at the origin.

6) While constructing the ARE, since we take the Schur
complement of the LMI with respect to D+DT , we
need its nonsingularity. For RLC networks, due to
reciprocity, D is a symmetric matrix and hence non-
singularity of (D+DT ) translates to biproperness of
the transfer matrix Y (s) or Z(s). This is equivalent to
the condition that when all the capacitors are shorted
and the inductors are opened (i.e. s=∞), then there is a

finite and nonsingular resistance matrix across the port.
This nonsingularity corresponds to the port becoming
neither open nor short (along any direction) when all
capacitors are shorted and inductors are opened. In
particular, this rules out one or more capacitors across
the port and also rules out one or more inductors
in series with the port. This condition is related to
Assumption 4 above.

7) We assume that a finite amount of energy is required
to charge the circuit to any given state a ∈ Rn, from
the initially discharged state. This is equivalent to
controllability.

8) We assume that a nonzero amount of energy can be
extracted out from any nonzero state a ∈Rn while dis-
charging the circuit. This is equivalent to observability.

IV. INDEPENDENCE OF OPTIMAL ENERGIES AND CLOSED
LOOP TRANSITION MATRICES FROM Y (s) AND Z(s)

This section contains our first main result: Theorem 4.1,
which states that for an arbitrary multi-port RLC circuit,
whether one uses a state space realization of the admittance
Y (s) or the impedance Z(s), the maximum ARE solution is
the same. Similarly, the minimum ARE solution is also the
same. Further, though the realizations are different, each of
the resulting closed loop transition matrices (equation (5)) is
the same whichever state space description is used.

Theorem 4.1: Consider an RLC circuit which has
a biproper admittance transfer matrix Y (s). Suppose
(Ay,By,Cy,Dy) and (Az,Bz,Cz,Dz) are minimal state-space
realizations of the admittance Y (s) and the impedance Z(s)
respectively. Let the closed loop state transition matrices (as
defined in equation (5)) during charging be AY

Kmax
and AZ

Kmax
with respect to the above realizations and let those during
discharging be AY

Kmin
and AZ

Kmin
. Suppose KY

max, KY
min, KY

max
and KZ

max are the corresponding positive definite matrices
indicating the optimal energies. Then, the following hold.

(a) KY
max = KZ

max, (b) KY
min = KZ

min,

(c) AY
Kmax

= AZ
Kmax

and (d) AY
Kmin

= AZ
Kmin

.

The proof of the above result requires further results that
we first state and prove below. After this we prove Theorem
4.1 by constructing the Hamiltonian matrix and the closed
loop transition matrix corresponding to the two state space
realizations. The following remark notes some significance.

Remark 4.2: Thinking of the RLC system from a be-
havioral viewpoint, Theorem 4.1 merely says that the op-
timal charging/discharging energies are independent of the
input/output partition, though intermediate matrices in the
calculation procedure do depend on the partition. Further, the
optimal trajectories also depend on just the system (and the
supply rate uT y). In fact, the set of storage functions is also
known to depend only on the system and the supply rate.
Given these observations, the above theorem merely formal-
izes this and is proved using Hamiltonian matrix arguments.

The following lemma relates the state space realizations
of the admittance and the impedance of an RLC circuit.
Of course, this is also the relation between the state space
realizations of a system transfer matrix and its inverse:
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assuming both are proper. Since the states are intended to
be the same (due to their physical meaning), we state this in
the context of an RLC circuit.

Lemma 4.3: Consider (Az,Bz,Cz,Dz) and (Ay,By,Cy,Dy),
the state space realizations of biproper Z(s) and Y (s). Then,

Ay = Az−BzD−1
z Cz, By = BzD−1

z ,
Cy =−D−1

z Cz and Dy = D−1
z .

Proof of Lemma 4.3: The state space representation of the
system in terms of (Az,Bz,Cz,Dz) is:[

sI−Az −Bz 0
Cz Dz −I

]x
i
v

= 0.

Perform the row operations on the above equations that corre-
spond to premultiplying the above matrix with the following
square and nonsingular matrix of size n+m:[
In BzD−1

z
0 D−1

z

]
to get

[
sI−Az +BzD−1

z Cz 0 −BzD−1
z

D−1
z Cz I −D−1

z

]x
i
v

=0.

