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Abstract- We develop a new model for traffic with on roads 
with multiple lanes but where the vehicles do not quite adhere 
to a lane discipline. To study the system the dynamics is split 
along two independent directions-the y-axis representing the 
direction of motion and and the x-axis representhe the lateral or 
the direction perpendicular to the direction of motion. Dif1'erent 
influence graphs are used to model the interaction between 
the vehicles in these two directions. The model allows more 
than one 'layer' ahead to influence the dynamics of a car thus 
allowing for mutliple cars in its visible range to affect its motion. 
The stability of the dynamical system models are analyzed. 
Conditions are provided under which all cars can converge to 
constant spacing. The spacing will refer to distance among cars 
in two levels along the direction of motion and between the cars 
in the same level. 
Keywords: multilane traffic model, platoon formation, stability, 

I. INTRODUCTION 

Those of us that drive in Indian cities, we participate in 
what we may call 'functioning anarchy' (apologies to J K 
Galbraith), and willy nilly even precipitate some of the chaos 
that we see. Every one has favourite jibe and diatribe about 
our traffic. That long term and short term mechanisms to 
reduce travel times and associated uncertainties has been 
recognised for a while now and several attempts are indeed 
being made. Another important need is to understand the 
causes of the traffic behavior that we see and to possibly 
understand the consequent economics-rationale for such 
behavior, societal costs, etc. This paper is a step in that 
direction. In this paper, we develop a stylised model to 
represent the interaction among the vehicles on the road and 
use this to characterize the emerging macroscopic behaviour. 

The basis for our model comes from the single-lane car­
following models that have been studied for a while now, 
e.g., [1], [2], [3]. The basic premise of these models is 
that the cars follow each other in a single file and the 
acceleration strives to maintain a constant spacing between 
the cars. A dynamical system model for such a system is 
then analysed for stability. Multilane models are essentially 
extensions of the these single lane models with different 
extensions modeling the various interactions that are now 
possible. For example, in the multi-Ianed model of [11], 
multiple vehicular interactions in a single lane where used. 
In a completely approach, in [7] information from assistance 
systems are used and the model is tested with real driver 
behaviours. In this paper we also consider a multilane system 
except that we assume that there is no strict demarcation 
of lanes, i.e., wide roads on which multiple cars can drive 
abreast. 

Some of the work was done in the Bharti Centre for Communications 

Our multilane model is adapted from the single lane model 
of [ 4]. A directed graph models the influence. We too seek 
an equilibrium analysis of a dynamical system model that 
we develop. Our notion of stability refers to the condition 
that all cars attain the same velocity as the leader. Since this 
a car following model, we also have the notion of levels 
and the system will also seek the condition that cars in one 
'level' maintain a fixed spacing from cars in the next 'level.' 
Our analysis will primarily use the Laplacian of the directed 
graph that models the influences which in turn will allow 
us to dissolve the lanes, so to say. The influence graph can 
also be a weighted graph to enable us to model the relative 
degrees of the influences. 

The rest of the paper is organized as follows. We begin by 
introducing some premliminaries related to graph Laplacians. 
We then cover the assumptions in Section III. In Section 
IV we explain the bifurcation of the system along the two 
possible directions of motion. We discuss the control laws 
and dynamics along the direction of travel in Section IV­
A. We then analyze the system along horizontal direction in 
Section IV-B. In Section V we provide a numerical results 
for our model and the behaviour of the system. Finally, we 
discuss some of the possible extensions of the model and its 
analysis. 

II. GRAPH RELATED PRELIMINARIES 

Consider a graph r;; = (V, g) with node set V and edge 
set g. Each node in the graph represents a vehicle. The 
directed edges are introduced as follows: If vehicle j can 
be sensed by vehicle i (i -I- j), then we introduce an edge 
from j to i and denote it by j --+ i. We define the Laplacian 
(L) for a directed graph with unit weights as follows: 
f!ij := -1 if j --+ i and f!u:= indegree. As an example 
consider the Laplacian of the graph in Figure 1. [ 0 

-1 L:= �1 
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For weighted directed graphs r;; = (V, g, w) is a directed 

graph r;; = (V,g) along with a function w: g --+ IR+ where 
IR+ denotes the set of positive real numbers. Assigning 
weightswol, W02, w13, and W23 to edges 0 --+ 1, 0 --+2, 1 --+ 
3, and 2 --+ 3 in Figure 1. The Laplacian for the weighted 
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Fig. 1: Graph with 4 nodes 

graph is as follows: 

b [-�Ol 
0 0 wJJ WOl 0 

-W02 0 W02 
0 -W13 -W23 

In the context of directed graphs we will define the 
neighbour set (JY) as all cars directly visible to the car in 
consideration. For example, in Figure 1 JY (3) = 1, 2. 

