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Abstract—Allotting Teaching Assistants (TAs) to courses is
a common task at university centers which typically demands
a good amount of human effort. We propose a method to
allocate using computer algorithm. The presence of conflicting
constraints, posed by requirements which determine tradeoff
among them tend to make this problem difficult to solve. This
is essentially a matching problem and in this paper has been
modeled as a Markov Chain of various intermediate allotments.
Later we perform simple Monte-Carlo simulations over a naive
bucket filling allotment. This leads us to a globally optimal
allotment with a promise of faster convergence.

Keywords: Matching Problem, Allotment Problem, Markov
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I. INTRODUCTION

Allocation/matching theory, a name referring to several
loosely related research areas concerning matching, allocation,
and distribution of indivisible resources, such as jobs, school
seats, houses and so on, lies at the intersection of game theory,
social choice theory, and mechanism design. An allotment
problem is where a set of participants are asked for preferences
for a certain task that might have to be allotted to them
considering each of their preferences and also other task
specific requirements. Such problems can be modeled and
solved using many ‘matching’ solvers like bucket filling,
Hungarian method based matching algorithms and so on. The
allocations are done based on the preferences specified by the
participant parties, and the optimum allocation is the one that
maximizes the global satisfaction of all the members.

Matchings are mainly of two types, one-sided matchings and
two-sided matchings. One sided matching are those in which
one side participants do not have a preference list. Examples
of these are allocations of dormitory rooms, courses, summer
houses and so on where the allotment is solely based on the
preference list of the student’s side. More precisely, such an
allotment is always optimal for the chooser’s side.

The second category of matching problems called as two-
sided matchings are the ones where both the sets of partici-
pants give their preference orders for the other side. Examples
for these kind of problems are stable marriage problem, room
mate allotment problem and so on. In a stable marriage
problem the participants are men and women. The allotment
can be either men optimal or women optimal, based on the
criteria specified. Two-sided matching model and the concept
of “stable matchings” was introduced by Gale and Shapley
[1] in the year 1962. They introduced an algorithm known

as the deferred acceptance algorithm, using which they they
proved that a stable matching always exists. More details of
two-sided matching can be found in [2], [3]. However, the
wide applications of this result was revealed through the work
of Roth in the year 1984 [4].

This paper describes a two sided allotment problem, where
one side consists of students and the other side consists of
courses. To describe in detail, consider a scenario in which a
set of courses are going to run at an institute and each of these
courses require a set of teaching associates. Each of the course
is asked for the number of TAs they would be requiring and
students are asked for their choice preferences, as to which
course they would like to be TA for. An ’optimum’ allotment
of students to courses is to be found.

Various algorithms have been developed in the past for
solving such allotment problems. Automatic allotment of
package tours is solved using Answer Set Programming [5]. A
stochastic allocation problem is dealt with in [6] and solved in
which a given quantity of resource is to be allocated to each
activity. Taillard et. al. [7] try solving a quadratic assignment
problem by using taboo search. Various genetic algorithm
based methods also be found in the literature along with swarm
optimization techniques which try to deal with this problem
[8],[9]. In our problem, the Munkres algorithm can also be
used to solve such problems as presented in [10].

A way to judge how good an allotment is by checking for
its utility with respect to certain requirements. The utility can
be measured in terms of:

• Student preference
• Course getting capable students
• Consistency of TA capability across courses.

The measure we use for course satisfaction is the grades that
students allotted to a course had secured. The grades secured
by the assisting students in that particular course is expected
to have a direct impact on the performance of the whole
course. Thus the average grade of the assisting students in
that course is taken as a measure of the course satisfaction.
A measure of student happiness is to see that each of the
student ends up getting his highest possible choice. Clearly, a
course that denied a particular student should not get allotted
to another student of lower grade. A measure of consistency
of TA quality of allotment is the variance of GPA of students
across courses for an allotment. This ensures that the students
are evenly distributed across courses. Here ‘even’ means that,



no course ends up getting all TAs of high CGPA (Cumulative
Grade Point Average) letting some other courses getting only
low CGPA TAs. This is because, this allotment will result in
serious problems in the overall performance of the courses.

An important point to note here is that not all the sub-
objectives listed above are local. They are actually a global
measure and is unlikely to be achievable by a local algorithm.
Considering this as a bipartite graph matching problem, these
constraints end up conflicting each other and prevents us from
allotting weight for all the edges. In this paper we describe
and compare three methods which can be used to solve this
problem:

• Bucket Filling
• Hungarian Method
• Markov Chain Monte Carlo Simulations.

II. FEW SOLUTION TECHNIQUES

We detail few existing methods for solving allocation prob-
lems.

