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Abstract— In recent years Computerized Adaptive Test
(CAT) has gained popularity over conventional exams in
evaluating student capabilities with desired accuracy. However,
the key limitation of CAT is that it requires a large pool
of pre-calibrated questions. In absence of such a calibrated
question bank, offline exam with uncalibrated questions has to
be conducted. Even today many important exams are offline,
e.g., Graduated Aptitude Test in Engineering (GATE) and
Joint Entrance Examination (JEE) that are conducted in India.
In offline exams, typically, normalized marks are used as an
estimate of the students’ capabilities. In this work, our key
contribution is to verify whether marks obtained are indeed a
good measure of students’ capabilities. To this end, we propose
an evaluation methodology that mimics evaluation process of
CAT. In our approach, based on the marks scored by students
in various questions, we iteratively estimate question parame-
ters like difficulty and discrimination, and student parameters
like capability. Our algorithm uses alternating maximization
to maximize the log likelihood estimate for the questions’
and students’ parameters given the marks. We prove that the
alternating maximization process converges. We compare our
approach with marks based evaluation using simulations. The
simulation results show that our approach outperforms marks
based evaluation.

Keywords: Logistic ogive, alternating maximization, concave
function, offline exam.

1. INTRODUCTION

Exam based assessment is the long-established method to
filter out the most deserving candidates from the enormous
number of applicants. The idea of conducting a subjective
exam is not an appreciable method as it is time consuming
and evaluation procedure could be non-uniform. Objective
exam is a universally accepted alternative for this. All
competitive exams with a large number of examinees follow
the objective pattern where a correct response to a question
carries a certain credit and an incorrect response carries
either no credit or a negative credit. However, in this case
guessing is a major concern, which led practitioners to think
about a new way of answering in the competitive exams. The
idea of entering the final answer value in the response sheet
is the recently adopted refined way of answering subjective
exams.

A special case of computerized exam conduction and
evaluation is Computerized Adaptive Testing (CAT). The
outstanding feature of an online adaptive test over con-
ventional subjective exams and offline exams, is its ability
to adaptively modify the set of questions in such a way
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that each examinee attempts a self tailored set of ques-
tions from a precalibrated pool, where a question that an
examinee is going to answer next is determined by his
previous responses [?]. The term ‘offline’ refers to the fact
that scores of examinees not only depend on their own
performance but also on the aggregate nature of the exam.
More precisely, the evaluation results can be obtained only
after all examinees complete their exam. Adaptive feature of
CAT ensures that the number of easy question attempts by a
highly capable student is very less, as easy questions gives
very less information about the ability of a highly capable
person. Similarly, in a CAT the number of difficult questions
attempted by a less capable student is very less, as a difficult
question response by a less capable student barely gives any
information about his capability. This is because for a very
difficult question, answer of a less capable is always biased
by guessing, which thereby skews the whole assessment
procedure. Thus by adaptively rendering questions of known
difficulties, a bias free estimate of the student capability
can be obtained through an optimal short exam with fewer
questions.

Because of confidentiality issues and the difficulty in-
volved in setting up pools of precalibrated questions for
different disciplines, competitive exams like Joint Entrance
Examination (JEE) and Graduate Aptitude Test in Engineer-
ing (GATE), conducted in India are offline. Besides, for
competitive exams with validity more than a year, scores
should be comparable across years and in certain circum-
stances across disciplines as well. Comparison of scores
across disciplines is crucial when students with scores in
different disciplines apply for a common course, like a stu-
dent with score in computer science applying for electrical
engineering. Now the relevant question is “How efficient is
the existing assessment in ranking students based on their
exam scores?”. If the total marks is a good estimate of the
ability, then the whole assessment procedure is easy and
straight forward. The student who gets the maximum marks
is considered as the most capable student and that particular
question which has fewer number of correct responses is
considered as the most difficult question. But then, we need
to address the following question, when is the total marks
indeed a good estimate of capability? The key point here
is one or two unintended mistakes can cause significant
lowering of the student’s rank when marks based assessment
is used. This is because, typically many examinees can get
the same total score.

Further, since the question difficulties are not known a
priori, assessing students with a small number of questions
may result in an erroneous assessment. In this regard, we



are forced to conduct a long duration exam with a large
number of questions. But then, factors like attention span
of a student, incidental guessing due to lack of time, fatigue
and more, also come into play which may result in a skewed
response.

