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Abstract—Self Powered Neutron Detector (SPND) is a widely 

used sensor for measuring neutron flux in a nuclear reactor. In 

this work we propose a novel cluster statistics based 

normalization scheme to normalize SPND measurements. These 

normalized measurements are subsequently used in a recursive 

Principal Component Analysis (PCA) based approach for 

detecting faults and identifying faulty SPNDs in an online 

manner. The motivation behind cluster statistics based 

normalization is that faults effect only individual sensors, while 

simultaneous variations in multiple sensors are usually caused by 

dynamic variations in the reactor operation. The proposed 

normalization approach is applied on SPND data obtained from 

an operating nuclear reactor and results compared with existing 

sensor statistics based normalization approach. The results 
demonstrate the utility of the proposed normalization approach. 

Keywords—SPND, recursive PCA, false alarms, detection 

rate, cluster normalization 

I.    INTRODUCTION 

Self-powered neutron detectors (SPNDs) are widely used  
sensors to measure the amount of neutron flux present in  a 
nuclear reactor. SPNDs provide real time measurement of 
neutron flux without requiring any external power [8]. As 
neutron flux is associated with the reactor power output,  
measurement of the neutron flux provides a direct measure of 
the reactor output power. Hence, to ensure optimal and safe 
operation of a nuclear reactor, it is necessary to have reliable 
and accurate measurements of neutron flux from SPNDs 
placed at various locations in the nuclear reactor [1].  

       During the course of its operation, an SPND can develop 

a fault due to a variety of reasons. One prominent reason is 

abrupt change of insulation resistance and capacitance of the 

cable connecting the SPND sensor with the external circuit, 

which may occur due to moisture capture, temperature 

changes etc. [3]. When such faults occur the readings from 

that particular detector become erroneous and correspondingly 

the inference based on those readings can degrade reactor 
performance. Thus, it is necessary to identify the faulty SPND 

in real time so that appropriate corrective action can be taken. 

To perform this task in real-time, it is desirable to have an 

automated real-time diagnostic system which is applicable for 

reactor operation over significantly varying power levels and 

is scalable to work with any number of SPNDs. The aim of the 

current work is to develop such a real-time diagnostic system.  

II. LITERATURE REVIEW AND OBJECTIVE 

Various model based methods are available for fault 
detection and diagnosis in literature [7]. The models can be 
derived from first principles (white box models) or from past 
historical data (data-driven models or black box models) [7]. 
Such data-driven models involve identification of multivariate 
relationships amongst the variables of interest given the 
training data obtained during normal operation, and 
subsequent deployment of the identified models to detect and 
estimate faults. For the nuclear reactor operation considered in 
the current work, white box models are not available. 
However, operational data is routinely archived and hence 
data-driven models based on past historical data can be 
obtained.  In [4] authors have proposed a Principal Component 
Analysis (PCA) based method to obtain data driven models 
and perform real time fault detection and diagnosis. Towards 
this end, as a first step they grouped the SPNDs in smaller 
clusters such that in each cluster SPNDs are highly correlated. 
After that for each cluster they derived set of linear 
relationships (models) between the SPND measurements 
belonging to that cluster using PCA based on historical data. 
Statistical analysis of the residuals obtained from those linear 
data driven models enabled them to detect the presence of a 
fault and subsequent use of  generalized likelihood ratio based 
test enabled identification of faulty SPND in real-time without 
much computational overhead. However, the obtained data-
driven models were implicitly assumed to be static in time.   

As the operation of the nuclear reactor varies significantly 
with time, the models based on past data may not be 
applicable in the future. A recursive PCA based method 
known as Recursive PCA–Exact Calculation (RPCA-EC) has 
been proposed in [1], which uses the data at current time 
instant to recursively update the models if no fault is detected 
at the current time instant. This method was based on 
identifying models on normalized SPND values. Towards this 
end, each SPND was normalized by subtracting its mean and 
then dividing this deviation from the mean by the SPND 
standard deviation. The mean and variance of each SPND 
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were also recursively updated at each time instant. Each 
SPND was thus normalized based on its individual mean and 
standard deviation. However, in presence of significant fast 
variations in the neutron flux, the mean and the variance will 
not be updated fast enough to reflect the changed dynamics. 
This in turn can cause model residuals to be high even in the 
absence of any fault, thereby leading to high false alarm rates.   