(8)
The admittance realization for this system with input v and
output i is [

sI−Ay −By 0
Cy Dy −I

]x
v
i

= 0. (9)

Comparing (8) with (9) we get

Ay = Az−BzD−1
z Cz, By = BzD−1

z ,
Cy =−D−1

z Cz and Dy = D−1
z .

This proves Lemma 4.3. �

Equipped with the above lemma, we now prove Theo-
rem 4.1 .
Proof of Theorem 4.1: The proof proceeds by showing that,
though the state space realizations of the admittance Y (s)
and the impedance Z(s) are different, their inter-relation is
such that the Hamiltonian matrix is the same. Construct the
Hamiltonian matrix from (Ay,By,Cy,Dy):

Hy =

[
Ay−By(Dy +DT

y )
−1Cy By(Dy +DT

y )
−1BT

y

−CT
y (Dy +DT

y )
−1Cy −

(
Ay−By(Dy +DT

y )
−1Cy

)T

]
.

We will show that each of the four blocks are the same for
the corresponding block of Hz. Note that due to reciprocity
of the RLC network, Dy and Dz are symmetric matrices: we
use this symmetry below. Using Lemma 4.3

Ay−By(Dy +DT
y )
−1Cy = Az−BzD−1

z Cz +Bz(2Dz)
−1Cz

= Az−Bz(2Dz)
−1Cz = Az−Bz(Dz +DT

z )
−1Cz.

Similarly, Lemma 4.3 helps simplify By(Dy +DT
y )
−1BT

y :

By(Dy +DT
y )
−1BT

y = Bz(Dz +DT
z )
−1BT

z ,and
−CT

y (Dy +DT
y )
−1Cy =−CT

z (Dz +DT
z )
−1Cz. (10)

Hence all the submatrices of the Hamiltonian with respect
to impedance Z(s) and admittance Y (s) realizations are the

+ −
vc

the circuit
Rest of+

−
v

i i`

+
v
− the circuit

Rest of

i

Fig. 1. Pole or zero at the origin

same. This proves that the set of solutions K to the ARE is
the same whether the state space realization is constructed
from Z(s) or Y (s). Hence the set of corresponding closed
loop state transition matrices AK is the same too. �

V. COMMON EIGENVECTORS OF EXTREMAL ARE
SOLUTIONS AND CLOSED LOOP STATE-TRANSITION

MATRICES

In this section we formulate conditions on single-port
RLC circuits under which all the ARE solutions share some
common eigenvectors. In this case, the closed loop transition
matrices too turn out to share those common eigenvectors.
Figure 1 is relevant to the following theorem about a capacitor
in series with the port; the dual result of an inductor across
the port can be easily stated and proved and is hence skipped.

Theorem 5.1: Consider a single-port RLC circuit with
a capacitor forming a cut-set with the port. Suppose
(Az,Bz,Cz,dz) is a state-space description of the impedance
Z(s) and let x1, the first component of the state, be vC: the
voltage across the capacitor. Then, the following hold.

1) Every ARE solution K can be written as diag(1, K̃),
with K̃ a symmetric matrix of size (n−1)× (n−1).

2) e1 is an eigenvector of each ARE solution K and also
of the corresponding closed loop state transition matrix
AK , with corresponding eigenvalue 1 and 0 respectively.

Theorem 5.1 is proved later below in this section. Our
next main result is about an LC tank (also called the LC
resonant circuit), instead of a capacitor, in series with the
port: this is the case of purely imaginary axis eigenvalues also
causing common eigenvectors. Figures 2 and 3 illustrate these
situations: here too we skip the dual result corresponding to
Figure 2.

Theorem 5.2: Consider a single-port RLC circuit with an
LC forming a cut-set with the port. Let x1 be vC and x2 be iL
(the states corresponding to the LC tank). Let (Az,Bz,Cz,dz)
be a state-space description of the impedance Z(s). Then, the
following hold.

1) Every ARE solution K can be written as diag(I2, K̃),
with K̃ a symmetric matrix of size (n−2)× (n−2).

