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Abstract— This paper deals with finding a ‘least interaction’
controller that generically achieves pole placement, given a
actuator-sensor interaction possibility for the controller. The
structure of the plant and the controller are modeled as an undi-
rected and bipartite graph. Assuming that the plant/controller
structures are specified, we find a minimum controller sub-
structure within the specified controller structure such that the
controller substructure allows generic eigenvalue assignability.
The minimum is in the sense that the bipartite graph consisting
of the proposed controller has the minimum number of edges.
The complexity of a brute-force algorithm to identify a mini-
mum controller substructure would be exponential and hence
we propose two formulations for solving this problem, using
recent results about equivalence of generic pole-assignability
and covering of plant edges using cycles. The first uses multi-
commodity flow networks to include all plant edges in some cycle
using the least number of controller edges. We show that an
integer solution to this formulation gives a minimum controller
substructure for arbitrary pole placement problem. Since the
problem of finding a feasible integer flow in multicommodity
networks is NP-complete, there is ample reason that identifying
a minimum controller substructure is NP-hard. The second
formulation uses the framework of travelling salesman with
profits (TSP with profits) to cover all vertices of the bipartite
graph by cycles using the least number of controller edges. The
TSP-with-profits problem too belongs to the class of NP-hard
problems. We show that our formulation is equivalent to the so-
called Generalized Travelling Salesman Problem (GTSP) thus
allowing branch-cut algorithms developed for GTSP problems.

Index Terms— bipartite graph, behaviors, DAE systems,
vertex cover, multi-commodity flow, travelling salesman with
profits, generalized travelling salesman problem (GTSP)

I. INTRODUCTION

In this paper, we address the problem of finding a
minimum controller structure within a specified structure.
We assume dynamical systems are represented by linear
differential-algebraic equations (DAEs) of order possibly
higher than one. We consider a structured system of DAEs for
both the to-be-controlled plant and the controller and model
the structure of the plant and the controller as an undirected
and bipartite graph. We assume that the controller has struc-
tural constraints, i.e., the controller equations are constrained
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by a structure that specifies which system-variables occur in
each controller equation. Such a constraint is motivated by an
actuator-sensor constraint that occurs in practice, i.e., often
a controller-designer is specified with constraints about the
exact sensors, feedback from which each actuator can avail.
The controller-designer is allowed to choose a controller
to achieve desired control specifications, like arbitrary pole
placement, but these sensor-actuator interaction constraints
have to be obeyed for practical reasons. We call this a ‘spec-
ified controller structure’, and the problem addressed in this
paper is to choose a ‘minimum interaction’ controller from
within this structure. The minimum here is in the number of
edges of the bipartite graph; in terms of equations-variables,
this amounts to minimizing the number of terms across all
controller equations. We assume the to-be-controlled system,
i.e. the plant, too is specified in terms of a bipartite graph: i.e.
an equation-variable interaction graph. This is made precise
later below in Section II. In [8] necessary and sufficient
conditions on this graph have been formulated for a given
structured controller to generically achieve arbitrary pole
placement.

For such structured systems, we pursue the problem of
finding the minimum controller structure for generic arbitrary
pole placement. We assume that the plant and controller
structures are already specified and we need to find a mini-
mum controller structure from within this specified structure:
minimum in the sense that the graph which portrays the con-
troller structure has the least number of edges. This problem
is motivated by minimality in design of a sensor-actuator
network. A minimum controller structure corresponds to
minimum interaction between sensors and actuators, reducing
the complexity of design and cost of network.

While arbitrary pole placement with a specified controller
structure which is in output feedback has been addressed
for state space systems in [13], the techniques in this paper
apply to more general models of dynamical systems: linear
differential-algebraic equations (DAEs) of order possibly
higher than one. Similarly, a generic solution to the minimum
controller structure problem is provided in [12], but only for
first order descriptor systems.

