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Abstract— In-core flux measurement is critical for monitoring
and power regulation of a large core nuclear reactor. Self
Powered Neutron Detectors (SPNDs) are used for measuring
the neutron flux in a nuclear reactor. In this paper we propose
an online method for SPND gross error detection, identification
and estimation. The method uses linear models which are
extracted from data and which adapt continuously in time.
This adaption is made possible by use of recursive PCA.
However, unlike existing recursive PCA approaches which make
approximations to achieve recursion, our proposed approach
does not make any approximation. We term our technique as
‘Recursive Principal Component Analysis: Exact Computation’
(RPCA-EC). Use of recursion ensures that the computational
requirements of RPCA-EC are low thereby facilitating online
implementation. Continuous adaption ensures that the model
evolves to adequately capture the time varying relationships
amongst the SPNDs. The relationships amongst the SPNDs vary
with time due to significant variations in the neutron flux profiles
in the reactor with varying operating power levels in the reactor.

We apply our proposed method on data taken from an
operating nuclear reactor in India and compare results with
alternate implementations. Results show that the false alarm
rate of our implementation is reasonable thereby indicating that
the model adapts to time varying relationships. Performance in
presence of gross errors is also satisfactory.

I. INTRODUCTION

Self Powered Neutron Detectors (SPNDs) are sensors
which are used to measure neutron flux in a nuclear reactor in
real time. Typically, of the order of hundred such SPNDs are
placed at different locations in the reactor thereby providing a
comprehensive view of the flux profile throughout the reactor.
The neutron flux provides a direct measure of the reactor
output power. Hence, it is essential to reliably obtain accurate
measurements of neutron flux at various in-core locations in
the reactor as it is critical for effective functioning of the
reactor control and monitoring systems.

Over a period of time, an SPND can develop a gross
error or a fault due to various reasons such as drop in
insulation resistance as a result of moisture ingress, and
crack in detector sheath [TSPSAK13]. When such faults
occur, the detector readings will be erroneous. Additionally,
hardware or software issues involving data-collection and
archiving systems can also cause erroneous readings to be
recorded. In such cases, if the fault is not correctly detected
and diagnosed in a timely manner, then correct inferences
about reactor operation may not be made. Depending on the
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nature of the fault, it may be possible to manually detect
some faults just by observing the raw measurement data.
Examples are junk value reported by a detector typically due
to a communication breakdown, and large or sudden changes
in a detector reading not accompanied by change in any other
detector. However, faults causing relatively smaller changes
in detector readings or evolving slowly over a period of time
are more difficult to detect. If a fault is manually detected,
then the particular detector reading can simply be ignored
and not communicated to the reactor control and monitoring
systems. But this will lead to loss of information required
to construct the flux map of the reactor and may lead to
reactor performance degradation. To rectify this situation,
the faulty detector can be replaced by a new one. But this
involves unscheduled reactor shut-down which will not only
be time consuming but also have cost and personnel safety
implications [RBBTKP12]. To avoid such scenarios, it is
important to develop real-time automated fault detection and
diagnosis techniques that can effectively aide the nuclear
reactor operator. Such techniques should: (i) detect a fault
as and when one occurs, (ii) identify the faulty detector, and
(iii) estimate the true flux value corresponding to the faulty
detector.

In the general fault diagnosis literature [VRK03], model
based techniques have been used for developing such auto-
mated strategies. These models could be either derived from
first principles or can be extracted from historical data. For
SPNDs in a typical nuclear reactor, first principles models
relating measurements of different detectors are not available.
However, the measurements for all the detectors are routinely
collected at high sampling rates (typically 1 sec or less) and
archived. In principle, the historical data can then be used
for developing data-driven models which can subsequently
be used for performing fault detection and diagnosis in real-
time.