2) e1 and e2 are eigenvectors of each ARE solution K with
corresponding eigenvalue 1.

3) The vectors e1 and e2 span an invariant subspace
of each closed loop state transition matrix AK with
eigenvalues ±i.

The proofs of the above two theorems require further
auxiliary results: we state these and prove them first.

Lemma 5.3: Suppose a single-port RLC circuit satisfies the
assumptions listed in Section III. Assume there is a capacitor
in series with the port and let the first state correspond to this
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Fig. 3. LC tank formed upon shorting of the port

capacitor’s voltage. Then Az has its first row and first column
identically zero. Further, the first entry of each of Bz and Cz
equals 1.

Analogously for an inductor across the port with the first
state as the current through this inductor: Ay has its first row
and first column identically zero. We do not delve further into
this dual situation.
Proof of Lemma 5.3: This is proved using the superposition
principle. Consider Figure 1 where a capacitor is in series
with the port (and the rest of the circuit). In order to prove
the property of Az, we assume the input i is zero (i.e the
port is open). The first column of Az being zero is equivalent
to the statement that the rates of change of all states are
zero, when all states, except possibly the first state vc, are
zero: this equivalence follows from the meaning of Az and
from the superposition principle. Since the port is open,
no current flows through the capacitor and hence vc being
nonzero cannot cause a nonzero rate of change in any of the
other states. This proves that the first column of Az is zero.
We now apply a slightly different argument to prove that that
the first row of Az is zero too. Notice that, again with the port
being open, the first row being zero is equivalent to vc being
constant even if one or more of the states are nonzero: this
follows again from the meaning of Az. Since the port is open
and no current can flow through the capacitor, vc is constant
for arbitrary values of the other states. This proves that the
first row of Az is zero too.

We next prove that the first component of Bz is 1. Notice
that d

dt Cvc = i, and since vc is the first state and since the
capacitance is unity, this equation proves that Bz has first
component equal to 1.

It remains to show that the first component of Cz is 1.
Consider again Figure 1 with the port open. In order to see
the value of the first component of Cz, assume all other
states are zero: i.e. all other capacitors are shorted and
inductors are opened. Since no current flows through the
rest of the network, v = vc and hence the first component
of Cz equals 1. We crucially used here the fact that the rest
of the circuit is not open and has zero potential across it.
(See Assumption 6 in Section III.) This proves Lemma 5.3. �

The next result is for the purely imaginary eigenvalues case.

Lemma 5.4: Suppose an RLC circuit satisfies the assump-
tions listed in Section III. Assume there is a capacitor and
inductor tank in series with the port and let the first state
correspond to this capacitor’s voltage and the second state
correspond to the inductor current: see Figure 2. Then the
top left 2× 2 leading principal submatrix of Az equals J :=[

0 −1
1 0

]
and remaining entries in those two rows and two

columns are all zero. The first and second elements of Bz are
1 and 0 respectively. The first and second elements of Cz also
are 1 and 0.
Proof of Lemma 5.4: We use the superposition principle
to prove this lemma too. Consider Figure 2 which has an
LC tank in series with the rest of the circuit. Consider the
impedance realization with input as the current through the
circuit and output as the voltage across the port. Suppose the
input and all the states, except those corresponding to the
LC tank circuit, are zero. As the input is zero, we consider
the port as open. Hence only the LC tank’s inductor and
capacitor states can affect each other. This implies that all
entries of the first and second rows of Az are zero except the
leading principal 2×2 minor of Az. Using Figure 2 and that
the capacitance/inductance values are unity, due to the rest of
the circuit being open, we obtain that this minor equals J as
defined in the Lemma statement.

We next show that the first and second columns of Az are
zero except the top 2× 2 minor. Assume again the port is
open, i.e. the input i= 0. The required structure on Az follows
due to the first two states (of the LC tank) not affecting any
of the other states in the circuit for lack of a discharging path
through the other elements.

We now show that Bz has the first two entries as 1 and
0. Investigating B is same as studying the rates of change
of states assuming all the states are zero. In particular, the
inductor in the LC tank is open. Hence the input current i
affects only the capacitor voltage in the LC tank. Exactly as
proved in Lemma 5.3 the first element of Bz is 1. As i does
not affect the inductor state, the second element is 0.