We propose two formulations for solving the minimum
controller structure problem, one using multicommodity
flows and the other using Travelling salesman with profits
(TSP with profits): these are described briefly below.

A multi-commodity flow problem involves a collection
of several networks whose flows must independently satisfy
conservation of flow constraints, but are coupled through
some other constraints or the cost function. The problem
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of producing an integer flow satisfying all constraints is
NP-complete [3] even for only two commodities and unit
capacities.

Travelling salesman problems with profits (TSPs with prof-
its) are a generalization of the travelling salesman problem
(TSP), where it is not necessary to visit all vertices. A profit
is associated with each vertex and a cost with each edge. The
overall goal is the simultaneous optimization of the collected
profit and the travel costs. TSPs with profits belong to the
class of NP-hard problems because they trivially belong to
NP and because a TSP instance can be stated as a TSP with
profits instance by defining very large profits on vertices [4].

The rest of the paper is organized as follows. The following
section formulates more precisely the problem considered
in this paper. It is straightforward to see that a brute force
approach to obtaining a minimum controller has exponential
runtime complexity. Section III formulates this problem as a
multicommodity flow problem, while Section IV formulates
this problem as a variant of the Travelling Salesman problem.
Section V concludes this paper.

II. PROBLEM FORMULATION

We first briefly describe how to associate a dynamical
system: both the plant and the controller with a bipartite
graph. Consider Figure 1, in which the left-side nodes are as-
sociated to equations, and the right side nodes are associated
to variables. Since the equations are either plant equations
or controller equations, we use ‘plant nodes’ and ‘controller
nodes’ when referring to the nodes on the left side. In the
same vein, the nodes on the right are often called ‘variable
nodes’. Suppose the plant equations are described by a
system of p linear, constant-coefficient ordinary differential
equations of the form:

R0w+R1
d
dt

w+R2
d2

dt2 w+ · · ·+RN
dN

dtN w = 0 (1)

with Ri ∈ Rp×q, and w ∈ C ∞(R,Rq), the space of infinitely
often differentiable trajectories from R to Rq. Associate
the polynomial matrix R(ξ ) ∈ Rp×q[ξ ] with p rows and q
columns and the indeterminate ξ with the above differen-
tial equation: R(ξ ) := R0 +R1ξ +R2ξ 2 + · · ·RNξ N , and use
a short-hand notation for the above differential equations
R( d

dt )w = 0.
We consider further the polynomial matrix R(ξ ) ∈

Rp×q[ξ ], in order to construct a bipartite undirected graph.
Associate p nodes in the left-part corresponding to the rows
(i.e. the equations describing the system) of R(ξ ) and q
nodes in the right-part with the columns (i.e. the variables
constituting the system equations) of R(ξ ). The edges in this
bipartite graph correspond to the nonzero entries in R(ξ ):
each nonzero entry in R(ξ ) results in an edge from the
corresponding row-node and column-node.

This is undertaken for the plant equations: which is
typically under-determined, i.e. more columns than rows in
R(ξ ). In the behavioral framework, to design and implement
a (feedback or open-loop) controller, means to introduce
additional laws on the same variables, so that we together
have a ‘square’ system of equations, i.e. a determined system

of equations. Suppose the additional laws themselves are
a system of linear, constant-coefficient, ordinary differential
equations: associate a polynomial matrix C( d

dt )w= 0 to these

equations, with C(ξ ) ∈ R(q−p)×q[ξ ]: such that
[

R(ξ )
C(ξ )

]
is

square and nonsingular. It can be found in [14], about how

the roots of the determinant of
[

R(ξ )
C(ξ )

]
are exactly the ‘closed

loop’ poles. A detailed exposition on the behavioral approach
and the view that control is nothing but introduction of
additional laws can also be found in [14].

