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Abstract— The Algebraic Riccati Equation (ARE) cannot
be formulated for the conservative/lossless and all-pass cases,
though the notion of ‘storage function’ is well-defined for these
cases too. New properties have been formulated recently about
the storage function matrix for this case, which gave rise to
new computational procedures. This paper targets improvement
of this algorithm by avoiding some key computation intensive
steps in minimal polynomial basis computation. We use the
Zassenhaus method for basis computation for the sum and
intersection of two subspaces. In addition to the conventional
Zassenhaus method, for improved numerical accuracy, we
propose LU and QR factorization methods with pivoting and
compare the results.
Keywords: subspace intersection algorithms, Zassenhaus algo-
rithm, minimal polynomial basis, LU factorization, QR factor-
ization

I. INTRODUCTION

The algebraic Riccati equation (ARE) has widespread
applications in many optimal control problems, for example,
in LQ control, H∞ and H2 control [15], [1]. Many conceptual
and numerical methods for finding solutions of the ARE
have been provided in [15], [3]. The link between storage
functions of dissipative systems and solvability of AREs
has been studied in [20], [22]. But, for a special class
of dissipative systems, namely energy-conservative systems,
the ARE is not defined. This is due to the fact that the
formulation of ARE depends on a certain regularity condition
which is not satisfied by conservative systems. For example,
for lossless systems which are conservative with respect to
‘positive real supply rate’ i.e uT y, where u is the input
and y is the output of the system, the ARE is not defined.
New properties that are satisfied for the storage function
for conservative case have been formulated in [5]. In this
paper we use these properties to develop an algorithm to
compute the unique storage function for the conservative
systems for which the ARE does not exist. Note that for
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lossless systems, due to the absence of energy-dissipation,
the notions of ‘available storage’ and ‘required supply’, the
two extremal storage functions, coincide: thus the storage
function is unique for the lossless case.

The notation used in the paper is standard. The set R and
C denote the fields of real and complex numbers respectively.
The set R[ξ ] denotes the ring of polynomials in ξ with real
coefficients. The set Rw×p[ξ ] denotes all w×p matrices with
entries from R[ξ ]. We use • when a dimension need not be
specified: for example, Rw×• denotes the set of real constant
matrices having w rows. The space C∞(R,Rw) stands for the
space of all infinitely often differentiable functions from R
to Rw, and D(R,Rw) stands for the subspace of all compactly
supported trajectories in C∞(R,Rw).

This paper is structured as follows: Section II summarizes
preliminaries required in the paper. The properties of ARE
solutions are presented in Section II-B. Section III uses the
properties stated in Section II-B and provides a numerical
algorithm to compute the storage function of conservative
systems. Section IV contains a time comparison between
the algorithms given in [5] and the algorithms presented in
this paper. Section V contains comparison of the numerical
accuracy for the algorithms presented in this paper. Some
concluding remarks are presented in Section VI. Section VII
contains numerical examples to illustrate the algorithm. Due
to the sizes of intermediate matrices, these examples are
reported on the last page of this paper.

II. PRELIMINARIES

In this section we give a brief introduction to various
concepts that are required to formulate and solve the problem
addressed in the paper.

A. The behavioral approach

We begin with some essentials of the behavioral approach
in control systems. A more detailed explanation can be found
in [16].

Definition 2.1: A linear differential behavior B is defined
as the subspace of infinitely often differentiable functions
C∞(R,Rw) consisting of all solutions to a set of linear
ordinary differential equations with constant coefficients, i.e.,
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for R(ξ ) ∈ R•×w[ξ ]

B :=
{

w ∈ C∞(R,Rw) | R
(

d
dt

)
w = 0

}
. (1)

The variable w in equation (1) is known as manifest variable
of the behavior B. The set of linear differential behaviors
with w manifest variables is denoted as Lw. Equation (1)
is called a kernel representation of the behavior B ∈ Lw

and sometimes written as B = ker R( d
dt ). The polynomial

matrix R(ξ ) is assumed to have full row rank without
loss of generality (see [16, Chapter 6]). This assumption
guarantees existence of a nonsingular block P(ξ ) such that
R(ξ ) =

[
P(ξ ) Q(ξ )

]
. Conforming to this partition of R(ξ ),

partitioning w into w =

[
y
u

]
, u,y are the input and output of

the behavior B respectively. Note that this partition is not
unique. Such a partition is called an input-output partition
of the behavior. The input-output partition is called proper
if P−1Q is a matrix of proper rational functions. But the
number of components of the input depends only on B:
and that number is denoted as m(B), and is called the input
cardinality of the behavior. The number of components in the
output is called the output cardinality represented as p(B). It
is well-known that p(B) = rank R(ξ ) and m(B) = w−p(B).