It remains to show that the first component of Cz is 1 and
second component is 0. Consider again Figure 2 and assume
the input i = 0, i.e. the port is open. In order to see the value
of the first component of Cz, assume all other states are zero:
i.e. all other capacitors are shorted and inductors are opened.
Again using the principle of superposition, since no current
flows through the rest of the network, v = vc and hence the
first component of Cz equals 1. As no current flows through
the rest of the circuit the inductor state will not affect the
voltage at the port. Hence the second component of Cz is 0.
We again used here the fact that the rest of the circuit is not
open and has zero potential across it. (See Assumption 6 in
Section III above.) This proves Lemma 5.4. �

Using the above lemmas, we next prove Theorems 5.1-5.2.
Proof of Theorem 5.1: The proof proceeds by finding a
general structure for an arbitrary ARE solution K. We obtain
e1 as an eigenvector of K. We then show that e1 lies in the
nullspace of each AK . In the sequel, we use dy

2 = (dz+dT
z )
−1.

Using Lemma 5.3, the vector e1 lies in the null space of
Az. Premultiplying and postmultiplying the ARE in (3) by eT

1
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and e1 respectively, we get

(Aze1)
T Ke1 + eT

1 KAze1 +
dy
2 eT

1 (KBz−CT
z )(B

T
z K−Cz)e1 = 0,

which gives dy
2 eT

1 (KBz−CT
z )(B

T
z K−Cz)e1 = 0,

and hence, (BT
z K−Cz)e1 = 0.

Post-multiplying the ARE (3) by e1 we get

AT
z Ke1 +K(Aze1)+

dy
2 (KBz−CT

z )(B
T
z K−Cz)e1 = 0,

and hence, AT
z Ke1 = 0.

Since the rest of the matrix Az can have an arbitrary structure,
invoking the controllability assumption, we conclude that the
first column of K is of the form ce1. By symmetry of K, the
first row of K is ceT

1 .
This proves that any ARE solution has its first row and first

column identically zero except K11. While for Ka, the actual
energy matrix, unit-capacitance ensures c = 1, it remains to
show that c = 1 for all ARE solutions. This is shown using
Lemma 5.3 and equation (2) as follows. The first row and the
first column of the top-left block matrix AT

z K +KAz of the
matrix in LMI in (2) is zero. Due to semidefiniteness of that
matrix, this causes the first component of KBz−CT

z to be 0.
Using Lemma 5.3, we infer K11 = 1 for all ARE solutions.

We now show that e1 is an eigenvector of not just every
ARE solution K but also each corresponding closed loop
state transition matrix AK . Expressing AK in terms of the
impedance realization of the system, we get

AK = Az−
dy

2
BzCz +

dy

2
BzBT

z K

Postmultiplying the above equation by e1 we obtain

AKe1 = Aze1−
dy
2 BzCze1 +

dy
2 BzBT

z Ke1,

which gives AKe1 =−
dy
2 BzCze1 +

dy
2 BzCze1,

and hence AKe1=0. This proves that e1 is an eigenvector of
each AK with eigenvalue 0, and thus proves Theorem 5.1. �

The proof of Theorem 5.2 is similar: only that we have
purely imaginary axis eigenvalues instead of at the origin.
Proof of Theorem 5.2: The proof proceeds by finding a
general structure for K. From this structure we deduce that e1
and e2 span a K-invariant subspace for every ARE solution
K. Exploiting this structure of K, we eventually show that e1
and e2 span the eigenspace of AK with ±i as the eigenvalues.

Using Lemma 5.4, for V ∈Rn×2 with V := [e1 e2], we have
an Az-invariant subspace, AzV =V J.

Consider the ARE in (3). Premultiplying and postmultiply-
ing by V T and V respectively we get:

(AzV )T KV +V T KAzV +
dy
2 V T (KBz−CT

z )(B
T
z K−Cz)V = 0,

which simplifies to
JTV T KV +V T KV J+ dy

2 (B
T
z KV −CzV )T (BT

z KV −CzV ) = 0.