In the SPND literature, [RBBTKP12] proposed use of
Principal Components Analysis (PCA) technique for devel-
oping data-driven models. In their work, they (i) grouped
the various detectors in smaller clusters such that detectors
in a particular cluster were highly correlated, and (ii) used
PCA to develop linear, static models relating measurements
of detectors in those clusters. Analysis of the residuals arising
from the PCA based linear models enabled them to perform
fault detection and diagnosis. Use of linear models ensured
that the real-time computational requirement was low thereby
ensuring feasibility for online implementation. However, the
work of [RBBTKP12] was based on the implicit assumption
that the reactor operations do not vary much with time. As a
result, the relationships amongst detectors in a given cluster,
once obtained, were assumed to remain valid at all time
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instants in the future, i.e. the models were static in nature.
The operation of a nuclear power plant varies significantly

over a period of time as a function of power levels, fuel type
and quantity, and detector age, etc. [STB12]. As a result,
the linear, static relationships obtained for a set of detectors
using past data may not be able to satisfactorily capture the
behaviour of detectors in the future. Thus, in this work we
propose development of data driven, adaptive linear models
to capture the time varying relationships amongst various
detectors. This adaptation is made possible by recursive use
of PCA. At each time instant, our proposed recursive PCA
implementation fuses fault-free current measurement vector
with the existing model to obtain an updated model that
reflects the effect of the current measurement vector. Use
of recursion, as opposed to batch processing of data, also
ensures that the computational time required for adapting the
models is much lower compared to the sampling interval,
thereby opening up the possibility of real-time implementa-
tion. The utility of our proposed adaptive fault detection and
diagnosis method is demonstrated on data collected from an
operating nuclear power generating reactor in India.

The rest of the paper is structured as follows: in Section II
we present background material for our proposed work.
In particular, we summarize the functioning of an SPND,
preprocessing involved with data based on which the analysis
has been performed, and PCA and gross error analysis.
In Section III we present our recursive PCA based model
adaptation approach for performing gross error analysis. In
Section IV, we build adaptive models and benchmark them
based on the performances for a variety of gross error
scenarios for data obtained from a nuclear power reactor in
India. We conclude the paper in Section V.

II. PRELIMINARIES

A. SPND Description

Self Powered Neutron Detector (SPND) is a sensor for
measurement of neutron flux that does not require any
external power. It is an in-core sensor, i.e. it is directly
exposed to reactor environment of high neutron and gamma
field. An SPND generates current whose value is a function
of the neutron flux in the reactor. The principle for flux
measurement using an SPND is as follows: on being exposed
to neutron flux within the reactor, certain material (called
emitter) in the detector undergoes neutron capture to produce
radioactive nuclei which decay to produce more stable nuclei.
Electrons are generated during these processes which form
the current output of the detectors [Tod98].

SPNDs can be classified as prompt or delayed depending
on whether electron emission is prompt or delayed [AM97].
For example, Inconel and Cobalt SPNDs are prompt but
Vanadium and Rhodium SPNDs have a delayed response
[B79] with a Vanadium SPND having a time constant of
315 seconds. The current work deals with both delayed
(Vanadium) and prompt (Inconel and Cobalt) SPNDs.

B. Data Preprocessing

1) Dynamic Response Matching: The nuclear power re-
actor for which data has been analyzed in this work, has a

combination of both prompt and delayed SPNDs. It should
be noted that currents generated by prompt and delayed
SPNDs may not appear to be directly correlated even if they
are subjected to the same neutron flux because they have
different response characteristics as discussed in Section II-
A. However, to ensure that we are able to develop models
that utilize all the available sensors, similar to literature
[RBBTKP14], we filter (or slow down) the response of
the prompt sensor by passing its measurement through1 the
delayed response SPND transfer function. This makes prompt
sensor data comparable with delayed response SPND data
[RBBTKP14] and enables seamless use of measurements of
these detectors.

2) Clustering: A typical nuclear reactor consists of hun-
dreds of SPNDs. Measurements made by all these detectors
will not be similar as the neutron flux varies spatially through-
out the reactor. However, it is expected that smaller groups
of SPNDs have similar behaviour. To identify such groups or
clusters of highly correlated SPNDs, k-means clustering can
be used [RBBTKP14]. In our work, we follow the approach
of Rihab et al. [RBBTKP14] for obtaining clusters of SPNDs
using k-means.

C. PCA Based Modeling

In this section, we summarize the PCA procedure for
obtaining linear, steady state models relating the true values
of n variables from the corresponding noisy measurements
of those variables. Let x̃(t) ∈ Rn be the vector of true values
of variables at any time instant t. Let the measurements
ỹ(t) ∈ Rn be related to the true values as

ỹ(t) = x̃(t) + v(t) (1)

where v(t) ∈ Rn is random measurement noise assumed to
be Gaussian with zero mean and covariance matrix R.