Since the focus in this paper is more on the graph-theoretic
implications, we do not delve further along this direction.
The essential results can be found in [8]. The key intuitive
idea, that has been formalized and proved in [8] is that,
after the plant and controller are interconnected, i.e. the
system variables have to satisfy laws of both the plant and
the controller, then the bipartite graph has equal number of
equation nodes and variable nodes, with the equation nodes
partitioned into plant laws and controller laws. ‘Generic’
investigation allows studying just the graph and the exact
numerical values that comprise the coefficient matrices Ri in
equation (1), do not play a role as long as the values are
‘generically’ chosen. More precisely, the set of values for
which the generic conclusions do not hold form a ‘thin’ set,
or a set of measure zero. This can be made more precise: we
refer the reader to [12], [8].

The closed loop system, i.e. the interconnected system, is

required to be autonomous: generic nonsingularity of
[

R(ξ )
C(ξ )

]
translates to existence of a perfect matching in the bipartite
graph: i.e. a subgraph of the given graph in which each node
has degree one in the subgraph.

An example of a polynomial matrix that gives rise to the
bipartite graph shown in Figure 1 is as follows.

equation P1 : a1(
d
dt )V1 +a2(

d
dt )V2 = 0

equation P2 : a3(
d
dt )V2 +a4(

d
dt )V3 = 0

equation C1 : b1(
d
dt )V1 +b2(

d
dt )V2 +b3(

d
dt )V3 = 0

Here equations P1 and P2 are plant equations, i.e. a1, . . . ,a4
are given nonzero polynomials, while equation C1 is a to-
be-designed controller equation, and hence b1,b2,b3 are to-
be-chosen polynomials such that the determinant of the
corresponding square 3× 3 polynomial matrix has desired
roots.

Consider the bipartite graph G = (R,C;E), depicting the
interconnection of the plant and the controller. The two sets R
and C denote the set of equations and variables respectively.
The node set R := Rp ∪Rc is further partitioned into plant
and controller nodes. Similarly the edge set E is partitioned
into plant and controller edges (E := Ep ∪ Ec), depending
on whether the edge is incident on Rp or Rc. The subgraph
GP(Rp,C;Ep) of G represents the structure of the plant, and
GC(Rc,C;Ec) represents the structure of the controller.
Assumption 2.1: Using the notation above, assume that the
graph G satisfies the following properties.

A: Every edge e ∈ E is part of a perfect matching.
B: The graph GP(Rp,C;Ep) is a tree.
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C: Every plant edge Ep is in some cycle containing
controller edges Ec.

Note that, under mild assumptions on the plant and after
suitable simplifications which are without loss of generality,
conditions A, B and C are necessary and sufficient conditions
for generic arbitrary pole placement. This is shown and elab-
orated in [8], [9]: we include here only a brief justification
for each of the three conditions. Condition A translates to the
closed loop system being autonomous; as explained earlier
in this section, generic nonsingularity of a polynomial matrix
is equivalent to existence of a perfect matching. Condition B
is an assumption that is without loss of generality: cycles, if
any, in the plant graph can be ‘merged’ into a new node; this
is elaborated in [9]. It is also shown there that condition C
(together with assumptions A and B) is equivalent to ability
of the controller to achieve (generic) pole placement.

For simplicity, we classify the edges into plant edges and
controller edges, depending on the left-node that the edge is
incident on. We are now ready to state the minimum pole-
placement controller substructure identification problem.
Problem 2.2 Minimum pole-placement controller substruc-
ture problem: Suppose a plant and controller structure rep-
resented by the graph G is given and suppose conditions
A, B and C are satisfied. Identify a minimum controller
structure from the specified structure. More precisely, find
a subset Emin

c ⊆ Ec such that the number of edges in Emin
c

is minimum amongst all controller edge subsets Ec
′ ⊆ Ec

satisfying conditions A, B and C above.
Note that the plant satisfies Assumption 2.1 and hence

feasibility is guaranteed: Ec already satisfies conditions A,
B and C. A minimum cardinality subset of Ec search is
possible by brute-force with at most an exponential running-
time complexity. The following sections pursue alternative
formulations that help obtain faster heuristic methods and
suggest NP-hardness of the above problem.
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III. MULTI-COMMODITY FLOW BASED FORMULATION