Define Q∈R2×2 as dy
2 (V

T KBz− (CzV )T )(BT
z KV −CzV ), and

notice that Q is symmetric and Q > 0. Denote the leading
principal 2×2 submatrix of K by K22. This gives

JT K22 +K22J+Q = 0. (11)

Now using the Lemma 5.5 (stated and proved below), we
conclude that Q= 0. Using the same lemma, we conclude that
K22 equals cI2 for some c > 0. It remains to show that c = 1
for all ARE solutions: this is true for Ka, the actual energy
matrix. We use the argument exactly like in the case of a
single capacitor in series with the port. Note that AT

z K+KAz
has its first 2 rows and first 2 columns identically zero due
to J+ JT = 0. Using this fact within the LMI (2), we obtain
that the first two components of KBz −CT

z equal zero for
every ARE solution K. Use Lemma 5.4 now to conclude that
c = 1 and thus K22 = I2. Thus e1 and e2 form eigenvectors
of K with eigenvalues 1. This proves Statements 1 and 2 of
Theorem 5.2.

In order to prove the Statement 3, we express AK in terms
of the impedance realization of the system:

AK = Az−
dy

2
BzCz +

dy

2
BzBT

z K.

Postmultiplying the above equation by V we obtain

AKV = AzV −
dy
2 BzCzV +

dy
2 BzBT

z (KV ),

which gives AKV =V J− dy
2 BzCzV +

dy
2 BzCzV,

and hence, AKV =V J.

This proves that ±i are eigenvalues of AK (Statement 3) and
hence proves Theorem 5.2. �

In the above proof, we used the following auxiliary result.
Lemma 5.5: Suppose A ∈ R2×2 has purely imaginary and

nonzero eigenvalues. Assume Q ∈ R2×2 and Q = QT > 0. If
AT P+PA = −Q has a positive definite symmetric solution

P, then Q = 0. Further, if A = J =

[
0 −1
1 0

]
, then P = cI for

some c.
Proof of Lemma 5.5: We prove this by contradiction. Suppose
Q 6= 0. Assume further that (Q,A) is observable. Since P > 0,
using standard Lyapunov arguments, we obtain that A should
be Hurwitz. This contradiction implies that either (Q,A)
is unobservable and/or Q = 0. (Of course, Q = 0 implies
unobservability too.) Suppose (Q,A) is unobservable. Then
at least one of the eigenvectors of A is in the nullspace of
Q. Since eigenvalues of A occur in complex conjugate pairs,
the other eigenvector is independent and is unobservable
too. This implies that nullspace of Q is of dimension 2. This
proves that the 2× 2 matrix Q = 0. The special case when
A = J and Q = 0 is proved by straightforward substitution. �

Remark 5.6: We comment here about the significance of 1
being an eigenvalue of matrices Kmax and Kmin (and of course,
all ARE solutions). Note that the actual storage function
Ka satisfies Kmin 6 Ka 6 Kmax. Due to our normalization of
all inductances and capacitances to value one, this means
Kmin 6 In 6 Kmax. This means each eigenvalue of Kmin is at
most one and each eigenvalue of Kmax is at least one. In such
a situation, an eigenvalue of Kmax or Kmin being one implies
‘conservedness’ or ‘losslessness’. Indeed, suppose a is the
eigenvector corresponding to eigenvalue 1, then the minimum
energy required to charge the circuit to state a equals the
actual energy, and this further equals the maximum energy
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that can be extracted from this state. No resistors are ‘en-
countered’ during the charging or discharging process. While
this is obvious for an LC-circuit, our results reveal that for
the RLC case too, there are limiting cases where a capacitor
in series with the port, and possibly with resistances, also
admits such lossless states. Theorems 5.1 and 5.2 correspond
to such lossless states with zero ‘i2R’ losses in the limit. It is
essential that these states are also ‘invariant’ directions with
respect to closed loop dynamics (i.e. of AK): this requires that
the corresponding eigenvalue is on the imaginary axis and has
no ‘damping’. These intuitive expectations have been made
formal in the above theorems.