In the current work, we propose a new normalization 
approach known as cluster based normalization which uses 
instantaneous cluster statistics to normalize the measurements 
of each SPND in that cluster. The PCA based model is then 
updated using these normalized values. The advantage of 
using instantaneous cluster statistics is that it will lead to low 
false alarm rates even if the individual sensor data changes at a 
fast rate. 

 The rest of the paper is organized as follows: in section III 
we present the background material. In section IV we describe 
the methodology of the proposed cluster based normalization 
scheme and the relevant modelling aspects. In section V we 
present comparative results of our approach and the approach 
proposed in the earlier literature on SPND data obtained  from 
a nuclear power plant. The paper is concluded in section VI. 

III. PRELIMINARIES  

A. Brief description of Self Powered Neutron Detector 

(SPND) 

Self-powered neutron detector is a sensor which requires 
no external power to operate. When neutrons bombard the 
sensor material (called emitter), it produces current which is 
proportional to the amount of neutron flux incident on the 
emitter.  The cause for generation of current is the production 
of electrons mainly via two mechanisms: (i) when neutrons 
bombard the emitter material, gamma rays are produced which 
produce electrons by photoelectric/Compton effect, (ii) 
neutron bombardment on emitter atoms produce radioactive 
isotopes which produce electrons by radioactive beta decay. 
The sensors which produce electrons mainly by (i) respond 
quickly to the changing neutron flux and are called prompt 
SPNDs (e.g. Inconel and Cobalt). But the sensors which 
generate electrons by (ii) have a delayed response as the beta 
decay happens with a certain half-life. Such SPNDs are called 
delayed SPNDs (e.g. Vanadium). While the prompt sensors 
have the advantage of promptly responding to flux changes, 
they tend to be relatively less accurate, as they are sensitive to 
background noise [1]. In our work we have used the 
Vanadium sensor as delayed sensor, and Cobalt and Inconel 
sensors as prompt sensors. In the rest of the paper, Cobalt or 
Inconel sensors will be referred to as prompt sensors. 

B. Slowing down of prompt sensor data 

The prompt and delayed SPND values may not be directly 
correlated even when exposed to similar neutron flux [1]. To 
develop accurate multivariate models irrespective of the nature 
of the sensors, the measurements from prompt and delayed 
sensors  needs to be made compatible to each other. Besides 
this requirement, the prompt sensors suffer from background 
noise which needs to be eliminated. To meet these two tasks, 

the authors in [5] have proposed a method which slows down 
the prompt SPND response by passing the prompt SPND 
measurement through the Vanadium SPND transfer function. 
This makes the measurements of both type sensors compatible 
with each other. 

C. Clustering of SPNDs 

A nuclear reactor may contain hundreds of SPNDs located 
at different positions inside the reactor. But the neutron flux 
varies considerably in different regions of the reactor. Thus, to 
derive high fidelity models it is desirable to identify  
correlated or similar SPNDs and group them. Clustering using 
standard k-means algorithm is performed to find such groups 
of highly correlated SPNDs. Given the number of clusters to 
be identified, k-means clustering is a widely used 
unsupervised clustering approach that assigns points to 
different clusters such that the sum of distances of each point 
from its cluster centroid is minimized [2]. In the current work, 
the distance function to perform the k-means clustering is 
taken to be one minus the absolute value of the correlation 
coefficient between a pair of sensors [5]. 

D. PCA based modelling 

  After clusters are obtained,  for each cluster initial models 
for the training data are obtained using principal component 
analysis (PCA). The available training data set corresponds to 
measurements of n SPNDs belonging to a cluster for N time 
instants. At each time instant t we consider the set of readings 
of n sensors to be a row vector, labelled x̃(t). Before building a 
model, the raw values are normalized as follows: 

xi(t)=
x̃i(t)-μs,i

σs,i

                                        (1) 

where x̃i(t) is the raw measurement reading for ith sensor at 

time instant t, μs,i and σs,i are the mean and standard deviation 

of ith sensor for the training data set. The normalized row 
vectors x(1), x(2)  up to x(N) are computed and stacked 

together to form the data matrix X ∈ ℝN×n as X = 

[x(1);x(2);…;x(N)]. Models are obtained based on this 

normalized training data matrix. The detailed discussion of 

PCA based modelling is given in [1],[4]. Here we present only 

a brief description of that approach. For PCA based modelling 

we calculate the covariance matrix of x(t) from X as: 