Additionally, computerized offline exams are conducted
on slot basis, where question papers for different slots are
different, even for the same discipline. However, all the
candidates who take exams across all slots for the same
discipline are often required to be ranked as one group. Since
the questions are not pre-calibrated and students in different
slots appear for different question sets, marks based ranking
may not be a good option. In this situation it is imperative
to find out an optimum method for offline assessment of
examinees’ abilities. That is, given the responses of all
the exam takers for all the questions, we need to estimate
their capabilities in the most accurate way, thereby ensuring
that the assessment process sieves out the most deserving
candidates.

A. Background
The first theory of psychometric test analysis, called

classical test theory (CTT) arose in the year 1906 through
the seminal work of Charles Spearman. However the basic
constructs of the theory was reformulated using modern
mathematical statistical approach by Lord and Novick in
the year 1966 [?]. CTT, also known as the true score
theory, relies on the accurate estimation of true score from
the observed score, where the true score is the number
of correct responses of a student to infinite number of
independent items. The major shortcoming of CTT is that
instead of separating examinee and item characteristics, it
can only interpret nature of one in terms of other. This
limitation of CTT has led to the emergence of item based
test theory, called Item Response Theory (IRT). Start of the
item based test theory was marked in the year 1916 by the
work of Binet-Simon [?]. IRT attracted more attention of
practitioners in the year 1943, when Lawley through his well
appreciated paper [?], showed how to obtain the maximum
likelihood estimates of parameters of the item characteristic
curve.

Most of the previous work in this area use iterative
Newton-Raphson, Marginal Maximum Likelihood Estima-
tion (MMLE) and Bayesian parameter estimation techniques
for the estimation of exam parameters. Through many prac-
tical examples it has been shown that Newton-Raphson
method is robust and Newton-Raphson/Fisher equations al-
ways converges nearly [?]. The convergence of MMLE and
Bayesian parameter estimation methods are data set depen-
dent [?]. Existence of a global maxima for the likelihood
function is stated by Baker by plotting for different values
of parameters [?]. However, there are no formal proofs for
the existence of a unique maxima of the likelihood function.
Also there are no known algorithms that guarantee to give
the unique optimizing value of the parameters always.

B. Summary of Contribution
In this paper, we propose a maximum likelihood esti-

mation based algorithm for offline exam assessment using

alternating maximization. Given the responses of all the
students as input, our algorithm outputs the maximum like-
lihood estimate of student capability and question difficulty
and discrimination. The main feature of our algorithm is
that it allows us to conduct a short offline exam with fewer
number of questions, and even then gives accurate results
like the online adaptive exam. Convergence of the alternating
maximization of the log-likelihood function is guaranteed by
our result that proves the concave nature of the function in
all variables individually when others are fixed.

C. Organization of the Paper

The organization of the paper is as follows: Section 2
details the probabilistic model and the different parameters
of the model used in the paper. In Section 3, we summarize
Maximum Likelihood Estimation (MLE) and formulate log-
likelihood function for the problem at hand. Section 4
explains the proposed algorithm with a pseudo-code. Results
showing the concave nature of the log-likelihood function
and the convergence of the proposed algorithm is also given
in this section. For comparing the proposed method with the
existing marks based method, we define certain comparison
metrics and variables. Description of these are included in
Section 5. The comparison results of the proposed algorithm
with marks based ranking scheme is depicted through figures
and tables in section 6. Section 7 contains concluding
remarks and proofs of the results are given in Appendix.

2. DEFINITIONS OF PARAMETERS

This section details the different test parameters that
affects the assessment. The only student parameter is ca-
pability c j, and the two item parameters are difficulty di and
discrimination ai. Henceforth, j is a student index and i is
a question index. ICC is the functional relationship between
the probability of correct response to an item and a criterion
variable, where the criterion variable is some unobserved
hypothetical variable like intelligence, ability, difficulty and
so on. This relationship is characterized by the location of
the item on the criterion variable scale and its discriminating
power. In this paper the probabilistic model that is used for
analysis is the logistic ogive model, which is a well studied
model [?] both theoretically and verified by fitting various
sample data. The cumulative form of the logistic function,
often called the logistic law, is given by,

Pi(c j) = P(di,ai,c j) = Ψ(Z) =
eai(c j−di)

1+ eai(c j−di)
.