III. ASSUMPTIONS 

We make some assumptions regarding the capabilities of 
the system. Some of the assumptions are made for simplicity 
of exposition. 

1) We assume that all cars (nodes) have the same dynam­
ics and control laws. 

2) The maximum number of neighbours will depend on 
the visibility of cars. We assume identical drivers, so 
the maximum number of visible neighbours is same 
for all cars. We are allowing only directly visible cars 
to influence the car in consideration: more precisely 
car 5 in Figure 2a can see cars 1, 2, 3 but not car O. 

3) We fix certain number of cars (cars 1, 2, and 3 in figure 
2a) as leaders. These cars together are occupying the 
whole road width. Though they have been termed as 
leaders we assume these cars follow a 'phantom leader' 
as shown in Figure 2a for motion in the direction of 
travel. 

4) We have two different connected graphs for determin­
ing the control laws governing motion along the x and 
Y axis. We consider Y axis as motion in the direction 
of travel and x axis as perpendicular to the direction of 
travel. We assume the laws to be independent of each 
other along the axes. 

IV. MULTILANE TRAFFIC 

The motion of cars will take place along two directions. 
There will be two separate graphs, one for control along the 
Y axis and the other for motion along the x axis. We first 
analyze the system in the y direction and then we move on 
to analyze the x direction motion. 

A. Y axis motion 
Consider a stream of cars as shown in Figure 2a. Node 

zero is the phantom leader and is moving at a constant 
equilibrium speed Vo. All cars have positive y coordinates. 
The arrows indicate the flow of information amongst the cars. 
We refer to car 0 as level 0, cars 1, 2, and 3 as level one and 
so on. 

Fig. 2: Graphs for information flow 

Let the acceleration, velocity and posItIOn for car i be 
represented as ayi, Vyi and Yi. Note that car 9 will have the 
lowest Y coordinate and car 0 will have the highest one. 

We determine the acceleration of car i + 1 as follows: 

aY(i+l) := L b(vyj-Vy(i+l»)+k(Yj-Yi+l-gy) 
j=JV(i+l) 

where JY(i+ 1) represents the neighbour set of car i+ 1, 
band k are constants (loosely speaking they play the role of 
damping and spring constant), and gy is the parameter used 
to determine the required equilibrium distance. 

These laws can be represented compactly for n + 1 cars 
using the Laplacian of the graph as follows: 

where Y Y' v Ii E IRI1+1 1 E IRI1 0 E IRI1+5 , , y, y , , . 
Below is our first main result. The above control law 

guarantees stability and also fetches the desired spacing 
between levels. 

Theorem 4.1: Consider a directed graph with unit weight 
for all communication links. Suppose each node (except for 
the leader) has the same indegree. Then the control law (1) 
achieves a stable equilibrium point with any positive desired 
constant spacing. 

Theorem 4.2: Consider a weighted directed graph such 
that the total weight across all incoming edges is the same 
for each node. Then the control law (1) achieves a stable 
equilibrium point with any positive desired constant spacing. 

Corollary 4.3: The Laplacian of the weighted directed 
graph has the following properties: 

1) The row corresponding to the phantom leader has all 
zeros. 

2) Each car senses only those cars in the level ahead of it 
in Y direction. This ensures the absence of cycles in the 
graph and the matrix has a lower triangular structure. 

3) L has non-negative eigenvalues and eigenvalue at 0 is 
simple. 
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4) Under assumptions of Theorem 4.2 and 4.1, the diag­
onal entries will be same for all rows excluding rows 
o to 3. 

5) The left eigenvector corresponding to eigenvalue 0 will 
be of the form [1 0 0 1 where 1 corresponds to 
car 0 (leader car). 

6) The Laplacian nullspace consists of the vector 
[1 1 ... 1]. 

The proof of these properties are straightforward and hence 
skipped. 

Remark 4.4: The computations require only information 
of the graph. The weights can then be choosen by the cars 
individualy, thus making the computation local to each car. 
In this sense the control law is distributed. 