This section proposes a multicommodity flow formulation
of the minimum controller substructure problem above. We
first describe the notion of a multicommodity network flow
and recall a line from [2]: “Multicommodity network flow
problems involve several flow types or commodities, which
simultaneously use the network and are coupled through
either the arc flow bounds, or through the cost function.”
This model finds application in diverse domains such as
communications, logistics, manufacturing, transportation, ur-
ban housing and food grain export-import. For example, in
communication networks the commodities are the streams of
different classes of traffic (telephone, data, video, etc.) that
involve different origin-destination pairs. These commodities
must each satisfy not only their own conservation of flow
constraints, but also coupling constraints due to communica-
tion capacity threshold of the network arcs.

We formulate the minimum pole placement problem Sec-
tion II using multi-commodity flows. Associate a commodity
k ∈ K(K =

{
1,2, ..., |Ep|

}
) with each plant edge Ep. For

each of the k commodities, the plant node is designated
as the source node (with divergence (div) = +1) and the
variable node as the sink node (with divergence = -1). Each
undirected edge e=(i, j)∈E from node i to j permits flow of
commodities in both directions (i to j) and ( j to i). Hence,
given the undirected graph G, a bi-directed graph B = (N,A)
can be obtained by replacing each undirected edge e ∈ E
with arcs (i, j) and ( j, i). For each arc a = (i, j) ∈ A, the
variable xk

i j denotes the flow of commodity k from node i to
j. The integer variable yi j is defined for each controller arc
a = (i, j) ∈ Ac, where Ac ⊂ A is the set of controller arcs.

The multicommodity flow formulation is as follows: the
flow of commodity k is not allowed on the edge connecting
its source and sink nodes. The flow therefore has to find an
alternate path for each commodity k from source to sink.
Since the plant is a tree, every alternate path must include
controller edges. The multicommodity flow formulation
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Fig. 3. Multicommodity flow formulation

finds an alternate path connecting the two ends of every
plant edge Ep ∈ E using minimum number of controller
edges. This is equivalent to including all plant edges in
some cycle using least number of controller edges.

Sets arising in the formulation:
N: set of nodes
A: set of arcs
Ac: set of controller arcs (Ac ⊂ A)
K: set of commodities (K =

{
1,2, ..., |Ep|

}
)

Variables introduced:
xk

i j: k ∈ K,(i, j) ∈ A: flow of commodity k on arc (i, j)
yi j: (i, j) ∈ Ac: integer associated with controller arc (i, j)

Performance objective: min ∑
(i, j)∈Ac

yi j (2)

Constraints:

∑
j:(i, j)∈A

xk
i j− ∑

j:( j,i)∈A
xk

ji =



1 if i = source node
for commodity k,

−1 if i = sink node for
commodity k,

0 otherwise

(3)

xk
i j =


1 if one unit of flow goes from node i to j

for commodity k,
0 otherwise

(4)

xk
ji = 0 if div( j) = +1 and div(i) = -1 are the source and

sink nodes for commodity k respectively (5)

∑
(i, j)∈Ac

yi j > 1 for all (i, j) ∈ Ac (6)

xk
i j 6 yi j for all (i, j) ∈ Ac (7)

xk
i j > 0 for all k ∈ K,(i, j) ∈ A (8)

yi j is integer for all (i, j) ∈ Ac (9)

1) The mass balance constraints in equation (3) state that
for a commodity k, the flow out minus the flow in at
a node must equal the supply/demand of that node for
that commodity.

2) The flow constraint in equation (5) restricts flow of
commodity k on the edge connecting its source and
sink nodes. The flow therefore has to find an alternate
path for each commodity k ∈ K from source to sink.