Consider that a training data-set, consisting of observa-
tions at N time instants: ỹ(1), ỹ(2), . . . , ỹ(N), is available.
Here without loss of generality the initial time point of
the data-set has been labeled to correspond to the first
time instant. Let this data-set be represented by a matrix
Ỹ = [ỹ(1) ỹ(2) . . . ỹ(N)]T ∈ RN×n. The matrix Ỹ of
measurements can then be related to the corresponding true
unknown values of the variables as (1)

Ỹ = X̃ + V (2)

where X̃ ∈ RN×n is the corresponding matrix of the true
values and V ∈ RN×n is random measurement error matrix.

The measurement data for different detectors may be
available in different units. Thus, the measured data is scaled
such that each column vector in the matrix Ỹ is zero mean
and unit variance. The resulting data matrix is labeled Y with
the scaled measurement vector at time instant t being y(t).
The corresponding matrix of scaled true values is labeled
X with x(t) being the vector of scaled true values at time
instant t. PCA involves computation of the covariance matrix

1In addition to this, we have explored in [RBBTKP14] two other methods
to combine prompt and slow measurements: the procedure of slowing down
prompt sensors, as applied in the current work, turned out to perform the
best in terms of correlation of the time series.
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C ∈ Rn×n of the scaled measurements y(t) from the N
samples stacked in matrix Y as

C =
1

N
Y TY (3)

Let P ∈ Rn×n be the matrix of eigenvectors of C arranged
as columns in increasing order of eigenvalues. The matrix P
can be decomposed as

P = [ Q | T ] (4)

where Q ∈ Rn×m is the matrix of m eigenvectors corre-
sponding to the m smallest eigenvalues, and T ∈ Rn×(n−m)

is the matrix of the remaining n−m eigenvectors.
The eigenvectors of covariance matrix give the orthonor-

mal directions of data variability and the variance of the
data along those directions is given by the corresponding
eigenvalues [John07]. Hence, a high eigenvalue implies large
variability of the data in the corresponding eigenvector di-
rection. Conversely, a small eigenvalue corresponds to a re-
striction of variation of the data in that eigenvector direction.
This restriction can be used to extract a model relating the
given sensors. In particular, the eigenvectors in Q (4) indicate
directions of low variability. Hence, we can write

AXT = 0m×N , where A = QT (5)

is the identified model or constraint matrix. Thus, at any given
time instant t, the vector x(t) is assumed to satisfy

Ax(t) = 0m×1 (6)

In the literature, several methods are available to choose
a value of m which decides the number of eigenvectors
assigned in matrix Q [RBBTKP12]. In the results to be
presented later, we choose m as follows:

m = argmax
h

(∑h
i=1 λi∑n
i=1 λi

6 w

)
(7)

where λi, i = 1, 2, . . . , n is the ith eigenvalue of matrix C
in (3) with λ1 6 λ2 6 · · · 6 λn. w ∈ (0, 1) is a user
specified parameter that corresponds to variability in the data
due to noise. (7) is based on the idea that starting from
the eigenvector corresponding to the lowest variability, keep
adding eigenvectors corresponding to increasing variability in
the Q matrix till the fraction of variability in those directions
exceeds the parameter w. In the results to be presented later,
w is taken as 0.01.

It is to be noted that even if the true values x(t) satisfy
model (6), the measurements y(t) will not satisfy this model
exactly since they are corrupted by noise (1). This in turn
is indicated by the fact that the variability in directions of
eigenvectors in Q is low but not 0. We can thus compute the
residuals r(t) ∈ Rm at time instant t as

r(t) = Ay(t) (8)

Let E be the covariance matrix of the residuals. Since the
rows of A (corresponding to eigenvectors in Q) are or-
thonormal, it follows that the residuals in different equations
are uncorrelated with each other. Hence, E is a diagonal
matrix with the eigenvalues corresponding to eigenvectors in
Q being on the diagonal.

D. Gross Error Analysis
In (1) it was assumed that the measured value is a sum

of the true value of SPND and a random error component.
The model A is obtained from training data that follows this
assumption. Once the A matrix is obtained, the developed
model can be used to test for presence of gross errors (or
faults) in sensors. In our work, the gross error is modeled as
a constant bias in the sensor. In presence of gross error in
the jth sensor, (1) can be rewritten as

y(t) = x(t) + v(t) + bjej (9)

where, bj ∈ R is the gross error in the jth sensor, and ej is
the unit vector with 1 at the jth position.