In the behavioral approach, a system is nothing but its
behavior and thus the terms behavior/system will be used
interchangeably. There are numerous ways of representing
a behavior depending on the modeling of the system. One
representation which is useful is the latent variable repre-
sentation: for R(ξ ) ∈ R•×w and M(ξ ) ∈ R•×m[ξ ],

B := {w ∈ C∞(R,Rw) | ∃` ∈ C∞(R,Rm) s.t R(
d
dt
)w = M(

d
dt
)`}.

Here ` is called a latent variable.
Controllability is another important concept required for

this paper.
Definition 2.2: A behavior B is said to be controllable if

for every pair of trajectories w1, w2 ∈B there exists w3 ∈B
and τ > 0 such that

w3(t) =

{
w1(t) for t 6 0,
w2(t) for t > τ.

We represent the set of all controllable behaviors with w

variables as Lw
cont. The familiar PBH rank test for control-

lability has been generalized: a behavior B with minimal
kernel representation B = ker R( d

dt ) is controllable if and
only if R(λ ) has constant rank for all λ ∈ C. One of the
ways by which a behavior B can be represented if (and
only if) B is controllable is the image representation: for
M(ξ ) ∈ Rw×m[ξ ]

B :=
{

w ∈ C∞(R,Rw)|∃` ∈ C∞(R,Rm) s.t w=M(
d
dt
)`

}
.

(2)

If M(ξ ) is such that M(λ ) has full column rank for all λ ∈C,
then the image representation is said to be an observable
image representation: this can be assumed without loss of
generality (see [16, Section 6.6]).

For a behavior B ∈ Lw we define a Quadratic Differential
Form (QDF) QΣ(w) = wT Σw. Such quadratic expressions of
the manifest and/or latent variables of the behavior B are
very common in literature. A detailed explanation on QDFs
can be found in [22]. The function QΣ(w) is also called
the supply rate. The supply rate is the rate of supply of
energy to the system. Dissipative systems are those where
the net energy exchange is always an absorption when the
trajectories are considered which start-from-rest and end-at-
rest, i.e. compactly supported. The link with existence of a
storage function is well-known for the controllable system
case in literature. See [22].

In this paper, we shall be dealing with supply rates QΣ

induced by real symmetric constant nonsingular matrices Σ=[
0 I
I 0

]
only. For a behavior B, this with a input/output

partition as w =

[
u
y

]
, this corresponds to positive real supply

rate 2uT y. This work focuses on the conservative systems’
case for which the algebraic Riccati equation does not exist.
A conservative system is defined as:

Definition 2.3: Consider a symmetric and nonsingular
matrix Σ ∈Rw×w and a behavior B ∈ Lw

cont. The system B is
called Σ-conservative if∫

R
2uT y dt = 0 for all w ∈B∩D

where u and y are the input/output of the system respectively.
Systems conservative with respect to the positive real sup-

ply rate are known in the literature as lossless systems. We
will be dealing only with lossless systems in this paper. The
results in the paper can be extended to systems conservative
with respect to other supply rates also.

B. The algebraic Riccati equation (ARE)

Consider a proper input-output partition (u,y) for a con-
trollable dissipative behavior B which has the following
minimal i/s/o representation:

ẋ = Ax+Bu, y =Cx+Du, (3)

with A ∈ Rn×n,B,CT ∈ Rn×p and D ∈ Rp×p and (C,A) ob-
servable. We assume here that the number of inputs m(B)

= number of outputs p(B). One of the results relating the
Linear Matrix Inequality (LMI), controllable behaviors and
storage functions is the Kalman-Yakubovich-Popov (KYP)
lemma: details in [8, Section 5.6]. For easy reference we
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present the KY P lemma, in a behavioral context, in the next
proposition.