Figure ?? shows the variation of the probability of correct
response with respect to c j, where −∞ 6 c j 6 +∞ with
di = 0.5 and ai = 4.255, with P(di,ai,c j) defined as 1 and
0 for c j = +∞ and −∞ respectively. Here the criterion
variable is capability and the location variable is difficulty.
As capability increases, the probability to answer correctly
also increases and finally saturates to 1 beyond a certain
value of c j. Thus given a question of a fixed difficulty
and discrimination, the probability of answering correctly
is higher for a more capable student. The difficulty of a
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Fig. 1: ICC for correct response with di = 0.5 and ai = 4.255

question is defined as the capability at which the probability
of answering correct is 0.5.

Figure ?? shows the variation of the probability of in-
correct response with respect to di, where −∞ 6 di 6 +∞

and c j = 0.5 and ai = 4.255, with 1−P(di,ai,c j) defined
as 1 and 0 for di = +∞ and −∞ respectively. Here the
criterion variable is difficulty and the location variable is
capability. From figure it is clear that as difficulty increases,
the probability to answer incorrect also increases and finally
saturates to 1. Thus, a question that is answered correctly by
very few students, is considered as a difficult question and
a question that is correctly answered by many candidates
is considered as a less difficult question. Note that given
a student of known capability c j, he/she is more likely to
correctly answer a question of difficulty di < c j, but more
likely to make questions of higher difficulties wrong. The
capability of a student is defined as the difficulty at which
the probability of answering incorrect is 0.5.
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Fig. 2: ICC for incorrect response with ai = 4.255 and c j =
0.5.

Pi(c j) also depends on another item parameter called
discrimination, which gives an index of the steepness/slope
of the item characteristic curve at di. It is the inverse of
the standard deviation of the item characteristic curve, i.e.
ai = 1/σi, where σi is the standard deviation of item i.
Higher the value of ai steeper is the ICC near di and the
spread of the normal distribution is very less. For smaller
value of ai the ICC is not very steep near di and normal

distribution is flat. Even though the level of ai varies in
the range −∞ 6 ai 6 +∞, it is always taken to be non-
negative, with P(di,ai,c j) defined as 1 and 0 for ai = +∞

and −∞ respectively. Moreover, the value of ai usually
taken in practice is 6 2.5. Figure ?? shows the variation
of the probability to correct answer for different values of
discrimination, with di and c j fixed to 0.5. As the value of ai
increases, the slope of ICC also increases. For large ai ICC
≈ 0, if c j < di and ICC ≈ 1 if c j > di. Thus ICC can tell if
capability is above or below difficulty with great precision.
In short a question with a large value of ai is capable of
differentiating students of different capabilities better and
hence is called a question with high discrimination. The
above discussions thus points to the fact that c j, di and ai are
interrelated and their independent estimation is not possible.
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Fig. 3: ICC for correct response with c j = 0.5 and di = 0.5.

Normal ogive and logistic ogive are the two commonly
used models for the item characteristic curve. The cumula-
tive normal distribution function is

Pi(c j) = P(di,ai,c j) = Φ(Z) =
∫

∞

−Zi j

1√
2π

e
−1
2 Z2

dZ,

where Zi j = ai(c j−di) is the normal deviate, ai is the item
discrimination, c j is the student capability and di is the item
difficulty. The cumulative form of the logistic function, often
called the logistic law, is given by

Pi(c j) = P(di,ai,c j) = Ψ(Z) =
ea∗i (c j−di)

1+ ea∗i (c j−di)
.

By plotting both the normal and logistic ogive models it was
found that di values are the same for both the models, but
their slope at that point i.e. ai is different.

Haley [?] has shown that if the logistic deviate ai(c j−di)
is multiplied by a constant factor 1.702 the absolute differ-
ence between Pi(c j) of the normal ogive and the logistic
ogive is less than 0.01 over the full range of c,

|(Φ(Z)−Ψ(Z))|< 0.01.