A. Bucket Filling

A naive way to solve this problem would be to arrange the
courses in a certain order based on their popularity/importance
or number of takers from past records. Also the students are
arranged in the order of their GPA or any other criteria. After
we have these two ordered lists we keep allotting the students
to courses as they come by. For example first student on
student list is allotted the first TA position in the course list,
the second student allotted the second TA position and so on.
To summarize,

• Order the list of students and the list of courses in a
arbitrary manner.

• Irrespective of the preference ordering, allot each student
to courses in a serial order.

Note that this activity requires significant amount of manual
work to actually order the courses and students in the desired
manner. And most importantly the work is not completely
programmable. Also there is no guarantee that the allotment
is optimal and best possible. Performing a simple test for its
utility will usually give a bad result on an allotment obtained
from this method. This method is likely to be biased against
a certain set of courses which happen to come up in the list
before actual bucket filling.

B. Maximum Weight Matching

Another way would be to model the problem by construct-
ing a student vs courses array and performing a maximum
weight matching over it. Each students choices are given a
certain weight and the lowest weight is given to course he/she
did not opt for. Then this maximum weight matching problem
can be solved by using the classical Munkres algorithm. This
method was proposed by J. Munkres in the paper [11], in
which he proposes to solve the transportation problem using
the Hungarian method.

This method is guaranteed to give a unique allotment and
to converge. A downside to this approach though is that it is
computationally intensive. A typical requirement in this solver
is that the constraints should be ‘local’ in the sense that there
are checks/values to be computed local to each vertex: like
student preference number, course’s requirement of relatively
good students as TAs. However, often for organizational or
administrative reasons, some constraints are not local, but
what we term as ‘global’, for example, both the average and
variance of the academic performance of students allotted to
a course must be quite consistent across courses. Such a con-
straint cannot be computed locally at a vertex. This is because,
the optimum matching corresponding to one requirement need
not be the optimum with respect to the other requirement. This
is because of the competing nature of the constraints and hence
the Hungarian method for maximum matching cannot be used.

C. Markov Chain Monte Carlo Simulations

Markov Chain Monte Carlo (MCMC) is a widely accepted
method for solving a wide variety of sampling problems in
statistics, physics, compute science and econometrics. Sam-
pling problems have many computational applications such as
[12],

• Approximate counting: Given a problem instance, the
objective is to obtain the size of the possible solutions.

• Statistical physics: The state space consist of all
possible configurations of statistical mechanical system.
The stationary probability has probability of each
configuration related to its energy. The objective here
is to sample configurations according to stationary
distribution for examining the probabilities of a
configuration.

The Markov Chain Monte Carlo method involves construct-
ing a dynamic stochastic process (a finite Markov chain)
whose states corresponds to the set of interest such as feasible
solutions to a combinatorial optimization problem. The process
can progress through the state space Ω by making local
perturbations of the structures. Moreover, if the process is
ergodic, that is, there exists a stationary distribution, then the
chain can evolve in such a way that the final state of the
chain asymptotically converges to a stationary distribution π
over Ω, independent of the initial condition. In such a case by
simulating the process for a sufficiently large number of steps
we can reach the desired distribution π starting from any initial
state. This sampling technique starts with some arbitrary initial
state and guarantees the convergence to the desired distribution
over some time.

MCMC techniques are widely applied for solving integra-
tion and optimization problems in large dimensional spaces.
The idea of Monte Carlo simulation is to draw an i.i.d. set
of samples {x(i)}Ni=1 from a target density P (x) defined
on a high-dimensional space X , like the set of possible
configurations of a system, the space on which the posterior is
defined, or the combinatorial set of feasible solutions. These
N samples can be now used to approximate the target density.



III. PROBLEM STATEMENT

We propose to model the problem at hand as a Markov chain
with various intermediate allotment being the states of this
Markov chain. The resulting allotment guarantees convergence
to a unique stationary distribution. This procedure also has
an advantage of converging much faster than the Hungarian
method based approach with a lower memory requirement.

The algorithm consists of preparing the data in a form
of student-vs-course matrix similar to the Hungarian method
based approach. Simple row flips based Monte-Carlo simu-
lations are then performed on this student-vs-course matrix
to obtain subsequent allotments. These transition between the
states of this Markov chain is governed by the change in the
utility over allotments.