Proposition 2.4: [5] A behavior B ∈ Lw
cont, with a con-

trollable and observable minimal i/s/o representation as in
equation (3), is Σ-dissipative if and only if there exists a
solution K = KT ∈ Rn×n to the LMI[

AT K +KA KB−CT

BT K−C −(D+DT )

]
6 0. (4)

For systems with D+DT > 0, the Schur complement with
respect to D+DT in LMI (4) provides us with the algebraic
Riccati inequality

AT K +KA+(KB−CT )(D+DT )−1(BT K−C)6 0. (5)

The corresponding equation to the inequality (5) is called
the algebraic Riccati equation (ARE).

C. Storage functions for lossless systems

For lossless systems D + DT = 0, hence the storage
function for such systems cannot found using conventional
methods. However for lossless systems the LMI (4) still
exists (in fact with equality) and the unique solution to this
LMI can be interpreted as storage functions even in the
absence of the ARE. The LMI is equivalent to the following
matrix equations for lossless systems [5].

AT K +KA = 0 and BT K−C = 0 (6)

New properties of the solution for ARE in terms of the set
of trajectories of ‘minimal dissipation’ have been formulated
recently in [21]. We call these set of trajectories ‘a Hamilto-
nian system’. For a lossless system this ’Hamiltonian system’
BHam =B⊆B∪B⊥Σ . (See [2, Lemma 11] and [10]). It has
been shown in [5] that the ARE solution is closely linked
to the static relations that hold between the states in a first
order representation of this system. For a lossless behavior
B, the first order representation of the Hamiltonian system
BHam is [5]ξ In−A 0 −B

0 ξ In +AT −CT

−C BT 0


x

z
y

= 0. (7)

The next result helps to extract the static relations of the
first order representation (7) of behavior BHam and in the
process yields the unique storage function for the lossless
behavior B.

Proposition 2.5: [5] Consider a controllable, lossless be-
havior B ∈ Lw

cont with minimal state space representation
as in equation (3). Assuming the McMillan degree of B

is n, the corresponding Hamiltonian behavior BHam = ker
R( d

dt ) where R(ξ ) := ξ E − H is the Hamiltonian pencil

with E :=

In 0 0
0 In 0
0 0 0

 and H :=

A 0 B
0 −AT CT

C −BT D+DT

 with

D+DT = 0. Then the following statements hold.

1) The Hamiltonian behavior BHam is not autonomous, i.e.
detR(ξ ) = 0.

2) There exists a unique symmetric matrix K ∈ Rn×n that
satisfies

d
dt

xT Kx = 2uT y for all

[
u
y

]
∈BHam =B.

(8)
3) This matrix K ∈ Rn×n satisfies:

rank

[
R(ξ )

−K I 0

]
= rank R(ξ ). (9)

In [5], it is shown that equation (9) is a necessary and
sufficient condition for K = KT ∈ Rn×n to be a storage
function for B. Thus, by equation (9) [−K I 0] is in
the row-span of the polynomial matrix R(ξ ). This fact is
used to develop an algorithm to compute the storage function
K ∈ Rn×n for lossless systems.

In this paper we compare the time taken by the algorithms
presented here with the time taken by the algorithm given
in [5, Algorithm 5.5.1]. The algorithm given in [5] requires
calculation of the minimal polynomial basis (MPB) twice:
once for MPB M(ξ ) of the matrix R(ξ ) and then MPB again
for an appropriate submatrix of M(ξ ). We briefly review
the definition of an MPB. For a polynomial matrix R(ξ ) ∈
Rm×n[ξ ] and rank m, let Z(ξ )∈Rn×(n−m)[ξ ] be a full column
rank polynomial matrix such that R(ξ )Z(ξ ) = 0. For the
purpose of this paper, columns of Z(ξ ) are called a minimal
polynomial basis (MPB) if the sum of the column degrees
is the least amongst all such Z(ξ ). This paper focusses on
elimination of the computation of the MPB completely in
order to compute K much faster.