Thus to make both the models in agreement with each
other 1.702 is multiplied to the numerical value of ai in
normal ogive metric, to obtain the discrimination parameter
of the logistic ogive model, i.e. a∗i = 1.702ai. Henceforth the



notation ai denotes a∗i as logistic ogive is the model used in
this paper.

3. MAXIMUM LIKELIHOOD ESTIMATION

Likelihood of a set of parameter values, θ , given outcomes
X , is equal to the probability of those observed outcomes
given those parameter values, that is

L (θ |X) := P(X |θ). (1)

Given the data, maximum likelihood estimation is a widely
accepted method for estimating parameters of a statisti-
cal model [?]. This method evaluates the values of the
parameters in such a way that the likelihood function is
maximized, hence the name maximum likelihood estimation.
The objective of this paper is to estimate the capability vector
C = [c1 · · ·cnS ], the difficulty vector D = [d1 · · ·dnQ ] and the
discrimination vector A= [a1 · · ·anQ ], where nS is the number
of students and nQ is the number of questions in the exam.

After conducting an offline exam the input data available
is the response matrix R, whose rows are indexed by students
and columns are indexed by questions. In a dichotomous
test the entries of the marks matrix are binaries, i.e. 1’s and
0’s 1. An entry 1 in the marks matrix indicates that the
student corresponding to that particular row got a correct
response for that particular question induced by that column.
Similarly, an entry 0 indicates that the student corresponding
to that particular row made a wrong response for that
particular question induced by that column. An example of
a typical marks matrix is given below.
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Thus the likelihood function is

L (C,D,A) := Prob(R| C,D,A), (2)

and the entire problem condenses to estimating the vectors
C,D and A such that (??) is maximized. Given the complete
response vector of each student and every question, the
likelihood function can be calculated. For a student, the
likelihood function depends on his/her response to all the
questions. While for a question, the likelihood function
depends on the responses to that particular question by all
the students. The likelihood function of the entire test is the
product of the likelihood functions of each student, under
the assumption that all examinees are independent. For the

1Negative marks for incorrect responses is not considered in this paper

logistic ogive model, the logistic function is given by

Pi j := P(di,ai,c j) :=
eai(c j−di)

1+ eai(c j−di)
, (3)

Qi j := 1−P(di,ai,c j). (4)

The global likelihood function of the exam is formulated as

Prob(R| C,D,A) := Π
nS
j=1Π

nQ
i=1P

mi j
i j (1−Pi j)

1−mi j , (5)

where nS is the number of students, nQ is the number of
questions and mi j is the indicator for student j correctly
answering question i. That is, mi j = 1 if student j addresses
question i correctly and 0 otherwise. Taking natural loga-
rithm of the likelihood function we get

L(C,D,A) := log Prob(R| C,D,A)

=
nS

∑
j=1

nQ

∑
i=1

mi j log

(
eai(c j−di)

1+ eai(c j−di)

)

−
nS

∑
j=1

nQ

∑
i=1

(1−mi j) log
(

1
1+ eai(c j−di)

)
=

nS

∑
j=1

nQ

∑
i=1

[
mi jai(c j−di)− log

(
1+ eai(c j−di)

)]
, (6)

where c j is the capability level of the jth student, di is
the difficulty level of the ith question. Since maxima of
the likelihood and the log-likelihood functions occurs at the
same point, maximizing (??) is equivalent to maximizing
(??). Thus L in equation (??) serves as the objective function
to be maximized and it depends on the parameters: difficulty
vector D, discrimination vector A and capability vector
C. In the next section we detail a maximum likelihood
based estimation algorithm for estimating C,D and A by
maximizing (??).

4. ALGORITHM AND MAIN RESULTS

In this section, we discuss the proposed algorithm for
capability assessment and the affirmative results for the
convergence of the proposed method. Given the response
matrix of the exam we need to estimate C,D and A in such a
way that (??) is maximized over all [C, D, A] ∈RnS×RnQ×
RnQ . Since (??) is a function in three vectors of variables
and all these parameters are interrelated, their individual
optimization is not possible. Hence we have adopted an
alternating optimization technique, also called as nonlinear
Gauss-Siedel algorithm [?]. In alternating optimization the
set of parameters are divided in to blocks and optimization
is done over blocks sequentially. That is, a function F(X),
X ∈Rn can be represented as F(X)=F(x1,x2, . . . ,xm) where
xi ∈Rni and Σm

i=1ni = n. The algorithm proceeds by updating
all the block components of X , one at a time, in every step.
For the log-likelihood function given in (??), the steps for
alternating maximization is of the form: given C ,D ,A and a
function F : C ×D×A →R, maximize F over C ×D×A .
That is,

max
C,D,A∈C×D×A

F(C,D,A). (7)