Defining the Utility of an Allotment

The utility of an allotment is modeled as a linear combi-
nation of 3 sub-objectives which being the Student happiness,
Course satisfaction and a measure of the TA quality for an
allotment. These three sub-objectives are briefly described
below:

• Student Satisfaction (SS)
This gives a measure of satisfaction of all students in a
particular allotment. The choices of students to all the
courses are captured as 1, 2 , and 3 for the first, second
and third choices respectively. Thus happiness factor is
defined as the sum of their choice numbers and lower the
happiness factor, the allotment is more student favoring.
Ideally we would want this is be as low as possible for
an optimal allotment.

• Course Satisfaction (CS)
This gives a measure of satisfaction of all the courses
in a particular allotment. The courses would like to be
allotted to a student who secured good grades in the past
offering of the course. This can be modeled as the sum
of the grades students secured in the course they have
been allotted to in a particular allotment. If a student
has not opted for the course, his grade of that course are
taken to be 0.

• Capability of TAs across courses (CTA)
A measure of how unbiased an allotment is towards the
courses is necessary to make sure an even distribution of
skilled TAs across all the courses. This measure can be
modeled using the variance of the average GPA across
the courses. This quantity kind of also regularizes the
other two sub-objectives to maintain a balance between
them. We would eventually want this quantity to be
high so that each course has a balanced GPA of the TAs
allotted to it.

These sub-objectives are now linearly combined to give an
overall allotment value of an allotment. The linear combination
enables a flexibility in the kind of allotment generated and

hence provides us with a knob to tune which of the above
three are to be given more/less importance while allotting.
Thus at state X , the global utility function is then written as
follows:

U(X) = K1 × SSX +K2 × SAX +K3 × CTAX

where K1, K2 and K3 are parameters which denote relative
importance of each of the sub-objectives and can be chosen
by the user as per their requirement. As per the definitions
of sub-objectives and quantities they denote, SS needs to be
minimized whereas CS and CTA need to be maximized to
attain our optimum allotment. Hence, we choose K1 to be a
negative constant along with both K2 and K3 being positive.

Let Xn be an allotment which is an M ×N matrix, where
M and N denote the number of students and to number of
courses respectively. The parameter n here denote the iteration
count. Let U(Xn) denote the utility of the allotment Xn. The
MCMC iterations can then be summarized as follows:

Algorithm 1 MCMC iterations

1: for n← 1 to maxIterations do
2: Xn+1 ← swapRows(Xn)
3: if U(Xn+1) > U(Xn) then
4: Xi ← Xi+1

5: else
6: β ← 10 log(n)
7: Choose p ∈ (0, 1) such that,
8: p ← exp(β(U(Xn+1)− U(Xn)))
9: Xi ← Xi+1 with prob p.

The swapRows operations is performed by first generating
two random numbers between 1 to M and then swapping the
rows corresponding to them in an allotment Xn.

IV. RESULTS

For simulation, we used real time data from a total of 59
courses and 308 students of Department of Electrical Engi-
neering, Indian Institute of Technology Bombay. An Ubuntu
based 3.2 Gz computer was used to implement this in Python.
The simulation results are shown in Figures 1, 2 and 3.

Figure 1 shows the convergence plot for MCMC simulations
over iterations. The initial allotment index is negative as the
student satisfaction sub-objective is very high and we choose
K1 to be 1. The plot shows that by about 40,000 iterations
the chain converges satisfactorily.

Figure 2 compares allotment by the bucket filling initializa-
tion with MCMC based allotment. In the bucket filling allot-
ment, a lot of students end up getting their last choice which
is denoted to be 10. After the MCMC simulations majority
of students get their first choice. This can be controlled with
parameter K1 in the overall allotment value function.

Similarly in the Figure 3, with a simple bucket filling
initialization, the average GPA across course peaks at 9 and
is skewed. After the MCMC simulations the distribution of
average GPA become better and peaks around 8.25. This can



Figure 1: Plot of convergence for MCMC.

be controlled with parameter K3 in the overall allotment value
function.

V. CONCLUSIONS

Our work focused on the class of matching problems
where the conventional polynomial time algorithms cannot
be implemented, like the course to TA allotment as a rep-
resentative example. The performance index of a matching is
a combination of local and global constraints. A brute-force
method to find the best matching is often not practical due
to the exorbitant time required to find the best allocation for
even a typical size of say 100 students.

To this end, we proposed a randomized algorithm for
solving this using the Markov Chain Monte Carlo (MCMC)
method. We constructed a Markov chain associated with this
bipartite graph where every state is a perfect matching and
the state space consists of all possible perfect matchings. We
conducted simulations using the Markov chain and obtained
affirmative results showing the convergence and the attainment
of a near optimum within minutes. This method has been put
to use now for allocation in our academic unit which comprises
of about 300 TAs.
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Figure 2: Plot of Choice Number vs number of students.

Figure 3: Plot of GPA vs number of students.
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