Gross Error analysis

To detect a gross error, the following statistic is computed
using the residuals:

γ(t) = r(t)TE−1r(t) (10)

In the absence of gross error, γ(t) follows a χ2 distribution
with m degree of freedom (where m is the number of
relationships in model constraint matrix) [NM98]. Thus, a
gross error is detected at significance level α if γ(t) ≥
χ2
1−α,m where χ2

1−α,m is the value from a χ2 distribution
with m degrees of freedom with α being the tail area. Once
a gross error is detected, the next step is to identify the faulty
sensor and estimate the magnitude of the gross error. This is
done using the Generalized likelihood ratio test. Details of
this procedure are available in [NM98].

III. PROPOSED WORK

A key assumption made in the PCA based gross error
detection approach is that the A and E matrices, once
obtained, continue to be valid at all time instants in the
future. For most nuclear reactors, this assumption will not
hold. This in turn will result in a high false alarm rate,
when the A matrix obtained using training data in the past
is used to test for faults (gross errors) in the measurement
vector obtained in the future. This situation can be rectified
by continuously adapting the model matrices with varying
data. In principle, this adaptation can be done by simply con-
sidering the entire dataset from the initial to the current time
instant, and performing PCA on that dataset. But this method
is not computationally amenable for online implementation
as the data size grows indefinitely. We thus propose to use
recursive PCA with exact computations of eigenvalues and
eigenvectors (RPCA-EC), to update the model while ensuring
that the online computational requirements are not excessive.
The updated models are then used to perform gross error
analysis. These steps are discussed next.

A. Recursive application of PCA
In literature [XCZ12], [ERP04] have proposed recursive

PCA where they use an approximate method for recur-
sively computing the eigenvalues and eigenvectors of the
covariance matrix using a first order perturbation analysis
thereby avoiding their direct computation. This approach is
suitable when the covariance matrix is of large size and

151



hence direct computation of eigenvalues and eigenvectors
can be time consuming. However, the use of first order
matrix perturbation analysis [XCZ12], [ERP04], which in-
volves ignoring some second order terms to approximately
update eigenvalues and eigenvectors may result in erroneous
computations. Depending on the application, it is possible
that models obtained using such an approximation may not
adequately capture the true relationships.

In this work, we propose a modified implementation of
recursive PCA where only the covariance matrix and mean
vector are recursively updated at each time instant. The
eigenvalues and eigenvectors of the covariance matrix are
then directly computed without making any approximation.
We label this implementation of recursive PCA as recursive
PCA with exact computation (RPCA-EC). As detectors are
grouped into smaller clusters before developing data-driven
models, size of the covariance matrix is not large. Hence, the
proposed RPCA-EC is computationally feasible for online
implementation. At any time instant, the model obtained
using RPCA-EC at the previous time instant is used to check
for the presence of the gross error in the current measurement
vector. If a gross error is detected, the model is not updated
and is instead used to identify the faulty sensor and estimate
the magnitude of the bias in that sensor. On the other hand,
if a gross error is not detected, the current measurement
vector is used to update the existing model. The procedure
for updating the model is now summarized. At time instant
t+1, the following steps are performed. For better readability,
we label the procedure as Model Update.

Model Update: Procedure to update the model using RPCA-
EC

1) The mean of the measurement vector is recursively
updated as

m(t+ 1) =

(
1− 1

t+ 1

)
m(t) +

1

t+ 1
ỹ(t+ 1) (11)

where m(t) ∈ Rn is the mean of the measurement
vector computed at time instant t. The variance of the
ith measurement is also recursively updated as

σ2
i (t+ 1) =

(
1− 1

t+ 1

)
σ2
i (t)+

1

t+ 1
(ỹi(t+ 1)−mi(t+ 1))

2 (12)

2) The ith measurement at time instant t+1 is normalized:

yi(t+ 1) =
(ỹi(t+ 1)−mi(t+ 1))

σi(t+ 1)
(13)

3) The covariance matrix of the measurements is then
recursively updated as

C(t+ 1) =

(
1− 1

t+ 1

)
C(t)

+
1

t+ 1
y(t+ 1)(y(t+ 1))T (14)

4) Eigenvalues and eigenvectors are computed for the
covariance matrix C(t+ 1). Let Q(t + 1) ∈ Rn×m

be the matrix containing the eigenvectors of C(t+ 1)
corresponding to the m smallest eigenvalues. The
model matrix at time instant t + 1 is then obtained
as A(t + 1) = Q(t + 1)T , and covariance matrix of
residuals E(t + 1) is obtained using the m smallest
eigenvalues.