Start with an initial guess C0, D0, A0 and iteratively find
for n> 1,

Cn
..= arg max

C∈C
F(C,Dn−1,An−1) (8)

Dn
..= arg max

D∈D
F(Cn,D,An−1) (9)

An
..= arg max

A∈A
F(Cn,Dn,A) (10)

Alternating optimization is an intuitive idea, but it need
not converge. If it converges, it may converge to one of many
local maxima depending on the initial condition. In order to
prove the convergence of the alternating optimization algo-
rithm when maximizing L(C,D,A), we prove the following
two results, Lemma ?? and Lemma ??.

A function f (X ,Y ) : Rm×Rn → R, X ∈ Rm, Y ∈ Rn, is
said to be concave in X , if dom f is a convex set, and for
all x1, x2 ∈ X and all y ∈ Y , and θ with 06 θ 6 1,

f (θx1 +(1−θ)x2,y)> θ f (x1,y)+(1−θ) f (x2,y). (11)

The following lemma is about the concave nature of the
log-likelihood function L(C,D,A) in C ∈ RnS , D ∈ RnQ and
A ∈ RnQ .

Lemma 4.1. The log-likelihood function L(C,D,A), see
(??), is strictly concave separately in C, D and A.

Proof. Given in Appendix.

Lemma ?? proves the concave nature of the log-likelihood
function jointly in C ∈RnS and D∈RnQ for a fixed A∈RnQ .

Lemma 4.2. The log-likelihood function L(C,D,A), see
(??), is jointly concave in C and D for a fixed A.

Proof. Given in Appendix.

We propose an iterative algorithm for the accurate esti-
mation of test parameters C, D and A using log-likelihood
function. Pseudo-code of the proposed algorithm is pre-
sented below. Convergence of this algorithm is guaranteed
by the block-concave nature of the log-likelihood function.
Alternating maximization over the three blocks of the log-
likelihood function is done as follows: For each student
we optimize L(C̄,D,A), as shown in step ??. The function
L(C̄,D,A) is separable for each student and so optimizing
for each c j separately is equally good as optimizing for the
full vector C. The optimum point that we get, (C∗,D,A)
is the global maxima of the function L(C̄,D,A), since the
function is concave in C, for fixed D and A. Similarly,
for each question we optimize the functions, L(C, D̄,A) and
L(C,D, Ā) as shown in steps ?? and ?? respectively. These
functions are also separable for each question separately,
and so optimizing for each di and ai separately is equally
good as optimizing for the full vector D and A respectively.
The optimum point that we get for these two optimization
problems are (C,D∗,A) and (C,D,A∗) respectively. They are
the global maxima of the respective functions, since the log-
likelihood function is concave in D, for fixed C and A and
also concave in A, for fixed C and D. Finally by step ?? the
algorithm converges to a point (C∗,D∗,A∗).

Algorithm 4.1 Pseudo-code of the ML based algorithm

Input: Raw marks matrix.
Output: Student capability vector C, question difficulty
vector D and question discrimination vector A.

1: Initialize D,A ∈ RnQ

2: while Error norms of estimated levels in previous itera-
tion > tolerance value do

3: for each student j do
4: Using D and A find c ∈ [0,1] such that L is

maximum.
5: c j

..= arg max
c

L(C̄,D,A)
6: end for
7: for each question i do
8: Using C and A find d ∈ [0,1] such that L is

maximum.
9: di

..= arg max
d

L(C, D̄,A)
10: end for
11: for Each question i do
12: Using D and C find a ∈ [0,6] such that L is

maximum.
13: ai

..= arg max
a

L(C,D, Ā)
14: end for
15: Go to Step ??
16: end while

Theorem 4.3. The ML based alternating optimization algo-
rithm ?? always converges to a stationary point of the log-
likelihood function L(C,D,A). Also, the converging point is
either the global maxima of L(C,D,A) or a stationary point
on a flat surface of the function.