D. The row reduced echelon form and Gauss transforma-
tions

A matrix A∈Rn×n is said to be in the row reduced echelon
form if:

1) All nonzero rows are above all zero rows.
2) For each row, the leading nonzero element (called the

pivot) is strictly to the right of the leading nonzero
element of all rows above that row.

For example, the matrix A ∈ R4×4 below is in the row
reduced echelon form:

A =


2 3 7 8
0 3 12 1
0 0 2 9
0 0 0 0
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A matrix can be converted to a row reduced echelon form
with the help of elementary row operations [12]. These oper-
ations are represented using Gauss transformation matrices.
We write:

PA = LU

where P ∈ Rn×n is a permutation matrix, L and U being
lower and upper triangular respectively. This is also called
LU factorization of the matrix A using partial pivoting.
Permutation matrix helps to achieve numerical stability. It
also ensures that unreasonably large entries do not appear
in L and U when A has small entries. More details on LU
factorization can be found in [12, Chapter 3].

E. Zassenhaus sum-intersection algorithm for vector spaces

The Zassenhaus sum-intersection algorithm is used to
calculate a basis for the intersection of two vector spaces. Let
S∈R•×n and T ∈R•×n be two matrices. Let the dimension of
the row span of S (denoted by < S >R) be k1 and dimension
of < T >R be k2. Also let the dimension of the vector
space < S >R + < T >R be n1 and the dimension of the
intersection of the row spaces i.e. < S >R ∩< T >R n2, then,
k1 + k2 = n1 + n2. The following steps calculate a basis for
< S >R ∩< T >R.

1) W =

[
S S
T 0

]
is constructed using matrices S and T .

2) Apply successive Gauss transformations on W to bring
it to row reduced echelon form.

3) The submatrix W (n1+1 : n2,n+1 : 2n) contains a basis
for < S >R ∩< T >R.

For more details about the Zassenhaus algorithm, see [6].

III. ALGORITHMS TO FIND STORAGE FUNCTIONS FOR

LOSSLESS/ALL-PASS SYSTEMS

In this section we discuss the algorithms to calculate the
storage functions for lossless/all-pass systems for which the
ARE does not exist based on the properties of the storage
function we studied in Proposition 2.5 and the Zassenhaus
algorithm. By using equation (9), we see that

[
−K I 0

]
lies in the row span of R(λ ) ∈R(2n+p)×(2n+p) for all λ ∈C.
Thus, by finding intersection of the row spans of R(λi), λi ∈
C, i = 1,2, ...,k, we obtain

[
−K I 0

]
.

A. LU Zassenhaus algorithm implementation

One way to implement the Zassenhaus algorithm is by
obtaining LU factorization of the matrix W as discussed in
Section II-E. In an LU factorization, a matrix A ∈ Rn×n is
represented as a product of a lower and upper triangular
matrix where A = LU , where L ∈Rn×n is a lower triangular
matrix and U ∈ Rn×n is an upper triangular matrix. The

matrix A is converted to an upper triangular form (U) by
premultiplying A by Gauss transformation matrices. The
product of all Gauss transformation matrices is a lower
triangular matrix whose inverse is also a lower triangular
matrix. For more on LU factorization see [12, Chapter 3].

In order to extract [−K I 0] from the row span of
R(ξ )∈R(2n+p)×(2n+p)[ξ ] we propose the following algorithm
based on LU factorization within the Zassenhaus method:

Algorithm 1 LU based Zassenhaus implementation

Input: R(ξ ) := ξ E −H ∈ R[ξ ](2n+p)×(2n+p), a rank 2n
polynomial matrix and tolerance ε > 0.
Output: K ∈ Rn×n with xT Kx the storage function.

Require: Evaluate R(λi) ∈ R(2n+p)×(2n+p), at

λi ∈ C, i = 1,2, . . . ,k which are the roots of ξ
k−1

(10)
for k suitably chosen for accuracy ε .