B. RPCA-EC Overall Implementation
The proposed RPCA-EC based overall procedure for

model update and gross error analysis, suitable for online
implementation, is listed below.

RPCA-EC Based Gross Error Analysis
1) Pass prompt SPND measurement through a lag com-

pensator (delayed response SPND transfer function)
[RBBTKP14].

2) Normalize the filtered prompt and raw delayed data
using the mean and variance of the respective sensors.

3) Obtain the residuals with the normalized data using the
existing model constraint matrix as in (8).

4) Compute the statistic γ(t) as in (10) and compare it
with the threshold value obtained from a chi-squared
distribution. Depending on the outcome of this com-
parison, perform the following steps:

a) Declare a gross error if γ(t) exceeds the chi-
squared threshold value. Identify the faulty de-
tector and the magnitude of the gross error using
generalized likelihood ratio based method [NJ99].
In this case, the model is not updated.

b) Otherwise update the model using RPCA-EC
based procedure listed in Section III-A.

5) Go to step 1 when the measurements at the next time
instant become available.

While implementing the above algorithm, the following
points need to be noted:

1) The above procedure is for a single cluster. The same
procedure is followed for all the clusters.

2) If at any instant one or more sensor value is missing
for a particular cluster, typically due to communication
failure, the sensor(s) with missing values are projected
out from model matrices to obtain models containing
sensors with available measured values [NJ99]. Gross
error analysis is then performed using the reduced
models. However, even if no gross error is detected,
the model is not updated due to lack of complete data.

IV. RESULTS

We now compare the performance of proposed RPCA-EC
method with the following alternative implementations:

1) Static PCA (SPCA): PCA is used to obtain the model
only once from the covariance matrix of training data.
The model is subsequently never updated. This imple-
mentation is presented in [RBBTKP12].

2) Batch PCA (BPCA): PCA is repeatedly performed on
the entire data matrix (from initial to current time in-
stant). Each fault-free incoming data vector is appended
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Fig. 1. Profiles of SPNDs in the chosen cluster (raw data)

to the existing data matrix and PCA method used for
model building as discussed in Section II-C.

The following metrics will be used to compare the perfor-
mances of various techniques [RBBTKP12]:

1) False alarm rate: Percentage of time instants when a
bias is detected even when no bias was added.

2) Detection rate: Percentage of time instants when a bias
is correctly detected.

3) Identification rate: Percentage of time instants when
the sensor with the bias is correctly identified. This is
computed (as a percentage) by dividing the number of
instants when correct identification has been achieved
by the total number of time instants.

4) Mean square estimation error (MSE): It is defined
as
√
(
∑
t∈CI

(b− b(t)∗)2)/(Ncorrect), where b is the
actual bias introduced, b(t)∗ is the estimate of bias at
the tth time instant, CI is the set of time instants at
which the biases are correctly identified and Ncorrect
is the cardinality of CI .

A. Data Description
The data used in our work corresponds to a power produc-

ing nuclear reactor in India. The reactor consists of a cylindri-
cal core with 42 prompt and 102 delayed SPNDs. Data from
the sensors sampled at 1 second interval are available. Of the
144 SPNDs, we removed measurements corresponding to 12
SPNDs as they had zero or missing values for significant
number of time instants. We are thus left with 41 prompt
and 91 delayed sensors. The corresponding training data of
length 1000 instants is used for (i) grouping the detectors in
four clusters by using K-means algorithm, and (ii) obtaining
the initial models for each of the clusters. One of the clusters
contains twenty delayed response detectors and is considered
for further analysis. Profiles of these twenty detectors are
shown in Figure 1 for illustrative purposes. It can be seen
that one of the detectors, namely V86, shows large spikes
at a few time instants. However, it was retained in further
analysis to enable testing of the various approaches for real
datasets. The results listed next are obtained by considering
the entire 2000 instants dataset.