C = (
1

N
)XTX                                     (2) 

Let the eigenvectors of  C be stacked as columns of a 
matrix P as  P = [Q|T] , where columns of Q are the m 
eigenvectors corresponding to m smallest eigenvalues of C 
and columns of T are the eigenvectors corresponding to the 
remaining (n-m) eigenvalues. 

The eigenvectors of the covariance matrix give the 
orthonormal directions of variability of the normalized data. In 
particular, small eigenvalue signifies that the variability in the 
direction of the corresponding eigenvector is small. In our 

work we want to find a model A such that AXT = 0,                                     
and hence we consider A = QT. For each time instant t, we 
now assume that x(t) will satisfy: 
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Ax(t)T = 0                                      (3) 

The number of lowest eigenvalues m, which is equal to 
number of rows of model matrix A, is chosen by performing a 
ratio-test on the eigenvalues of C [1]. 

We have assumed that x(t) for t = 1,2,…,N will follow (3). 
This would happen if the m least eigenvalues were identically 
0. But this is not the case in general. The m least eigenvalues 
are  small but non-zero. So (3) will not give 0 residual but it 
leads to a m-dimensional residual vector, labelled r(t), at each 
time instant. r(t) is obtained as follows: 

Ax(t)T= r(t)                                   (4) 

The covariance matrix of the residuals, labelled  E is a 
diagonal matrix with diagonal entries being the chosen m least 
eigenvalues of data covariance matrix C.  

E. Gross error analysis  at current time instant 

At current time instant t we have considered the raw 
measurements vector of n sensors as x̃(t). Using (1) we 
normalize x̃(t) to obtain normalized data vector x(t). The 
residual vector r(t) is calculated at time t using (4). After 
calculating r(t) the scaled length of the residual vector is 

calculated as : γ(t) = r(t)TE-1r(t).                             

In absence of any sensor fault, γ(t) will follow a χ2 
distribution with m degrees of freedom [6]. Thus a sensor fault 

is detected at significance level α if  γ(t) ≥ χ2
1-α,m  where χ2

1-α,m  

is the value from a χ2 distribution with m degrees of freedom 
such that the area to the left is (1-α)[1]. This test is labeled as 

the χ2 test. Violation of the χ2 threshold implies that there is a 
fault in at least one sensor. The faulty sensor in that cluster is 
then identified using generalized likelihood ratio test [6].   

F. Model update 

To accommodate the change of data nature the model is 
updated using the Recursive PCA-Exact Calculation (RPCA-
EC) approach as implemented in [1]. In this approach, the 
following update steps are used to update various quantities 
using the current measurement vector x(t) if no fault is 

detected (i.e. γ(t) < χ2
1-α,m

) at time t: 

1) Mean of each sensor  is updated as :  

μ
s,i
(t)=(1-θ)μ

s,i
(t-1)+θx̃i(t)                      (5) 

2) Variance (square of standard deviation of each 
sensor) is updated as follows:  

σs,i
2(t)=(1-θ)σs,i

2(t-1)+θ(x̃i(t)-μs,i
(t))

2
           (6) 

3) Covariance matrix of the cluster is updated as : 

C(t) = (1-θ)C(t-1) + θx(t)x(t)T                     (7) 

where μ
s,i

(t-1) and σs,i(t-1) are the mean and standard 

deviation for ith sensor based on data up to time instant (t-1), 

C(t-1) is the corresponding covariance matrix of the cluster 
based on data up to  time instant (t-1), θ is a tuning parameter 

known as forgetting factor and x(t) is the vector of sensor 
values at time instant t which has been normalized using the 
corresponding updated means μ

s,i
(t) and standard deviations 

σs,i(t). After computing C(t), m least eigenvalues and 

corresponding eigenvectors are chosen by performing the ratio 
test as in [1] and the new model matrix A is calculated by 
stacking those m eigenvectors as rows. The covariance matrix 
of residuals (matrix E) is also updated. Note that m may vary 
as a function of time. The above update steps are performed 
only if the current measurement vector is found to be fault-
free. In case a fault is detected at current time instant t then the 
above updates are not performed.  