VI. EXAMPLE

In this section we consider an example of an RLC circuit
for which Theorem 5.1 is applicable (see Figure 4). We
extensively use the recently developed tool described in [6]
to automatically generate the state space realizations using
Python and Scilab from the circuit schematic drawn using
OpenModelica’s graphical editor.

Consider the RLC circuit shown in Figure 4 where capac-
itor C1 forms a cutset with the source. The state variables for
the circuit are x =

[
vc3 i`1 vc2 vc1

]T and the parameters
are C1 = C2 = C3 = 1F, L1 = 1H, R1 = R2 = R3 = 1Ω. The
state-space matrices for these parameters are

Az =

−0.333 −0.667 −0.333 0
0.667 −0.667 −0.333 0
−0.333 0.333 −0.333 0

0 0 0 0

, Bz =

0.333
0.333
0.333

1

,
Cz =

[
0.333 −0.333 0.333 1

]
and Dz = 0.667.

R3

− + + −
C1

−
+

−
v

+
R1 C2 C3

L

i

R2

Fig. 4. Circuit for example

The extremal ARE solutions Kmax and Kmin for this real-
ization are respectively:[ 57.55 −33.55 9.80 0
−33.55 33.51 −9.77 0

9.80 −9.77 9.86 0
0 0 0 1

]
and 10−4×

[
417.4 −417.4 −1.757 0
−417.4 836.6 −413.1 0
−1.757 −413.1 1425 0

0 0 0 104

]
,

and they give the closed loop state transition matrices AKmax
and AKmin respectively as2.40 −1.40 0.41 0
3.40 −1.40 0.41 0
2.40 −0.40 0.41 0
8.20 −2.20 2.22 0

and

−0.42 −0.58 −0.41 0
0.58 −0.58 −0.41 0
−0.42 0.42 −0.41 0
−0.25 0.25 −0.22 0

.
Notice that the voltage across the capacitor in series with

the port is the fourth state, and hence we have the fourth
row/column of Az as zero. Other properties of the fourth
row/column are visible for the matrices Kmin, Kmax, AKmin
and AKmax .

VII. DOMINANT POLE AND LIMITING CASE PHENOMENON

In this section we investigate whether the commonality
of the eigenvector corresponding to a pole at the origin
(or a pair of purely imaginary axis poles) is because of
this eigenvalue being ‘dominant’(i.e. the pole closest to the
imaginary axis). More precisely, keeping in mind the points
noted in Remark 5.6, the pole at the origin of AKmax and
AKmin also correspond to the conserved states: no energy is
lost (in resistors) while optimal charging to this state and
all the actual stored energy can be discharged out of the
port while optimal discharging. Of course, by the Courant-
Fischer-Weyl min-max principle of eigenvalues of symmetric
matrices, eigenvalue 1 being the least of all eigenvalues
of Kmax and the maximum of all eigenvalues of Kmin, this
common eigenvector is clearly the most efficient state of all
states with the same actual energy. What we investigate in
this section is whether the ‘most efficient’ aspect of this state
is related to the imaginary-axis poles being ‘dominant’ too.
In order to investigate this relation, we study the circuit in
Figure 5, and in particular, the role that the ‘shunt resistor’
Rsh plays in the extent of commonality of eigenvector.

− + −+
R1 C2

R2C1

Rsh

L
+
v
−

i

Fig. 5. A capacitor with a shunt Rsh

Consider the shunt resistor Rsh across the capacitor C1. In
the absence of this resistor, we have a pole at the origin for
Az and each AK . The pole at the origin is shifted slightly into
the negative half complex plane C− for Az when Rsh is large
but finite. In this situation, we also study how the smallest
eigenvalue λmin of Kmax and the largest eigenvalue λmax of
Kmin converge to 1 as Rsh→ ∞.

For the circuit of Figure 5, the chosen parameters are C1 =
C2 = 1F, L1 = 1H, R1 = 10 Ω, R2 = 1 Ω, Rsh = 1 KΩ and
the state-variable x =

[
vc1 i`1 vc2

]T . We get

Az=

−0.001 0 0
0 −11 −1
0 1 0

,Bz=

1
1
0

,Cz=
[
1 −1 0

]
,Dz=1.