Proof. It is proved in Lemma ?? that, L(C,D,A), is a strict
concave function individually in vectors C, D and A. Thus
every step in alternating maximization algorithm gives a
better estimate of C, D, A such that L(C,D,A) value in
the current step is higher than the previous step. Thus
the converging point of the algorithm will not be a local
maxima. This is because, the function will always improve
at a local maxima, and so the algorithm will give updated
values of C,D,A if at all it reaches one. Thus the converging
point of the algorithm will be either a stationary point on
a flat surface or the global maxima of the log-likelihood
function. Thus the convergence of the proposed algorithm
to a stationary point is guaranteed.

5. COMPARISON METRICS AND VARIABLES

In order to compare the performance of the proposed
method with the conventional marks based scheme, we
conducted few experiments. Analyses of these experiments
are made by monitoring the following parameters:
• Number of candidates qualified
• Number of ‘false-positives’
• Number of desired candidates qualified

In any hypothesis testing, there are four categories, true-
positive, true-negative, false-positive, and false-negative.
These four categories get defined based on the hypothesis. In



our case, we hypothesize that if a student is capable, and our
test indeed detects him/her to be capable, it is true-positive.
If the test detects a truly not capable student as not capable,
then it is true-negative. On the other side there can exist
cases where a not capable student is identified as capable
by the testing method. This is false-positive. Lastly the case
where the test identifies a capable student as not capable is
false-negative.

These experiments are done with top 10% as the cut-
off bound. There are three different ranklists which are
compared using the above metrics:
• based on their Actual Capability (AC), AC ranklist,
• based on the Raw Marks (RM), RM ranklist,
• based on the Maximum Likelihood Estimate of Capa-

bility (MLC), ML ranklist.
Cut-off MLC (cut-off RM) is the MLC (RM) of the last

candidate in the top 10% of the ML ranklist (RM ranklist).
Qualified people in ML ranklist (RM ranklist) are those
candidates whose MLC (RM) is greater than or equal to
the cut-off MLC (cut-off RM).

False-positives in ML ranklist (RM ranklist) are those
examinees who actually are not within the cut-off bound
in AC ranklist, but make it within the cut-off bound in ML
ranklist (RM ranklist). These candidates are considered as
the non-deserving section which gets qualified after exam. A
good ranking scheme should have a small fraction of false-
positives in every top percentile bracket.

Number of desired candidates qualified in ML ranklist
(RM ranklist) refers to the number of people who are present
in the AC ranklist as well as in the ML ranklist (RM
ranklist). More the number of desired candidates better is
the ranking scheme, as it is more in accordance with the
AC ranklist.

Exams for these analyses are randomly generated and
averaged over 50 runs for the same set of students and
questions. The proposed algorithm always outperforms the
conventional marks based scheme, by giving a significantly
lesser number of false-positives in the estimated capability
ranklist as compared to the marks based ranklist.

6. RESULTS AND DISCUSSIONS

Tables ??, ?? and ?? are the comparison results of
the conventional marks based scheme and the proposed
maximum likelihood based scheme for different experi-
ments conducted. Labels ML and RM in the comparison
tables represents proposed Maximum Likelihood (ML) based
scheme and conventional Raw Marks (RM) based scheme
respectively. Simulation results ?? and ?? presents the band
of number of false-positives in ML ranklist for 90% of
exams over which each experiment is done. This is done
to clarify the fact that better results of the proposed scheme
is not because of some favourable cases in the 50 exams
over which they were averaged. Experiments conducted for
making these analyses are: (i) fixed number of students and
number of questions varied, (ii) fixed number of questions
and number of students varied and (iii) normalized marks
based exam used for multiple sessions where students take

exams in batches answering different question papers for the
same discipline, to enter in a single ranklist.

Because of multiple students getting same score, number
of qualified people in RM scheme is much more than the
cut-off percentile. However, the estimated capabilities of
students are less likely to be same. It is evident from tables
that the number of qualified people beyond the cut-off limit
is at most one in the proposed method for the experiments
conducted, whereas a lot in the case of RM scheme. Large
number of people with same score results in ties in the RM
ranklist unlike in the proposed method.