B. Comparison of False Alarm Rates (Absence of Gross
Errors)

The false alarm rates with the three approaches with
significance level α = 0.05 are listed in Table I. Since

α = 0.05, gross error should be detected approximately 5%
of the time instants even when gross error is not present. It
is seen that the false alarm rate is very high for SPCA. This
is expected since SPCA does not update the model obtained
using the initial training data. Thus, as the reactor operations
vary, the new data points are identified to be containing gross
error even though no gross error was added. Best performance
is obtained with the proposed RPCA-EC with false alarm rate
being close to the designed value of 5%. This indicates that
the models obtained by RPCA-EC adapt gradually with the
time varying measurements of the detectors.

TABLE I
FALSE ALARM RATES FOR VARIOUS METHODS

SPCA BPCA RPCA-EC
29.96% 10.60% 3.60%

C. Comparison in Presence of Gross Errors

Bias of various magnitudes (a specified percentage of the
mean value of training dataset) is added in detector V-83
at all the 2000 time instants. For all the three approaches,
model with m = 18 relationships was used as the initial
model. Results are compared with thresholds on γ set in two
different ways:

1) Case 1: The thresholds for all the three approaches
are obtained from the chi-squared distribution with
appropriate degrees of freedom with significance level
α = 0.05. The false alarm rates listed in Table I were
obtained with these thresholds.

2) Case 2: The thresholds for all of the approaches are
manually tuned to get false alarm rates equal to 5%.

The results for the above two cases are discussed next.
Case 1: Thresholds with significance level α = 0.05.

From the results for various magnitudes of gross errors listed
in Table II it is seen that the detection rate obtained by SPCA
is higher than the other two approaches, specially at lower
bias magnitudes. This is expected as SPCA method does not
involve updating the models. On the other hand, the adaptive
approaches (BPCA and RPCA-EC) evolve with varying data
and thus detect rate is lower when the gross error magnitude
is small. However, their performance significantly improves
with larger magnitude gross errors.

Case 2: Thresholds with false alarm rate set at 5%.
Here the thresholds were tuned for each approach to get
the observed false alarm rates equal to 5%. The significance
levels corresponding to these thresholds are reported in Table
III. As expected, the significance level for SPCA is quite low
as the threshold has to be significantly increased for SPCA to
have 5% false alarm rate. On the other hand, the significance
level for RPCA-EC is close to 0.05. Gross error analysis
results for different magnitudes of gross errors are listed in
Table III. Compared to results of Table II, it is seen that the
performance of SPCA has deteriorated while of RPCA-EC
has significantly improved. From Table III it can also be seen
that performance of RPCA-EC is superior to BPCA for all
cases, while it is superior to SPCA for higher bias values.
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TABLE II
GROSS ERROR ANALYSIS: THRESHOLDS WITH α = 0.05

3% bias (magnitude = 0.066)
SPCA BPCA RPCA-EC

Detection Rate 59.13% 10.85% 6.2 %
Identification Rate 41.52% 1.75% 2.00 %
MSE 0.027 0.026 0.028

5% bias (magnitude = 0.111)
SPCA BPCA RPCA-EC

Detection Rate 92.89% 19.86% 15.20%
Identification Rate 90.04% 11.65% 10.00 %
MSE 0.022 0.019 0.019

6% bias (magnitude = 0.133)
SPCA BPCA RPCA-EC

Detection Rate 97.99% 78.08% 60.08%
Identification Rate 97.49% 72.38% 59.67 %
MSE 0.023 0.023 0.022

7% bias (magnitude = 0.155)
SPCA BPCA RPCA-EC

Detection Rate 98.30% 98.30% 98.30%
Identification Rate 98.25% 98.25% 98.25 %
MSE 0.023 0.023 0.023

V. CONCLUSIONS
In this work, a recursive implementation of PCA, labeled

RPCA-EC has been proposed for fault detection and diagno-
sis of SPNDs. The approach involves continuous adaption
of the linear models relating SPNDs and is thus suitable
for time varying reactor operations. The proposed approach
was applied on data obtained from a nuclear reactor and
its performance compared with other approaches. It was
found that in absence of gross error, the approach gave
acceptable false alarm rates thereby indicating that the models
could adapt to the time varying behaviour. The gross error
performance was also acceptable and improves especially
at higher bias magnitudes. The approach was found to be
computationally feasible for online implementation. Further
improvements can be obtained by implementing gross error
analysis strategies that consider data in a window rather
than an individual observation. Use of varying forgetting
factors in the recursive mean, variance and covariance matrix
update expressions can also be investigated for data varying
at different rates.
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