3) The constraint in equation (9) states that yi j is a integer
variable indicating whether or not arc (i, j) ∈ Ac is
included in the solution.

4) The constraint in equation (7) indicates that flow on a
controller arc a = (i, j) ∈ Ac for commodity k ∈ K is
allowed if the controller arc is included in the solution.

5) The constraint on yi j in equation (6) forces controller
arcs to be used in the solution.

6) The objective function in equation (2) minimizes the
number of controller arcs required to find alternate
paths for each commodity k ∈ K.
An integer flow xk

i j for all (i, j) ∈ A and k ∈ K gives
integer values of yi j for all (i, j) ∈ Ac. The controller
arcs a = (i, j) ∈ Ac for which yi j > 0 give Emin

c .
Solution methods available: Specialized adaptations of
linear programming algorithms [10] are available for
solving multi-commodity flow problems. The problem
of producing an integer flow satisfying all constraints
in multi-commodity flow problems is known to be NP-
complete [3]: hence the claim that there is ample reason
for the minimum pole placement controller substructure
problem to be NP-hard.

IV. TRAVELLING SALESMAN BASED FORMULATION

We propose that the minimum number of controller edges
Emin

c ⊆ Ec required to satisfy conditions of Section II can be
determined by covering all vertices of the bipartite graph by
cycles using least number of controller edges. Consider the
following ways in which vertex cover is possible:

1) Cover by Hamiltonian cycle: If a Hamiltonian cycle
exists, then all plant edges are in some cycle with the
controller edges required to complete the Hamiltonian
cycle. The number of controller edges required is then
the minimum.

Emin
c = 2Rc = 2(C−Rp)

where Rc,Rp and C are the number of controller nodes,
plant nodes and variable nodes respectively. In this
case, all plant edges will be a part of some perfect
matching.

2) Cover by vertex disjoint cycles: The vertices of the
graph are covered by multiple vertex disjoint cycles.
Since plant is a tree, at least one controller node is
required to form a cycle; to cover all the vertices we
can have 2, . . . ,Rc number of disjoint cycles. However
the number of controller edges required will again be
a minimum i.e. Emin

c = 2Rc irrespective of the number
of disjoint cycles.
We now consider the case when there is only a single
plant edge connecting two disjoint cycles (see edge
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e3 in Fig. 4). Such a plant edge will not be in a
cycle with the selected controller edges. However we
note that these plant edges will not be part of any
maximum matching and hence are inadmissible by the
first condition of Section II.
Thus if vertex cover with disjoint cycles is possible,
• All admissible plant edges are in a cycle with the

selected controller edges.
• Emin

c = 2Rc which is the minimum possible.
3) Cover by non-disjoint cycles: The vertices of the graph

are covered by non-disjoint cycles using the least
number of controller edges i.e. some of the vertices are
covered by multiple cycles. As cycles share vertices,
plant edges connecting different cycles will be part of
a cycle with the selected controller edges. In this case,
the minimum number of controller edges required,
Emin

c > 2Rc.
Similarly vertex cover by a combination of vertex disjoint
cycles and non-disjoint cycles will also satisfy conditions of
problem described in Section II as only inadmissible plant
edges will not be in a cycle with the selected controller edges.

Thus our problem is equivalent to covering all vertices of
the bipartite graph by cycles using least number of controller
edges. We propose a Travelling Salesman Problem (TSP)
based formulation to find Emin

c . We find a Hamiltonian cycle,
if it exists, in the graph; else the vertices are covered by a
set of cycles, using the least number of controller edges.

A. Travelling salesman with profits

Travelling salesman problems with profits (TSPs with
profits) are a generalization of the traveling salesman problem
(TSP), where it is not necessary to visit all vertices. A profit
is associated with each vertex and a cost with each edge. The
overall goal is the simultaneous optimization of the collected
profit and the travel costs. These two optimization criteria
appear either in the objective function or as a constraint. TSPs
with profits may be seen as bicriteria TSPs with two opposite
objectives, one to visit more vertices to collect profit and the
other to minimize travel costs (with the right to drop vertices).