IV.  METHODOLOGY OF OUR PROPOSED WORK  

 We now present the proposed cluster based normalization 
approach and its use in online fault diagnosis.  

A. Motivation 

 As discussed in Section III, in the approach available in 
literature ([1], [4]) each sensor reading is normalized using its 
individual sensor mean and standard deviation. As individual 
sensor statistics are used so we name this scheme as sensor 
statistics based normalization (SSBN). In a nuclear reactor, the 
flux magnitude may undergo sharp variations due to change in 
reactor power level. The normalization approach presented in 
[1] may lead to high false alarms in presence of such sharp 
variations of the flux magnitude. In the current work, we 
propose a novel cluster based normalization scheme that is not 
sensitive to sharp variations in the flux profiles as long as all 
detectors within a cluster register such sharp variations in 
response to changes in reactor power level.  

To motivate our proposed normalization approach, 
consider the following example: 

Example 1:  Consider the dynamic behaviour of four variables 
as shown in Fig. 1 where variables x1, x2 were generated as:  

x1(t)= {
0.01t; for  0 ≤ t ≤ (T/4)

0.015t; for (T/4)+1 ≤ t ≤ (T/2)

600; for (T/2)+1 ≤ t ≤ (T)

                 (8) 

x2(t)= {
2-0.02t; for  0 ≤ t ≤ (T/4)

2-0.03t; for (T/4)+1 ≤ t ≤ (T/2)

-1198; for (T/2)+1 ≤ t ≤ (T)

                (9) 

with T=80000. Variables x3, x4 were generated as linear 
combination of variables x1, x2 as  

[
x3(t)

x4(t)
]= - [

0.2653 0.6356

1.5633 0.0883
] [

x1(t)

x2(t)
]                     (10) 

Note that there is no fault in any sensor (variable) at any time 
instant and the sharp changes observed in Fig. 1 represent 
dynamic variation in the operating values. The corresponding 
sensor statistics based normalized profiles are plotted in Fig 2. 
It is seen that normalization is not able to remove sharp 
variations present in the original data. A diagnostic method 
working on this normalized data will likely label the sharp 
changes as faults even though no fault has been introduced in 
any sensor. We now propose an alternate approach which uses 
cluster statistics for normalization.  
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B. Cluster statistics based normalization (CSBN) 

In cluster statistics based normalization (CSBN), for a 

cluster, the cluster-mean and cluster-standard deviation of the 
sensor readings belonging to that cluster at each time instant 

are computed. As before we consider that the raw 

measurements of n sensors for N time instants are available as 

the training data set in a given cluster. Then the sensor 

readings are normalized using the cluster-mean and cluster-

standard deviation at that time instant. Let 

x̃(t)=[x̃1(t),x̃2(t),…,x̃n(t)] be set of readings of n sensors 

belonging to the cluster at time instant t (t = 1,2,…,N ). Then 

the cluster mean m(t) and cluster standard deviation σ(t) at 

time instant t are computed as: 

m(t)=(
1

n
)∑ x̃i(t)

n

i=1

;   σ(t)=√(
1

n
)∑(x̃i(t)-m(t))

2

n

i=1

              (11) 

Note that m(t) and σ(t) are functions of time and can be 
thought of as instantaneous cluster mean and cluster standard 
deviation. These values depend only on the sensor 
measurements at the current instant and are not affected by the 
past behaviour. After the instantaneous cluster mean and 
cluster standard deviation are obtained, the cluster statistics 
based normalized sensor readings are obtained as: 

y
i
(t)=

x̃i(t)-m(t)

σ(t)
,    i=1,2,..,n                  (12) 

To see the utility of the above CSBN scheme, consider 
Example 1. Fig. 3 shows the dynamic profile of the four 
sensors normalized using CSBN. It can be seen that despite 
sharp changes in the raw data, the normalized data shows 
constant behaviour after brief initial transients. A diagnostic 
approach working with such normalized data will not identify 
a fault at the time instants when all the sensors underwent 
sharp changes which were part of normal operation and not 
caused by any fault.  