1: W :=

[
R(λ1) R(λ1)

R(λ2) 0

]
, [L,U,P] := lu(W )

D :=U(2n+ p+1 : 4n+2p− `,2n+ p+1 : 4n+2p)
Define ` as the largest integer such that

‖U(4n+2p− `+1 : 4n+2p, :)‖2 < ε (11)

Let c be the number of rows of D
2: while c > n do

3: W :=

[
R(λd) R(λd)

D 0

]
, [L,U,P] := LU(W )

D :=U(2n+ p+1 : 2n+ p+c−`,2n+ p+1 : 4n+2p)
` is the largest integer such that the condition in
equation (11) is satisfied and d = 3,4, . . . ,k

4: end while
5: X := D(1 : n,n+1 : 2n)
6: K :=−X−1D(1 : n,1 : n)

B. QR Zassenhaus implementation algorithm

A QR factorization of a matrix A ∈Rn×n is given by A =

QR where Q∈Rn×n is an orthogonal matrix and R∈Rn×n is
an upper triangular matrix. The matrix A is brought to upper
triangular form by premultiplying A by successive House-
holder/Givens transformations. More on QR factorization can
be found in [12, Chapter 5]. Thus, by factoring the matrix W
of Algorithm 1 successively into a product of an orthogonal
matrix Q and an upper triangular matrix R, we obtain a basis
for the intersection of the two vector spaces by extracting the
appropriate rows of the matrix R.

Thus, in order to extract [−K I 0] from the row span
of R(ξ ) ∈ R(2n+p)×(2n+p) we propose the following QR
factorization based Zassenhaus algorithm:
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Algorithm 2 QR based Zassenhaus implementation

Input: R(ξ ) := ξ E −H ∈ R[ξ ](2n+p)×(2n+p), a rank 2n
polynomial matrix and tolerance ε > 0.
Output: K ∈ Rn×n with xT Kx the storage function.

Require: Evaluate R(λi) ∈ R(2n+p)×(2n+p), at

λi ∈ C, i = 1,2, . . . ,k which are the roots of ξ
k−1

(12)
for k suitably chosen for accuracy ε .

1: W :=

[
R(λ1) R(λ1)

R(λ2) 0

]
, [Q,R] := qr(W )

D := R(2n+ p+1 : 4n+2p− `,2n+ p+1 : 4n+2p)
Define ` as the largest integer such that

‖U(4n+2p− `+1 : 4n+2p, :)‖2 < ε (13)

Let c be the number of rows of D
2: while c > n do

3: W :=

[
R(λd) R(λd)

D 0

]
, [Q,R] := qr(W )

D := R(2n+ p+1 : 2n+ p+c−`,2n+ p+1 : 4n+2p)
` is the largest integer such that the condition in
equation (13) is satisfied and d = 3,4, ...,k

4: end while
5: X := D(1 : n,n+1 : 2n)
6: K :=−X−1D(1 : n,1 : n)

IV. COMPARISON OF COMPUTATION TIME

The plot in Fig 1 shows the time taken by both LU and
QR methods to compute K. Their time is compared with
the time taken by the minimal polynomial basis extraction-
based algorithm given in [5, Algorithm 5.5.1] for different
orders. The experiments were carried out on an Intel Core i3
computer of 3.40 GHz with 4 GB RAM using Ubuntu 14.04
LTS operating system. The relative machine precision ε is
2.22×10−16. Open source numerical computational package
Scilab 5.5 has been used to implement the algorithms. In
Fig 1, the time taken by the algorithms is plotted against
the order of the system. It can be seen from the plot that
the LU and QR based methods take the same time for
computing K for lossless systems and are ten times faster
as compared to the time taken by minimal polynomial basis-
based algorithm which is given in [5]. The main drawback
of the minimal polynomial based algorithm is that it is not
applicable for orders greater than ten, while the LU and QR
based algorithms are more stable and can evaluate K for
higher order systems. We also compare how accurately the
LU and QR based methods calculate K as compared to the
minimal polynomial basis-based method in the next section.

4 6 8 10 12

0

5 ·10−2

0.1

0.15

0.2

Order of the transfer function

Ti
m

e
ta

ke
n

LU based method
QR based method
MPB based method

Fig. 1. Plot for time taken by algorithms versus system’s order

V. COMPUTATIONAL ERROR

In this section we compare the proposed algorithms for
accuracy of the obtained K. We compare how accurately
the LU and QR based methods calculate K as compared to
the minimal polynomial basis-based method. As discussed
in Section II-C, the matrix K calculated for the lossless case
satisfies the LMI given in equation (4) with equality. Thus,
K satisfies the following equation:[

AT K +KA KB−CT

BT K−C 0

]
= 0.