Viewed in this light, “solving TSPs with profits should result
in finding a non-inferior solution set, i.e., a set of feasible
solutions such that neither objective can be improved without
deteriorating the other” [4].

TSPs with profits are a useful model for problems in-
volving simultaneous selection and sequencing decisions,
e.g., as in location-routing problems. They find practical
applications in warehouse order picking with multiple stock
locations, routing of welfare clients through governmental
agencies, sequencing computer files, flexible manufacturing
scheduling, postal routing, airport selection and routing for
courier planes, and the design of ring networks. See [5].
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We formulate the minimum pole placement problem de-
scribed in Section II as Travelling Salesman Problem (TSP)
with profits [7, Chapter 13, page 611] and [1]. Let G= (V,E)
be the graph where the node set V := R∪C and |V | = 2n.
Associate a cost ce with each edge e∈ E and a profit pv with
each node in v ∈ V . For any S ⊆ V , let δ (S) denote the set
of edges with exactly one node in S:

δ (S) := {(i, j) ∈ E : i ∈ S, j 6∈ S}

Solve the following bivariate TSP in the first iteration:
variables

xe = 1, if the edge belongs to the optimal cycle
= 0, otherwise

ce = 0, if it is a plant edge
= 1, if it is a controller edge

yv = 1, if the node belongs to the optimal cycle
= 0, otherwise

pv profit associated with each node

Objective min ∑
e∈E

cexe−∑
v∈V

pvyv (10)

Constraints:
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xe ∈ {0,1}, yv ∈ {0,1} (11)

∑
e∈δ (v)

xe=2yv for all v ∈V (12)

∑
e∈δ (S)

xe>2(yi + y j−1) for all S⊂V , i ∈ S, j ∈V\S (13)

First iteration
1) The objective function in equation (10) states that we

are looking for an optimal cycle that simultaneously
satisfies the following two criteria :
• Covers the most number of vertices.
• Uses the least number of controller edges.

The solution algorithm therefore either finds a Hamil-
tonian cycle, if such a cycle exists in the graph, or an
optimal cycle on a subset of the vertices.

2) The degree constraints in equation (12) state that the
number of edges incident on a vertex v is either 2 (if
v is visited) or 0 (otherwise).

3) The constraints in equation (13) are connectivity con-
straints which state that each cut separating two visited
nodes (i and j) must be crossed at least twice.

Subsequent iterations: Suppose the graph does not contain a
Hamiltonian cycle. Let m nodes be covered by the cycle in the
first iteration. Let {Ec1,Ec2, . . . ,Ecm} ∈ Ec be the controller
edges used in the optimal cycle. Do the following:

1) Set ce = 0 for e ∈ Ec1,Ec2, . . . ,Ecm.
2) Associate profits p1 to already covered vertices and p2

to uncovered vertices such that:
p2

p1
=

m
2n− (m+1)

This is to ensure that the new optimal cycle uses
vertices not covered in the previous iteration.

3) Force the new optimal cycle to start and end at an
uncovered vertex by setting

yk = 1 where yk is an uncovered vertex. (14)

The problem is now reformulated with the objective function
described in equation (10) the additional constraint equation
(14) and the re-adjusted costs and profits. The above proce-
dure is repeated till all vertices of the graph are covered.