C. Use of CSBN for SPND fault diagnosis 

Training phase or offline phase: Given the training data 

X̃=[x̃(1);x̃(2);…;x̃(N)] for a particular cluster, we consider 
the cluster statistics based normalized row vector y(t) at time 
instant t as y(t) = [y

1
(t),y

2
(t),…,y

n
(t)]. After calculating 

y(1), y(2),…, y(N) in this manner we form the matrix Y ∈
ℝN×n as Y = [y(1); y(2); .. ; y(N)] and do the following: 

1) The covariance matrix of y(t) is computed from Y in a 
similar manner as in (2). 

2) The model matrix A is computed where rows of A are the 
eigenvectors corresponding to m least eigenvalues of 
covariance matrix as stated in Section III-D and m is 
found by the ratio test implemented in [1]. 

3) The covariance matrix E of the residual is obtained by 
stacking the m smallest eigenvalues on the diagonal. 

Fault detection phase or online phase: At current time instant t, 
given the readings x̃(t), the cluster mean  m(t) and cluster 
standard deviation  σ(t) are computed using (11), and cluster 
based normalized readings  y(t) are computed. After that the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Dynamic variations in variables 

 
 

Fig. 2. Normalized values with SSBN scheme 

 

 
 

Fig. 3. Normalized values with CSBN scheme 
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residual vector r(t) for y(t) is computed as shown in (4) and 
correspondingly γ(t) is computed. If  γ(t) is less than the χ2 

threshold  then we conclude that the cluster is not faulty and 
model is updated as done in (7) by using y(t) instead of x(t). If  
γ(t) is greater than or equal to the χ2 threshold, then it is 
concluded that there is a faulty sensor in the cluster which is 
then identified using generalized likelihood ratio test. The 
flowchart in Fig. 4 shows the steps involved in our proposed 
approach. 

V. RESULTS 

In this section we present the comparative results between 
our proposed CSBN method and the SSBN method available 
in literature [1] which was summarized in Section III and IV. 
The data used in our work is the set of measurements of 42 
prompt and 102 Vanadium SPNDs of a 540 MWe operating 
nuclear reactor. Measurements are taken at 1 second sampling 
time interval for a period of 2 hours during April 2015. The 
entire data-set is assumed to be fault-free. The measurements 
of first 1000 time instants are used as training data and the 
measurements from 1001th time instant to 3000th time instant 
are used for comparing the fault diagnostic performances of 
the two approaches. We present results for a pure Vanadium 
cluster comprising 10 sensors, obtained using k-means 
clustering approach applied to the training data.  The dynamic 
profiles of the sensors in this cluster are presented in Fig 5. To 
compare the diagnostic performances, we introduce different 
types of faults in sensor V53. The significance level α 
(required for computing χ2 threshold) is chosen to be 0.05 and 
the forgetting factor θ in (5)-(7) is taken as (1/300) which is 
the inverse of the time constant of the Vanadium SPND 
transfer function. 

The SSBN and CSBN approaches are compared using the 
following metrics:  

 False alarm rate (FAR) =   

No. of time instants chosen cluster detected as faulty × 100

No. of time instants at which no sensor is faulty 
 

 Detection rate (DR) =  

No. of time instants chosen cluster detected as faulty × 100

No. of time instants at which fault is present
 

 Identification rate (IR) =  

No. of time instants faulty sensor correctly identified × 100

No. of time instants at which fault is present
 

A. Comparison of  false alarm rates 

      When no fault is added to any sensor, the false alarm rates 

for SSBN and CSBN based approaches are 7.8 % and 0.57%, 

respectively, which demonstrates the advantage of cluster 

statistics based normalization.  