From tables it is clear that, number of false-positives in
all the experiments is always less for the proposed ML
scheme. However, the number of desired candidates qualified
is more for the RM scheme. This can be justified by the fact
that the number of qualified people in the RM scheme is
more than the cut-off percentage, and this difference is much
more than the number of extra desired candidates qualified
when comparing with our method. It is also observed that
if the proposed algorithm is qualifying the same number of
candidates that gets qualified through RM scheme, even then
the number of false-positives in the proposed method is less.
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Fig. 4: Demonstration of 90% band of false-positives for
nS = 20,000 and different nQ

Figure ?? shows 90% band of number of false-positives
in ML ranklist for nS = 20,000 and nQ varied as 20, 30,
50 and 70. The plot validates that in case of 20, 50 and 70
the number of false-positives lies within a narrow band for
90% of the exams over which it is averaged. However, for
nQ = 30 the band is wide, which means the number of false-
positives is spread over a wide band for 90% of the exams.
Thus nQ = 30 is considered as the worst case and the rest
of the analyses are made with nQ = 30.

Figure ?? shows 90% band of number of false-positives in
ML ranklist for nQ = 30 and nS varied as 2000, 5000, 10,000
and 20,000. The 90% band of number of false-positives is
in agreement with the better performance of the proposed
algorithm. The number of false-positives for 90% of the
exams is within acceptable band.

Finally the multiple session case where students take
exam in batches for the same discipline answering different
question papers is considered. In this case the marks based
ranklist is formed by normalizing all the sessions using



TABLE I: Comparison for nS = 20,000 and nQ = 20,30,50 and 70 and cut-off bound = 10%

Metrics and Parameters
nS = 20000

nQ = 20 nQ = 30 nQ = 50 nQ = 70
ML RM ML RM ML RM ML RM

Num. of candidates qualified 2001 2205 2001 2699 2001 2555 2001 2197
Num. of false-positives 1093 1288 1465 2068 875 1307 774 965
Num. of deserving candidates qualified 908 916 536 631 1126 1248 1227 1232

TABLE II: Comparison for nQ = 30 and nS = 2000,5000,10000 and 20000 and cut-off bound = 10%

Metrics and Parameters
nQ = 30

nS = 2000 nS = 5000 nS = 10000 nS = 20000
ML RM ML RM ML RM ML RM

Num. of candidates qualified 201 225 501 691 1001 1203 2001 2699
Num. of false-positives 115 137 272 423 513 692 1465 2068
Num. of deserving candidates qualified 86 88 229 268 489 511 536 631
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Fig. 5: Demonstration of 90% band of false-positives for
nQ = 30 and different nS

the following relation and then combining them. The
normalizing equation used is,

m̄i j =
(mg

t −mg
q)

mti−miq
(mi j−miq)+mg

q, (12)

where mi j is the actual marks obtained by the jth candidate
in the ith session, mg

t is the average marks of the toppers in
all sessions, mg

q is the mean of marks of all students in all
sessions, mti is the top marks of the ith session, miq is the
average marks of all the students in the ith session.

The combined normalized marks based ranklist is com-
pared with the combined ML ranklist. Simulation results
affirms that our method out-performs the normalized marks
based scheme.

7. CONCLUSION

We propose a maximum likelihood based alternating
maximization algorithm for estimating student capabilities
and question difficulties of an offline exam. The model
employed in this paper is the logistic ogive model, which is a
well studied item response model. The individual concavity
of the log-likelihood function on student capability vector

C, question difficulty vector D and question discrimination
vector A is being proved. We also proved that the log-
likelihood function is jointly concave in C and D. Using
these two results, convergence of the proposed method is
also proved.

Experimental tests confirms the improved performance of
the proposed scheme over the conventional marks based
scheme. Student capabilities and question difficulties were
estimated and maximum likelihood estimated capability
based ranklist (MLC ranklist) is compared with the raw
marks based ranklist (RM ranklist) for the following exper-
iments: (i) fixed number of students with different number
of questions (ii) fixed number of questions with different
number of students (iii) different question paper distributions
and (iv) finally multiple session exam where students take
exams in batches answering different question papers for
the same discipline. The number of false-positives in the
top 10% are compared for both the ranklists with the actual
capability based ranklist (AC ranklist) and found that the
number of false-positives in the ML based method is less
for all the experiments.
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APPENDIX

Proof of Lemma ?? : The log-likelihood function of the
exam, as derived in (??), is given by

L(C,D,A) =
nS

∑
j=1

nQ

∑
i=1

[mi jai(c j−di)− log(1+ eai(c j−di))].