Also, according to Proposition 2.5, the matrix K is symmetric
and

[
−K I 0

]
is in the row span of R(ξ ). Thus we

consider the following errors associated with computation
of K.

ErrLMI(K) := ‖

[
AT K +KA KB−CT

BT K−C 0

]
‖2 (14)

ErrSym(K) := ‖K−KT‖2 (15)

and

Errrowspan(K) := max
λi

{
σ2n+1(

[
R(λ )

−K I 0

]
)

}
(16)

where the λ ′i s are the roots of the polynomials ξ k − 1
which are also used to evaluate K from R(ξ ) as explained
in Algorithm 1 and Algorithm 2. We calculate the errors
ErrLMI(K),ErrSym(K) and Errrowspan(K) for randomly gener-
ated lossless systems. From figures 2, 3 and 4 we see that
for most of the cases, error from LU based methods and
the minimal polynomial basis-based methods are almost the
same though the minimal polynomial basis-based algorithm
provides a more symmetric K. The QR based algorithm
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provides a less accurate K as compared to the LU based
and the minimal polynomial based algorithms.

4 6 8 10 12
10−16

10−14
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m
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r

LU based method
QR based method
MPB based method

Fig. 2. Plot of ErrLMI(K) (see equation (14)) residue versus system’s order
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LU based method
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MPB based method

Fig. 3. Plot of ErrSym(K) (see equation (15)) residue versus system’s order

Both the LU and the QR based Zassenhaus implementa-
tion allow explicit control of the tolerance when using the
factorizations to reveal the rank (see equation (10) and (12) in
Algorithms 1 and 2). In this section we also plot the variation
of k of equation (10) of against the tolerance level ε used in
equation (11) which specifies the number digits of precision
required for identifying the ‘almost zero’ rows. In Figure 5
horizontal axis represents the value of the negative of the
logarithm (in base 10) of the ε used versus the value of k.

The same plot is done in Figure 6 for the k in equation (12)
of Algorithm 2 against the tolerance level ε used in equa-
tion (13). In Figure 6 horizontal axis represents the value
of the negative of the logarithm (in base 10) of the ε used
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Fig. 4. Plot of ErrSym(K) (see equation (15)) residue versus system’s order
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Fig. 5. Plot of value of k (see (10)) versus − log10(ε) (see (11))

versus the value of k. From both Figure 5 and 6, we conclude
that LU method requires less number of λ ’s for obtaining K
as compared to the QR method for the same tolerance level.

VI. CONCLUSIONS

This paper dealt with the problem of calculating the stor-
age function for systems for which the regularity condition
required for the existence of the ARE is not satisfied i.e.
for lossless systems. Algorithms were developed so as to
calculate the storage functions for lossless systems based
upon their properties. These algorithms implement Zassen-
haus sum-intersection algorithm using LU factorizations and
QR factorizations. We studied the computational error for
both LU based and QR based algorithms and plotted these
for both algorithms against the order of the system. Also,
the computation time for obtaining the storage function (for
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Fig. 6. Plot of value of k (see (12)) versus − log10(ε) (see (13))

both LU and QR based methods) was compared with the
time taken by the minimal polynomial basis extraction-based
algorithm given in [5, Algorithm 5.5.1] and we found that
both LU and QR based methods perform faster than minimal
polynomial basis extraction-based algorithm. We studied
three types of errors: ErrLMI(K) (see (14)) which measures
how well the K obtained satisfies the LMI in equation (4),
ErrSym (see (15)) which measures how symmetric is the
obtained K and Errrowspan (see (16)) which checks whether[
−K I 0

]
lies in the row span of R(ξ ) or not. We compare

how accurately K is obtained using LU and QR based
algorithms as compared to the minimal polynomial basis-
based algorithm. We found that LU based algorithms and
minimal polynomial basis-based algorithm calculate K with
almost the same accuracy. In Section VII below, the storage
function K is calculated for two examples using both the LU
and QR based algorithms.
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