B. Solution methods available

We show subsequently that the above formulation is
equivalent to the Generalized TSP problem (GTSP), which
is well studied in literature [6][7, Chapter 13, page 615].
In the GTSP, the vertex set V is partitioned into m > 3
clusters, V1,V2, . . . ,Vm, and the cycle is feasible if it visits
each cluster at least once:

∑
v∈Vh

yv > 1 for h = 1, . . . ,m. (15)

The additional constraint (15) is automatically satisfied by
our TSP with profits formulation (10)–(11). In our formula-
tion, the node set V can be partitioned into three clusters,
plant vertices (Rp), controller vertices (Rc) and variables (C).
Since the plant graph GP(Rp,C;Ep) is a tree, every cycle will

contain at least one vertex from each of these three clusters.
Thus our TSP with profits formulation (10)–(11) is equivalent
to the GTSP. Hence algorithms developed for solution of
GTSP can be applied directly to our formulation. Branch and
cut algorithm for the exact solution of the symmetric GTSP
with computational results is available (see [6]).

V. CONCLUSIONS

In this paper we considered the problem of finding min-
imum controller structure from a specified structure for
generic arbitrary pole placement. We proposed two formu-
lations for solving the minimum controller structure prob-
lem, one using multicommodity flows and the other using
Travelling salesman with profits (TSP with profits). While
existing techniques to address arbitrary pole-placement using
structured controllers start from a state space representation
of the system [13], the techniques in this paper apply to more
general models of dynamical systems: linear differential-
algebraic equations of order possibly higher than one.

The significance of showing the formulation of the min-
imum pole-placement controller substructure problem as a
variant of the multicommodity flow problem and of the
travelling salesman problem is to eventually prove the expec-
tation of NP-hardness and, more importantly, utilize the well-
developed faster heuristics (like branch-cut algorithms) for
these standard problems for solving the minimum controller
substructure problem.

REFERENCES

[1] D. Bienstock, M.X. Goemans, D. Simchi-Levi and D. Williamson, “A
note on the prize collecting traveling salesman problem”, Mathematical
Programming, vol. 59, no. 1-3, pages 413-420, 1993.

[2] P.B. Dimirti, “Network Optimization: Continuous and Discrete Mod-
els,” Athena Scientific, May, 1998.

[3] S. Even, A. Itai and A. Shamir, “On the complexity of time table and
multi-commodity flow problems”, Foundations of Computer Science,
1975, 16th Annual Symposium on IEEE, pages 184-193, IEEE, 1975.

[4] D. Feillet, P. Dejax and M. Gendreau, “Traveling salesman problems
with profits”, Transportation Sci., vol. 39, no. 2, pages 188-205, 2005.

[5] M. Fischetti, J.J. Salazar and P. Toth, “The Symmetric Generalized
Travelling Salesman Polytope”, Networks, vol. 26, no. 2, pages 113-
123, 1995

[6] M. Fischetti, J.J. Salazar Gonzalez and P. Toth, “A branch-and-cut
algorithm for the symmetric generalized traveling salesman problem”,
Operations Research, vol. 45, no. 3, pages 378-394, 1997.

[7] G. Gutin and A.P. Punnen, The Traveling Salesman Problem and its
Variations, vol. 12, Springer Science & Business Media, 2002.

[8] R.K. Kalaimani, M.N. Belur and S. Sivasubramanian, “Generic pole
assignability, structurally constrained controllers and unimodular com-
pletion”, Linear Algebra and its Applications, vol. 439, no. 12,
pages 4003-4022, 2013.

[9] R.K. Kalaimani and M.N. Belur, “Minimal controller structure for
generic pole placement”, Proceedings of the IEEE European Control
Conference (ECC), Zurich, Switzerland, pages 3446-3451, 2013.

[10] R.D. McBride, “Advances in solving the multicommodity-flow prob-
lem”, Interfaces , vol. 28, no. 2, pages 32-41, 1998

[11] S. Pequito, S. Kar and G.J. Pappas, “Minimum cost constrained
input-output and control configuration co-design problem: a structural
systems approach,” Proceedings of the American Control Conference
(ACC), pages 4099-4105, 1-3 July, Chicago, USA, 2015.

[12] M.E. Sezer, “Minimal essential feedback patterns for pole assignment
using dynamic compensation”, The 22nd IEEE Conference on Decision
and Control, San Antonio, USA, pages 28-32, 1983.
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