Of course, the ARI solution corresponding to actual storage
is Ka = I3. The eigenvalues of the Hamiltonian matrix H
are ±0.03144,±0.09681 and ±10.3918. The minimum and
maximum ARE solutions are respectively[

1.112 −0.045 −1.936
−0.045 42.02 0.052
−1.936 0.052 78.27

]
and

1
10

[ 9.39 −0.007 0.23
−0.007 0.238 0.0014

0.23 0.0014 0.134

]
.

Eigenvalue of Kmax that is closest to one is 1.0638 and that
of Kmin is 0.9400. The corresponding eigenvectors of Kmax
and Kmin are respectively0.9997

0.0008
0.025

 and

 0.9997
−0.0008

0.025
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which are no longer dependent. One can check that none
of these are eigenvectors of AKmax or AKmin . The dominant
eigenvalue of AKmin is −0.0314.

Of course, as the shunt resistance Rsh approaches ∞, we
obtain a case where that resistance is absent, and Theorem 5.1
is applicable and an eigenvalue each of Kmax and Kmin
approach one. (Also see Remark 5.6.) A plot of λmin of Kmax
and λmax of Kmin versus the shunt resistance Rsh is shown in
Figure 6.

1 2 3 4 5 6
0.5

1

1.5

log10 Rsh

λmin of Kmax

λmax of Kmin

Fig. 6. Plot of λmin and λmax (respectively, the smallest eigenvalue of Kmax
and the largest eigenvalue of Kmin) versus the shunt resistance Rsh (in Ω)

The conclusion we draw from this example is that the
dominance of an eigenvector of AKmax or AKmin is not a reason
for causing them to have a common eigenvector with each
other or with Kmax and/or Kmin.

VIII. CONCLUSION

We summarize the results obtained in this paper. Theo-
rem 4.1 formulated the independence of the optimal energies
and the optimal trajectory dynamics with respect to the
state space realizations of the impedance or admittance: the
states being inductor currents and capacitor voltages. From a
purely systems viewpoint, this is reasonable since the opti-
mal charging/discharging specification is independent of the
input/output classification of the port variables: voltage and
current. Similarly, it is reasonable that the optimal trajectory
dynamics is independent of the input/output classification.
This ‘behaviorally’ expected result was also revealed by the
Hamiltonian matrix: in fact, the state space realizations of the
admittance and impedance were related in such a way that
the Hamiltonian matrix is the same!

Two of our other main results: Theorems 5.1 and 5.2
formulated how a pole or zero at the origin of the im-
mittance functions causes the corresponding state to result
in a common eigenvector of every ARE solution K, every
corresponding closed loop transition matrix AK , and the
suitable one of Az or Ay (all defined in Section I). It must
be noted that imaginary axis poles at ‘optimal’ charging or
discharging is a limiting case situation and not implementable
in practice. Intuitively, to avoid ‘i2R losses’ while charging
a capacitor in series with the port and resistances elsewhere
(thus causing the open loop impedance to have a pole at
the origin), it is reasonable that the current is very low, thus
causing the charging-time (in order to charge to a specified
capacitor voltage) to be arbitrarily large. This causes the
optimal charging dynamics (not the maximum/minimum but
the supremum/infimum) to have a pole at the origin. A
similar argument holds for the optimal discharging. The same

arguments also hold for imaginary axis poles, for example,
due to an LC tank. Obviously, these results can be restated
for an inductor across the port and an LC tank formed across
the port upon shorting the port (Figures 1 and 3).

While it is known that extremal ARE solutions are related
to optimal charging and discharging, and the link between
ARE solutions and Hamiltonian matrix is also known, this
paper brings out key properties about common eigenvector
and eigenvalues across ARE solutions. Further, we relate
the common eigenvector/eigenvalues to the location of the
capacitor/inductor with respect to the port. We have provided
physical interpretation to these results in the context of
optimal charging/discharging of RLC circuits.

We considered an example to demonstrate Theorem 5.1.
When the dominant pole is not at the origin but very close,
we demonstrated in Section VII that the commonality of the
eigenvectors of Kmax and Kmin is no longer the case.
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