With these developements we now proceed to prove our 
main results. 
Proof of Theorem 4.1: Representing the states of the control 
law (1) as Yi = Yi -gy. The stability part of the theorem 
directly follows from [9, Lemma 4.1 and Theorem 4.1J. 
From Corollary 4.3.5 velocities of all cars converge to 
leader's velocity. 

The spacing can be obtained by observing the difference 
system at equilibrium. Note that the indegree of all cars is 
the same. For ease of exposition we will provide the proof 
for an indegree of 2 using Figure 2a. At equilibrium, the 
terms corresponding to spacing in the control law can be 
represented as follows: 

2 0 0 0 0 0 Y4 gy-YI-Y2 
0 2 0 0 0 0 Ys gy-YI-Y2 

( -1) 0 0 2 0 0 0 Y6 gy-Y2-Y3 
-1 0 -1 2 0 0 Y7 gy 
0 -1 -1 0 2 0 Ys gy 

-1 0 -1 0 0 2 Y9 gy 
Equations corresponding to nodes 7, 8, 9 are obtained from 

the graph structure. Cars 1, 2, 3 are assumed to be leaders 
and having the same Y coordinate. From the above equations 
it can be seen that Y; -Yj = gy/2 where i,j belong to 
consecutive levels with i > j. The 2 in the denominator 
correponds to the indegree of the graph. 

Here the indegree of the node is more important rather 
than the actual connections. These conditions can be easily 
extended to nodes having an indegree of M and the spac­
ing corresponding to such graphs would be gy/M between 
consecutive levels. 

Also, all shifted solutions will satisfy these conditions 
from Corollary 4.3.6. 

D 
However this theorem will only work when the indegree of 
each node is same. We relax this condition by setting weights 
along the conununication links. This is achieved in Theorem 
4.2. 
Proof of Theorem 4.2: Stability part of this theorem is same 
as Theorem 4.1. We proceed to show the spacing details 
for cars in different levels. Though the indegree could be 
different now, the net weight being same plays the required 

role here: we analyze the terms corresponding to spacing in 
the control law at equilibrium as before. 

Consider Figure 2a. In order to have different indegree's: 
add an extra edge connecting cars 6 to 1 with weight W61. 
The Laplacian for this modified weighted graph is as follows: 

0 0 0 0 0 0 0 
-WI WI 0 0 0 0 0 
-WI 0 WI 0 0 0 0 

L= -WI 0 0 WI 0 0 0 
0 -W41 -W42 0 W44 0 0 
0 -WSI -WS2 0 0 Wss 0 
0 -W61 -W62 -W63 0 0 W66 

where wij represents the weight along link j ---+ i 'V i i=- j, 
Wi; = EJ=I wij. Writing the equations for car 5 and car 6 we 
get: 

Ys = YI -gy ( � ) , WSI WS2 
Y6 = YI -gy ( 1 ) . . W61 + W62 + W63 

However, WSS = W66 by assumption. Hence the spacing 
for car 5 and car 6 from the cars in the above level will 
remain same. This same argument can be extended for any 
distribution of weights along the edges as long as the net 
weight remains the same for all nodes. This completes the 
proof of the theorem. D 

We now turn our attention to the motion along x axis or 
the horizontal movement of cars. 

B. X axis motion 
Our control law and the assumptions on information flow 

graph have to be modified slightly for representing this 
situation. The cars are assumed to acquire horizontal velocity 
either when they want to overtake a specific car or when they 
want to converge to the desired distance. Once the target 
distance is reached the cars will no longer move in the x 
direction. 

Let the boundary of the road be represented by phantom 
cars. In Figure 2b, cars 1, 5 and 9 represent phantom cars. 
They will have the same x coordinates. They will not take any 
input from other cars but cars in immediate vicinity will try 
to maintain a constant distance from them. Furthermore, we 
need to impose constraints on cars 2, 3, 4 in the first level to 
ensure that a specific spacing is maintained for the remaining 
cars. 

Here, we consider only the case in which the weights are 
different for edges but the net weight for all the cars is same. 
Though the more general case can be handled too, we assume 
here that the information flow between cars in the same level 
takes place from left to right (away from the phantom cars). 
This assumption is similar to the assumption of information 
flow along the Y axis. 

Let the acceleration, velocity and position for car i be 
represented as ax;, Vx; and Xi. Let the x coordinate vary from 
left to right. Car 1 will have the lowest x coordinate and car 



4 will have the highest one in the same level. This pattern 
repeats for all levels. 