Taking partial derivatives of logistic function given in (??)
and (??) w.r.t c j, ai and di we get,

∂Pi j

∂c j
= −

∂Qi j

∂ci
= Pi jQi jai, (13)

∂Pi j

∂di
= −

∂Qi j

∂d j
= −Pi jQi jai, (14)

∂Pi j

∂ai
= −

∂Qi j

∂ai
= Pi jQi j(c j−di), (15)

Taking partial derivatives of (??) with respect to c j,di and
ai, and substituting (??), (??) and (??) we get

∂L
∂c j

=
nQ

∑
i=1

(mi j−Pi j)ai, (16)

∂ 2L
∂c2

j
= −

nQ

∑
i=1

a2
i Pi jQi j, (17)

∂L
∂di

=
nS

∑
j=1
−(mi j−Pi j)ai, (18)

∂ 2L
∂d2

i
= −

nS

∑
j=1

a2
i Pi jQi j, (19)

∂L
∂ai

=
nS

∑
j=1

(mi j−Pi j)(c j−di), (20)

∂ 2L
∂a2

i
= −

nS

∑
j=1

(c j−di)
2Pi jQi j. (21)

A function f : Rn → R, which is twice differentiable, is
jointly concave in two or more variables if its Hessian matrix
is negative semi-definite, i.e. ∇2 f (x) 4 0. For a function
f : R→ R the condition reduces to f ′′ 6 0. To prove the
negative semi-definiteness of H, we show −H is positive
semi-definite. A matrix A is called positive semi-definite if
it is symmetric and all its eigenvalues are non-negative.

The (nS × nS) Hessian of L w.r.t C, H11, is a diagonal
matrix with all negative entries along the diagonal.
⇒ H11 ≺ 0. Thus (??) is a strictly concave function in C.

Similarly the (nQ×nQ) Hessian of L w.r.t D, H22, is also a
diagonal matrix with all negative entries along the diagonal.
⇒ H22 ≺ 0. Thus (??) is a strictly concave function in D.

Also the (nQ×nQ) Hessian of L w.r.t a is a diagonal matrix
with all negative entries.
⇒ H33 ≺ 0. Thus (??) is a strictly concave function in A.

�

We use Gershgorin’s Circle theorem [?, Theorem 7.2.1]
for proving Lemma ??. We state it here for completeness.

Proposition 1. If X−1AX = D + F where D =
diag(d11, ...,dnn) and F has zero diagonal entries, then

λ (A)⊆ ∪n
i=1Di

where, Di = {z ∈ C : |z−dii| ≤
n

∑
j=1
| fi j|}.

Proof of Lemma ?? : The log-likelihood function is given
by,

L(C,D,A) =
nS

∑
j=1

nQ

∑
i=1

[mi jai(c j−di)− log(1+ eai(c j−di))].

Taking partial derivative of (??) w.r.t di,

∂ 2L
∂di∂c j

= a2
i Pi jQi j, (22)

Using (??), (??) and (??), the (nS + nQ)× (nS + nQ) sym-
metric Hessian matrix of L can be represented as:

H =

H11 H12

HT
12 H22

=

 ∂ 2L
∂C2

∂ 2L
∂C∂D

∂ 2L
∂D∂C

∂ 2L
∂D2

 (23)

where H11 is a (nS×nS) diagonal matrix, H12 is a (nS×nQ)
matrix and H22 is a (nQ×nQ) diagonal matrix.

The Hessian H has all the diagonal entries as negative and
the absolute value of the diagonal term in each row is equal
to the sum of the absolute values of the off-diagonal terms
of each row.
Since −H is diagonally dominant and all diagonal entries are
non-negative, by Gershgorin’s circle theorem, all eigenvalues
of −H are non-negative.
⇒ H 4 0. Thus the log-likelihood function is jointly
concave in C and D. �


