
On the link between storage functions of allpass systems and Gramians.

Chayan Bhawal, Debasattam Pal and Madhu N. Belur

Abstract— In this paper, we bring out a link between storage
functions of allpass systems and observability/controllability
Gramians. We show that under a particular transformation, the
storage function of an allpass system is induced by an identity
matrix. Interestingly, certain algebraic relations between the
states and costates/dual states of an allpass system capture the
information of the storage function of the system. Further, we
also prove that certain difference dynamics between states and
costates of an allpass system is always present in the orthogonal
complement of its controllable subspace.
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1. INTRODUCTION

Allpass systems are a special class of bounded real systems

that find applications in different areas of communication,

control [5]. Like any other bounded real system, allpass

systems therefore admit storage functions. Such functions

can be computed using the solutions of the bounded real

linear matrix inequality (LMI) (see [2, Chapter 7]). One of

the most popular methods to compute solutions of such an

LMI is by using algebraic Riccati equation (ARE). However,

existence of an ARE requires certain invertability conditions
to be satisfied: which may not be satisfied always [8]. Allpass

systems are one such class of systems for which the ARE

does not exist. In this paper, we show that the storage

function of an allpass system has an interesting link to the

observability/controllability Gramian of the system. We also

show that under a particular linear transformation (called

the balanced transformation) the storage function of such

a system is induced by an identity matrix, i.e., if x is the

state-vector of the system then, the storage function is given

by xT x. This fascinating result stems from the fact that the

Hankel singular values of an allpass system are unity: see

[6]. Note that allpass systems under a suitable transformation

gets mapped to lossless systems. LC oscillators, spring-mass

mechanical systems are examples of lossless systems. We

show that the set of storage functions remains invariant under

such a transformation. Hence, study of storage functions of

allpass systems and that of lossless systems are the same.

Further, we also show that for lossless systems certain alge-

braic relations between the states and its dual states capture

the information of the storage function of the system. These

relations can be used to compute the storage function of a
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lossless system (in general true for conservative systems):

see algorithms in [4]. All these results put together will give

us an understanding of the properties of storage functions of

allpass/lossless systems.

The paper is structured as follows: In Section 2 we

review the notation and preliminaries required for the paper.

We establish the link between the storage function of an

allpass system, its observability/controllability Gramian and

balanced realization in Section 3. In Section 4, we present

a link between the storage function of an allpass system

and its lossless counterpart. We unveil the algebraic relations

between the states and costates of a lossless/allpass system

in Section 5. Finally we present the concluding remarks in

Section 6.

2. NOTATION AND PRELIMINARIES

We use the symbols R and C to denote the sets of real

and complex numbers, respectively. We use R[ξ ] to denote

the ring of polynomials in one indeterminate ξ with real

coefficients. The set Rw×p[ξ ] denotes all w×p matrices with

entries from R[ξ ]. We use • when a dimension is not required

to be specified: for example, R
w×• denotes the set of real

constant matrices having w rows. R
n×m[ζ ,η ] denotes the

set of polynomial matrices in two indeterminates: ζ and

η , having n rows and m columns. C∞(R,Rm) denotes the

set of all infinitely often differentiable functions from R to

R
m, and D(R,Rm) denotes the subspace of all compactly

supported trajectories in C∞(R,Rm). A subspace spanned by

the columns of a matrix B is denoted as 〈B〉.
A. Behavior

The behavioral approach to control theory is used through-

out the paper. We give a brief review of the same in this

section: for a detailed review see [10].

Definition 2.1. A linear differential behavior B is defined
as the subspace of C∞(R,Rm) functions that satisfy a sys-
tem of linear ordinary differential equations with constant
coefficients, i.e.,

B :=

{
w ∈ C∞(R,Rm) | R

(
d
dt

)
w = 0

}
, (1)

where R(ξ ) ∈ R
•×m[ξ ].

Variables w in equation (1) are called the manifest vari-
ables of the behavior B. We use Lm to denote linear

differential behaviors with m manifest variables. The behavior

B can also be represented as ker R( d
dt ) and hence such

a representation is called the kernel representation of the
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behavior B ∈ Lm. As described in [10, Theorem 2.5.23],

R(ξ ) is assumed to be of full row rank throughout the paper,

without loss of generality. Note that there are different ways

of partitioning the manifest variables into inputs and outputs,

however the number of inputs and outputs of the behavior re-

mains invariant. We denote the number of inputs and outputs

of a behavior B with i(B) and p(B), respectively. Further

note that i(B) = m−p(B) and p(B) = rank R(ξ ). In this

paper, we use the notion of controllability in the behavioral

sense: see [10, Definition 5.2.2]. A behavior B= ker R( d
dt )

is controllable if and only if R(λ ) has constant rank for all

λ ∈ C. This is the generalization of the well known PBH

rank test for state-controllability: see [10, Theorem 5.2.5].

Further, since state space systems play a central role in

this paper, controllability/observability of behavior/system is

same as state space controllability/observability. We use no-

tation Lm
cont to represent the set of all controllable behaviors

with m manifest variables.

Another important concept that we require in this paper is

that of Σ-orthogonal complement behavior B⊥Σ of a behavior

B ∈ Lm
cont. We define this next.

Definition 2.2. Consider B ∈ Lm
cont and a nonsingular,

symmetric matrix Σ ∈ R
m×m. The Σ-orthogonal complement

B⊥Σ of B is defined as

B⊥Σ:={v∈C∞(R,Rm) |
∫ ∞

−∞
vT Σw dt = 0 for all w∈B∩D}.

The behavior B⊥Σ is also known in the literature as

the adjoint system of B: see details in [11, Section 10].

If (A,B,C,D) is a minimal state-space representation of a

system B then, with respect to Σ =

[
0 I
I 0

]
the system B⊥Σ ,

with manifest variables (e, f ), admits a minimal state-space

representation of the form ż =−AT z+CT e, f = BT z−DT e
(see [12, Section VI-A]). The vector z represents the dual-

states of the system B and satisfies d
dt xT z = uT f + yT e for

(u,y) ∈ B and (e, f ) ∈ B⊥Σ . We use the terms system and

behavior interchangeably throughout the paper.

B. Quadratic differential forms and dissipativity

In this section, we give a brief introduction to the link

between dissipativity, two-variable polynomial matrices and

quadratic forms of manifest variables and their derivatives.

A detailed exposition to this can be found in [11].

Consider a two-variable polynomial matrix φ(ζ ,η) :=

∑ j,k φ jkζ jηk ∈R
m×m[ζ ,η ], where φ jk ∈R

m×m. The QDF Qφ
induced by φ(ζ ,η) is a map Qφ : C∞(R,Rm) → C∞(R,R)
defined as

Qφ (w) := ∑
j,k

(
d jw
dt j )

T φ jk (
dkw
dtk ).

In this paper, we use φ = Σ∈R
m×m and hence QΣ =wT Σw.

Next we define dissipative systems using QDFs.

Definition 2.3. Let Σ ∈ R
m×m be a symmetric matrix. A

controllable behavior B ∈ Lm
cont is said to be Σ-dissipative if∫

R

QΣ(w)dt � 0 for every w ∈B∩D. (2)

QΣ(w) is the rate of supply of energy to the system and

is called the supply rate (see [9] for supply rate and its

link to classical notion of gain/phase margin). For simplicity,

we also call Σ the supply rate. In this paper, we use real,

symmetric, constant, nonsingular Σ only. It is a known result

from [11, Remark 5.11] that for a Σ-dissipative system

i(B) = σ+(Σ), (3)

where σ+(Σ) represents the number of positive eigenvalues

of Σ and i(B) represents the number of inputs. This is called

the maximum input cardinality condition.

Next we review an important property of controllable,

dissipative systems. A controllable behavior B ∈ Lm
cont is Σ-

dissipative if and only if there exists a QDF Qψ(w) such

that
d
dt

Qψ(w)� QΣ(w) for all w ∈B. (4)

The QDF Qψ is called a storage function for B with respect

to the supply rate Σ. Note that inequality (4) is a version

of the law of conservation of energy. It means that for

dissipative systems, the rate of change in stored energy can

not exceed the supplied power. Storage function is used to

capture the idea of stored energy in inequality (4).

C. Conservative systems

An important class of dissipative systems is that of con-

servative systems. We call a controllable behavior B ∈ Lm
cont

conservative with respect to a supply rate Σ ∈ R
m×m if∫

R

QΣ(w)dt = 0 for all w ∈B∩D.

Note that conservative systems satisfy inequality (2) with

equality and hence such systems satisfy equation (4), too,

with equality. Further, it is known that for controllable

systems, the energy stored (i.e., the storage function) can

be expressed in the form xT Kx, where K ∈ R
n×n is sym-

metric and x corresponds to states of the system. Hence, for

conservative, controllable systems, inequality (4) becomes

d
dt
(xT Kx) = QΣ(w) for all w ∈B. (5)

Systems that are conservative with respect to the supply rate

2uT y, i.e., Σ =

[
0 Ip
Ip 0

]
, where u and y are the input and

output of the system, respectively are called lossless systems.

We call this supply rate passivity supply rate. LC circuits,

spring-mass systems are a few examples of such systems. On

the other hand, systems conservative with respect to uT u−
yT y, i.e., Σ =

[
Ip 0

0 −Ip

]
are called allpass systems. We call

this supply rate the bounded real supply rate. In this paper,

we deal with allpass and lossless systems only.
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D. Dissipativity LMI

Consider a system with minimal input-state-output (i/s/o)

representation

ẋ = Ax+Bu y =Cx+Du,

where A ∈ R
n×n, B,CT ∈ R

n×p and D ∈ R
p×p. Using the

dissipation inequality (4) and Qψ = xT Kx, it can be shown

that a system is dissipative with respect to the bounded real
supply rate if and only if[

AT K +KA+CTC KB+CT D
BT K +DTC −(Ip−DT D)

]
� 0. (6)

On the other hand, a system is dissipative with respect to the

passivity supply rate if and only if[
AT K +KA KB−CT

BT K −C −(D+DT )

]
� 0. (7)

We call these LMIs the dissipativity LMIs and the solutions

of these LMIs act as the storage functions of the corre-

sponding system. Note that conservative systems admit their

corresponding dissipativity LMIs with equality. Therefore,

a behavior B is conservative with respect to bounded real

supply rate (allpass) if and only if there exists a symmetric

K ∈ R
n×n such that

AT K +KA+CTC = 0 and KB+CT D = 0. (8)

Further, xT Kx is the unique storage function of the system.

On the other hand, a behavior B is conservative with respect

to passivity supply rate if and only if there exists a symmetric

K ∈ R
n×n such that

AT K +KA = 0 and BT K −C = 0. (9)

Further, xT Kx is the unique storage function of the system.

E. Gramian and balancing

Consider a stable, controllable and observable system with

a minimal i/s/o representation ẋ = Ax+Bu and y =Cx+Du.

Then the Lyapunov equations AP + PAT + BBT = 0 and

AT Q+QA+CTC = 0 have unique solutions P> 0 and Q> 0,

respectively: see [1, Section 4.3]. P and Q are called the

(infinite) controllability and observability Gramian matrices,

respectively. Interestingly, the storage function of an allpass

system also satisfies one of these Lyapunov equations. We

explore this link between Lyapunov equations, Gramian and

storage function of an allpass system in Section 3. To unravel

an interesting property of the storage function of an allpass

system, we need the concept of balancing. A system is

said to be represented in a balanced state space basis if

P and Q are equal. From a linear algebraic viewpoint, it

is the simultaneous diagonalization of two positive definite

matrices P and Q. The proposition next gives a procedure

to compute the balancing transformation of a system: see [1,

Lemma 7.3].

Proposition 2.4. Consider a controllable, observable and
stable system with a minimal i/s/o representation ẋ=Ax+Bu

and y = Cx +Du and let the corresponding Gramians be
P and Q. Assume P := UU∗ and U∗QU = KS2K∗ then a
balancing transformation is given by T =

√
S K∗U−1 (see

footnote 1 for definition1 of
√

S).

3. STORED ENERGY AND BALANCED REALIZATION

In this section, we report the link between allpass systems,

Gramians and balanced realization.

One of the main results of this section is that the storage

function of an allpass system is the observability Gramian

of the system. We report this result next.

Theorem 3.1. Consider a stable, allpass system with a
minimal i/s/o representation ẋ = Ax + Bu, y = Cx + Du,
where A ∈ R

n×n, B,CT ∈ R
n×p Assume Q ∈ R

n×n to be
the observability Gramian of the system. Then, xT Qx is the
unique storage function of the system.

Proof. We know that for an allpass system there exists a

K ∈ R
n×n that satisfies equations (8). Since the system is

stable, the equation AT K+KA+CTC = 0 must have a unique

solution. Note that AT K+KA+CTC = 0 is the observability

Gramian equation. Therefore, K = Q. Hence, we conclude

using equation (8) that xT Qx is a unique storage function of

the system.

For an allpass system, the observability Gramian Q and

controllability Gramian P are related as PQ = In: see [6,

Theorem 5.1]. Hence, the matrix P−1 also induces the storage

function associated with an allpass system.

The next result uses the concept of balanced basis as stated

in Section 2-E to infer a noteworthy property of the storage

function of an allpass system.

Theorem 3.2. Consider a stable, allpass system G(s) ∈
R(s)p×p. Let (A,B,C,D) be a minimal state space realization
of G(s) in a balanced state space basis. Suppose the sym-
metric matrix K ∈ R

n×n induces the storage function xT Kx
associated with the state space representation (A,B,C,D).
Then K = In.

Proof. Let the observability and controllability Gramian in

the balanced state space basis be Wo and Wr, respectively.

By the definition of balanced state space basis as described

in Section 2-E, we have Wo =Wr =W . Since G(s) is allpass,

using [6, Theorem 5.1], we have WoWr = In =⇒ W 2 = In.

Further, since G(s) is stable, we have W > 0. Therefore, W =
In. Thus, using Theorem 3.1, we conclude that In induces the

storage function of the system in the balanced basis. This

completes the proof of the theorem.

Exactly the same set of arguments, used to prove Theorem

3.2, can be used to show that the Hankel singular values of

allpass systems are unity: see [6, Section 5]. Hence, from

Theorem 3.2 we infer that the unique storage function of the

allpass system in balanced basis is induced by a diagonal

matrix with Hankel singular values as its diagonal entries.

1 A matrix R = RT � 0 is said to be the square root of another matrix
S = ST � 0 if R2 = S. We denote such a matrix as

√
S := R.
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4. LINK BETWEEN STORAGE FUNCTIONS OF BOUNDED

REAL SYSTEMS AND PASSIVE SYSTEMS

Next we establish the link between the storage function

of an allpass and lossless system. We prove the result, in

general, for bounded real and passive systems first. Note

that a system Bb with manifest variables (u,y) is bounded

real if and only if the system Bp with manifest variables(
u+y√

2
, u−y√

2

)
is passive: see [7, Chapter 5]. Further, if an i/s/o

representation of Bb is ẋ= Ax+Bu and y=Cx+Du, then an

i/s/o representation of the corresponding passive system Bp
is ẋ =

(
A−B(I +D)−1C

)
x + 1√

2

(
B+B(I +D)−1(I −D)

)
v

and r = −√
2(I +D)−1Cx+(I +D)−1(I −D)v, where v :=

u+y√
2

and r := u−y√
2

, see [2]. In this paper, we call Bp to be the

passive counterpart of Bb and Bb to be the bounded real
counterpart of Bp.

Next we show that the set of storage function of Bb and

Bp are the same.

Theorem 4.1. Consider a bounded real system Bb ∈ Lm
cont

with manifest variables (u,y). Suppose Bp is the passive
counterpart of Bb with manifest variables (v,r). Then the
set of storage functions of Bb and Bp remains invariant.

Proof. Define J :=

[
Ip Ip
Ip −Ip

]
. Since Bp is the passive

counterpart of Bb, therefore v = u+y√
2

and r = u−y√
2

. Note that

for controllable systems the storage function is xT Kx, where

x are the states of the system Bb and K =KT ∈R
n×n. Hence,

inequality (4) adapted to the bounded real system Bb gives

d
dt
(xT Kx)�

[
u
y

]T[Ip 0

0 −Ip

][
u
y

]
=

1

2

[
u
y

]T

JT
[

0 Ip
Ip 0

]
J
[

u
y

]
.

Therefore,
d
dt
(xT Kx)�

[ u+y√
2

u−y√
2

]T [
0 Ip
Ip 0

][ u+y√
2

u−y√
2

]
.

This means that any symmetric K ∈ R
n×n that induces a

storage function for Bb also induces a storage function for

Bp. Along similar lines, it can be shown that any K that

induces a storage function for Bp does the same for Bb.

This proves that the set of storage function for Bb and Bp
remains invariant.

Note that the passive counterpart of an allpass system Ball
with transfer function G(s) is a lossless system B� with

transfer function [1 − G(s)][1 + G(s)]−1. Hence, we call

B� the lossless counterpart of Ball and Ball the allpass
counterpart of B�. The next corollary relates the storage

function of an allpass system and its lossless counterpart.

Corollary 4.2. Consider a lossless behavior B� ∈Lm
cont with

a minimal i/s/o representation ẋ = Ax+Bu and y =Cx+Du.
Let the bounded real counterpart of B� be Ball . Ball
has an i/s/o representation ẋ = Âx+ B̂v and r = Ĉx+ D̂v,
where v := u+y√

2
, r := u−y√

2
, Â :=

(
A−B(I +D)−1C

)
, B̂ =

1√
2

(
B+B(I +D)−1(I −D)

)
,Ĉ =−√

2(I+D)−1C and D̂ :=

(I+D)−1(I−D). Assume Q is the observability Gramian of
Ball . Then xT Qx is the unique storage function of B�.

Proof. From Theorem 3.1, we know that the observability

Gramian Q induces the storage function of Ball . Since B�

is the lossless counterpart of Ball , from Theorem 4.1 we

know that the storage function of Ball and B� are the same.

Therefore, xT Qx is the unique storage function of B�.

Note that the poles of a lossless system are on the

imaginary axis of the C-plane. Therefore, we cannot compute

the observability/controllability Gramian using the Lyapunov

equations. However, from Corollary 4.2, it is clear that the

observability Gramian of it’s allpass counterpart induces

the storage function of such a system. The next example

illustrates Theorem 3.1, Theorem 4.1 and Corollary 4.2.

Example 4.3. Consider the lossless system G(s) =
0.7s

s2 +9
.

An minimal i/s/o representation of the system is

d
dt

x =
[

0 1

−9 0

]
︸ ︷︷ ︸

A

x+
[

0

1

]
︸︷︷︸

B

u, y =
[
0 0.7

]︸ ︷︷ ︸
C

x. (10)

The corresponding allpass system Ball is

d
dt

x =
[

0 1

−9 −0.7

]
︸ ︷︷ ︸

Â

x+
[

0√
2

]
︸ ︷︷ ︸

B̂

v, r =
[
0 −

√
98

10

]
︸ ︷︷ ︸

Ĉ

x+
[
1
]︸︷︷︸

D̂

v.

The observability Gramian matrix of Ball is Q=

[
6.3 0

0 0.7

]
.

It is easy to verify that ÂT Q+QÂ+ ĈTĈ = 0 and QB̂+
ĈT D̂ = 0. Hence xT Qx is a storage function of the allpass

system Ball (Theorem 3.1).

Further, it is easy to verify that AT Q+QA = 0 and QB−
CT = 0. Hence, xT Qx is also a storage function of the lossless

counterpart of Ball , i.e., B� (Theorem 4.1 and Corollary 4.2).

5. ALGEBRAIC RELATION BETWEEN STATES AND

COSTATES

In the previous section, we have seen that the storage

function of an allpass system and it’s suitably transformed

lossless counterpart is the same. Hence, for easy exposition

all the results reported in this section are for lossless systems.

Storage functions of allpass systems follow the same results.

In this section, we show that certain algebraic relations

between the states and costates of a lossless system capture

the information of the storage function of the system. To

unveil the main result of this section, we use the concept of

orthogonal behavior introduced in Section 2-A. An intercon-

nection of B and B⊥Σ such that u = e and y = f results in

a new behavior that we represent as B∩B⊥Σ . It is easy to

see that B∩B⊥Σ admits a first order kernel representation

4178



of the following form:

R
(

d
dt

)⎡⎣x
z
y

⎤
⎦=0, where R(ξ )=

⎡
⎣ξ In−A 0 −B

0 ξ In+AT −CT

−C BT D+DT

⎤
⎦

(11)

Further, for lossless systems, D+DT = 0.

Note that the McMillan degree2 of B is n. For lossless

systems, it is known that B = B⊥Σ (a special case of [3,

Lemma 11]). Hence, the McMillan degree of B∩B⊥Σ is

also n. However the first order representation of B∩B⊥Σ in

equation (11) has 2n states. Hence, the states and costates

must be related by some algebraic relations. Theorem 5.2

below helps extract this algebraic relations and in the process

provides an interesting relation between states, costates and

storage function of a lossless behavior. We present a theorem

next that is used to prove the main result of this section.

This result states that the difference dynamics x(t)−Kz(t)
of a lossless system is orthogonal to the subspace 〈B〉 if and

only if it is orthogonal to the controllable subspace spanned

by columns of
[
B AB · · · An−1B

]
. We use the symbol

〈A|B〉 to represent the controllable subspace.

Theorem 5.1. Consider a lossless behavior B ∈ Lm. An
i/s/o representation of B is ẋ = Ax + Bu, y = Cx + Du,
where A ∈ R

n×n,B,CT ∈ R
n×p and D ∈ R

p×p. Let the cor-
responding orthogonal complement behavior B⊥Σ have an
i/s/o representation ż = −AT z +CT u, y = BT z − DT u. Let
K = KT ∈ R

n×n. Then the difference dynamics z(t)−Kx(t)
satisfies the following for each t > 0(

z(t)−Kx(t)
)
⊥ 〈B〉 ⇐⇒

(
z(t)−Kx(t)

)
⊥ 〈A|B〉.

Proof. Let the controllability matrix be C :=[
B AB A2B · · · An−1B

]
. We write x(t),z(t) as

x,z for ease, respectively. All the arguments here are true

for each t > 0.

(⇐) Given C T (z − Kx) = 0, i.e., BT (z − Kx) = 0. Hence,

z(t)−Kx(t)⊥ 〈B〉 for each t > 0.

(⇒) Note that since the system is lossless, D + DT = 0

and therefore Cx − BT z = 0. We use the principle of

mathematical induction to prove the lemma.

Base step: Using the i/s/o representation of B⊥Σ ,

Cx−BT z = 0 and equations (9), we have

BT AT (z−Kx) = BT (AT z−AT Kx)

= BT (−ż+Kẋ) =
d
dt

BT (Kx− z) = 0.

Induction step: Assume BT (AT )i(z−Kx) = 0, where i ∈ N

and i > 1. Therefore,

BT (AT )i+1(z−Kx) = BT (AT )i(−ż+Kẋ)

=
d
dt

BT (AT )i(Kx− z) = 0.

2The minimum number of states required for an i/s/o representation of
the system is called McMillan degree of the system.

By the principle of mathematical induction, BT (AT )i(z −
Kx) = 0 for all i ∈ N. Hence, C T (z−Kx) = 0. This proves

that
(

z(t)−Kx(t)
)
⊥ 〈A|B〉 for each t > 0.

This completes the proof of the theorem.

Note that a controllable subspace is the smallest A in-

variant subspace containing 〈B〉. Hence, the (⇐) direction

of Theorem 5.1 is true for any behavior. However, the (⇒)
direction of the theorem is true for lossless and in general,

for conservative systems. Next we present one of the main

results of this section.

Theorem 5.2. Consider a lossless behavior B ∈ Lm
cont with

a minimal i/s/o representation ẋ = Ax + Bu, y = Cx +Du,
where A ∈ R

n×n,B,CT ∈ R
n×p and D ∈ R

p×p. Consider the
corresponding orthogonal complement behavior B⊥Σ with
an i/s/o representation ż =−AT z+CT u, y = BT z−DT u. The
first order representation of the behavior B∩B⊥Σ is given
by equation (11). Then the following statements are true.

1) B∩B⊥Σ is not autonomous i.e det R(ξ ) = 0.
2) there exists a unique K = KT ∈ R

n×n such that

d
dt

xT Kx = 2uT y for all (u,y) ∈B∩B⊥Σ =B. (12)

3) there exists a unique K = KT ∈ R
n×n such that

rank
[

R(ξ )
−K I 0

]
= rank R(ξ ). (13)

Further, for K = KT ∈ R
n×n,

K satisfies equation (12) ⇐⇒ K satisfies equation (13).

Proof. 1: Here, G(ξ )+G(−ξ )T = 0 =⇒ D+DT = 0. Now,

using the Schur complement to find det(R(ξ )), we have

=det

⎛
⎝ ξ In−A 0 −B

0 ξ In+AT −CT

−C BT 0

⎞
⎠

= det
{−C(ξ In−A)−1B+BT (ξ In+AT )−1CT}

= det
{−D−C(ξ In−A)−1B−DT +BT (ξ In+AT )−1CT}

= det
{−G(ξ )−G(−ξ )T}= 0.

Using [10, Section 3.2], we know that a system is au-

tonomous if and only if it admits a kernel representation

P( d
dt )w = 0, where P(ξ ) ∈R[ξ ]m×m and det(P(ξ )) �= 0. Note

that for B∩B⊥Σ , det(R(ξ )) = 0 hence the system B∩B⊥Σ

is not autonomous. This proves Statement 1.

2: Assume K1 ∈ R
n×n and K2 ∈ R

n×n are symmetric matri-

ces that satisfy the dissipation equation (5) adapted to the

passivity supply rate. Note that the storage function of a

lossless system is unique : see [11, Remark 5.13]. Hence,

xT (t)K1x(t) = xT (t)K2x(t) for all t ∈ R. This is true if and

only if K1 = K2. This proves the uniqueness of K.

Consider K1 = K2 =: K ∈ R
n×n. By dissipation equation

(5) adapted to passivity supply rate, we have

d
dt

xT Kx = 2uT y for all (u,y) ∈B∩B⊥Σ =B.

This proves Statement 2.
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3: Using the i/s/o representation of B and B⊥Σ , we have

d
dt

xT z = (Ax+Bu)T z+ xT (−AT z+CT u) = uT BT z+uTCx

= uT (BT z−DT u)+uT (Cx+Du) = uT y+uT y

= 2uT y for all (u,y) ∈B.

Equation (5) adapted to lossless systems gives 2uT y =
d
dt xT Kx for all (u,y)∈B. Hence, from Statement 2, we have

d
dt

xT z =
d
dt

xT Kx =⇒ ẋT z+ xT ż− ẋT Kx− xT Kẋ = 0. (14)

Using i/s/o representation of B, B⊥Σ and the linear matrix

equations (9), equation (14) becomes

(Ax+Bu)T z+ xT (−AT z+CT u)

− (Ax+Bu)T Kx− xT K(Ax+Bu) = 0

=⇒ uT BT z−xT (AT K +KA)x−xT (KB−CT )u−xT KBu=0

=⇒ uT BT (z−Kx) = 0.

This is true for all system trajectories (u,y) ∈ B. Hence,

BT (z − Kx) = 0. Using Theorem 5.1, we have z − Kx ∈
ker C T .

However (A,B) is a controllable system with minimal

state representation, hence z − Kx = 0 is true for all tra-

jectories in B. This proves that trajectories that satisfy[−K I 0
]⎡⎣x

z
y

⎤
⎦ = 0 are trajectories in B ∩B⊥Σ (= B)

as well. Hence, rank

[
R(ξ )

−K I 0

]
= rank R(ξ ). This

proves Statement 3.

Next we prove that Statement 2 and 3 are equivalent.

(⇒) Proof of Statement 3 crucially used Statement 2. Hence,

K satisfies equation (12) ⇒ K satisfies equation (13).

(⇐) Note that equation (13) means the behavior B∩B⊥Σ

has trajectories that satisfy z = Kx. Further from [11, Section

10], it is clear that the ‘states’ and its ‘costates’ (i.e., states

of the dual/adjoint system) satisfy

d
dt

xT z = 2uT y, i.e.,
d
dt

xT Kx = 2uT y.

Hence, xT Kx is the storage function of B. Hence, K satisfies

equation (12) ⇐ K satisfies equation (13).

This completes the proof of Theorem 5.2.

Theorem 5.2 shows that the algebraic relations between the

states and costates of a lossless behavior have information

about the storage function of the system. To find the storage

function of a lossless system, we just need to find out

equations of the form z = Kx from the equation module of

B∩B⊥Σ . The algorithm to extract these algebraic relations

can be found in [4].

6. CONCLUSION

In this paper, we have investigated some new properties

of the storage functions of allpass systems. We showed that

for an allpass system, the observability Gramian turns out

to be the unique storage function (Theorem 3.1). We have

also shown that in the balanced basis, the observability

Gramian of an allpass system is induced by an identity

matrix. Hence, xT x is the storage function of an allpass

system in the balanced basis (Theorem 3.2). We showed that

the set of storage function is invariant under the map that

takes bounded real systems to passive systems and vice versa

(Theorem 4.1). Under this transformation, allpass systems

are mapped to lossless systems and hence in the balanced

basis, the identity matrix induces the storage function of

lossless systems as well. Further, we showed that certain

difference dynamics between the states and costates of an

allpass system is always present in the orthogonal comple-

ment of its controllable subspace (Theorem 5.1). We also

established that certain algebraic relations between the states

and costates of a lossless system capture the storage functions

of the system (Theorem 5.2). The same result is easily

extendable to any conservative system provided the system

satisfies the maximum input cardinality condition namely

the input cardinality of the system is equal to the positive

signature of the supply rate.
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