The control law used here is: 

where x, Vx, 1 E lRn and 0 E lRn and 0 E lRnxn. 
B : = [0 1 1 1 0 Zl Z2 Z3 0 ... znl : with 
ZI, Z2, Z3 are constants decided by the cars 6, 7, 8 locally 
to ensure constant spacing. We can keep them to be same 
however this would give a spacing depending on the graph 
structure and weights assigned to specific edges. 

The '0' entries in B correspond to the phantom cars. This 
corresponds to not giving horizontal velocity to the phantom 
cars. 

Theorem 4.5: Consider a weighted directed graph such 
that the total incoming weights are same for each node. Then 
there exists a choice of B for control law (2) such that a 
desired constant spacing can be attained between cars in the 
same level. 
Proof of Theorem 4.5: We shift the states to Xi : = Xi - gXi 
where i is any non-phantom car, gXi corresponds to the 
ilh component of gx. We conclude about the stability of the 
system as before using [9, Lemma 4.1 and Theorem 4.1 ]. 
The velocities will converge to 0 which is the equilibrium 
state for the cars. 

We now look at the difference equations for determining 
the horizontal spacing of cars in the same level. Notice that 
the horizontal spacing in two different levels can be same. 

We look at two levels of cars in the graph. The same 
procedure can then be repeated for the remaining levels taken 
two at a time. The partial Laplacian for Figure 2b is as 
follows: 

[I 0 0 0 -I 0 0 0 1 [Xl ] [ 0 1 o 1n62 0 0 1n65 -In66 0 0 . gx Zl o Inn 1n73 0 0 1n76 -In77 0 : gx Z2 o 0 1n83 1n84 0 0 1n87 -In88 X 8 gx Z3 

(3) 

The first row in (3) signifies that the X coordinate of car 1 
and car 5 is same. This condition will repeat for all phantom 
nodes as expected. 

For the Laplacian the first row corresponding to node 1 
is all zeros. The rank of the connected Laplacian is n - 1 
where n is the number of nodes. This is guaranteed by the 
existence of a directed spanning tree in the graph [9, Lemma 
4.3]. Thus the remaining rows have to be independent to 
ensure that the rank is n - 1. This will ensure existence of 
at least one solution of (3). Adjusting the constant ZI, Z2 and 
Z3, the solution corresponding to equal spacing can also be 
determined. The cars in the second level have information 
of the target position of cars in the first level, the remaining 
equations can also be solved to obtained the final spacing as 
X6 = Xs + gx and so on. This computation is still distributed 
(refer Remark 4.4) as the constants are local to a particular 
car. 

From Corollary 4.3.6 all solutions are satisfy constant 
spacing property. This completes the proof. D 

(b) Influence graph for motion 
along y direction 

(a) Influence graph for motion 
along x direction 

Fig. 3: Influence graphs 

Fig. 4: X vs Y coordinate for motion of cars 

We now show an example illustrating the convergence in 
the multilane case. We would like to obtain equal spacing 
along both horizontal and vertical directions independently. 
Different spacings can also be achieved by adjusting the 
constant gy and gx in (1) and (2) respectively. 

V. NUMERICAL EXAMPLE 

Consider 9 cars with a maximum of 3 cars fitting along 
the width of the road. The final spacing requirements are 
100 and 70 along y and X direction respectively. The 
initial position coordinates along both directions are as 
follows: y = [ 60 60 60 30 30 30 10 10 10 f and 
X = [ 0  20 40 0 60 90 0 25 50 f. The parameters used 
are b = 0.4 and k = 0.001. The graphs in both directions are 
allowed to change during the simulation. The final graphs 
for obtained for y direction is Figure 3b and for X direction 
is Figure 3a. Cars are considered to be in the same level 
based on tolerance band. The final values of convergence 
are shown in the Figure 5. It can be seen that cars 2, 5, 8 
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Fig. 5: X vs Y coordinate for motion of cars 

have settled at an x coordinate of 70 and cars 3, 6, 9 have 
settled at a x coordinate of 140. Though the x coordinate for 
three cars is same their y coordinates are different as shown 
in Figure 4. 

V I. FUTURE WORK 

In this paper we provided some insights on multilane 
formations of vehicles with a control law utilising the natural 
structure present in the system. Different formations can be 
obtained based on the spacing requirements using the control 
law. Optimality analysis of such a formation in terms of 
traffic throughput can reveal interesting characteristics of cars 
in the Indian scenario. 
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