B. Comparison in presence of constant bias fault 

During this test the bias is added as follows: 

x̃53
f (t)= {

x̃53(t);                     for 1 ≤ t ≤ 1100   

     x̃53(t) + 0.01bμ
53

;  for 1101 ≤ t ≤ 3000   
           (13) 

 

 

 

 

 

 

 

 

 

where x̃53(t) is the un-normalized fault free raw measurement 
of sensor V53, μ53 is the sample mean of the V53 
measurements in the interval 1 ≤ t ≤ 1000 and b is the bias 

percentage. x̃53
f (t) is un-normalized measurement value of V53 

after the bias addition. The diagnostic results are presented in 
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Table I. We find that the sensor based normalization results in 
almost full detection rate when the bias percentage b is 6 
(magnitude is 8.67 × 1011) while the cluster based 
normalization results in full detection rate when the bias 
percentage b is 14 (magnitude is 2.02 × 1012). This relatively 
low detection rate may be due to use of faulty data for 
computing cluster statistics before normalizing the raw sensor 
measurements in the CSBN approach. But as the sensor raw 
value is varying from 1 × 1013 to 7 × 1013, this kind of 
performance difference may be tolerable. 

C. Comparison when the bias is proportional to the raw value 

x̃53
f (t)= {

x̃53(t);                     for 1 ≤ t ≤1100 

    x̃53(t) + 0.01bx̃53(t);  for 1101 ≤ t ≤ 3000   
        (14) 

As shown in (14), the bias is time varying and is proportional 

to the raw value at each time instant. The results for the two 

approaches are presented in Table II. We observe that SSBN 
results in very high (95%) DR for b ≥ 4, while CSBN requires 

the bias percentage b to be at least 6 to result in very high DR.  

D. Comparison in  presence of exponential bias 

x̃53
f (t)=

{
 
 

 
 

 x̃53(t);                                 for 1 ≤ t ≤ 1100

x̃53(t)-c(1-e-0.1(t-1100 )); for 1101 ≤ t ≤ 1220

x̃53(t)-c(1-e-0.1(t-1100 ))-c(1-e-0.1(t-1220 ));       

                                             for 1221 ≤ t ≤ 3000

 (15) 

Coefficient c in the above expressions is chosen as a 

percentage of x̃53(1100). This kind of error profile can occur 

in practice due to leakage currents in the SPND cables. The 

comparative results for the two normalization schemes are 

given in Table III for different values of c. We observe that the 
SSBN approach results in high detection rate for c=1.06 × 1012 

onwards, while the CSBN approach results in high detection 

rate for c=1.59 × 1012 onwards. The difference in the c-values 

at which these two approaches result in high DR is only 0.53 × 

1012 which is much less compared to the raw value of the 

sensor measurements. 

VI.  CONCLUSIONS AND FUTURE WORK 

In this work, we proposed a cluster statistics based 

normalization approach which is used to develop PCA based 

online fault diagnostic method for SPNDs.  The approach was 

applied to perform fault diagnosis on data obtained from a 

nuclear reactor and results were compared with sensor 

statistics based normalization approach available in literature. 

The proposed approach resulted in significantly low false 

alarm rates. However, the detection rates were also low for the 

proposed approach, especially for constant bias faults, but the 

detection rates were higher for the more practical scenario of 

time varying fault. Future work involves modifying the CSBN 

approach to result in high detection rate for constant bias 
faults as well.  

TABLE I.  COMPARATIVE PERFORMANCE WHEN BIAS IS CONSTANT 

% of 

mean 

Actual bias 

magnitude 

DR 

(%) for 

SSBN 

IR  

(%) for 

SSBN 

DR 

(%) for 

CSBN 

IR  

(%) for 

CSBN 

2 2.8 × 1011 7.65 0.8 0.1 0.1 

4 5.7 × 1011 11.0 4.05 0.1 0.1 

6 8.67 × 1011 95.0 95.0 0.4 0.3 

8 1.15 × 1012 95.0 95.0 2.95 2.85 

10 1.44 × 1012 95.0 95.0 24.4 24.4 

14 2.02 × 1012 95.0 95.0 95.0 95.0 

 

TABLE II.  COMPARATIVE PERFORMANCE WHEN THE BIAS IS 

PROPORTIONAL  TO THE CURRENT RAW VALUE 

Bias(% of raw 

value) 

DR (%) 

for SSBN 

IR (%) 

for SSBN 

DR (%) 

for CSBN 

IR (%) 

for CSBN 

2 10.25 3.1 0.1 0.1 

4 95.0 95.0 2.5 2.5 

6 95.0 95.0 95.0 95.0 

8 95.0 95.0 95.0 95.0 

TABLE III.  COMPARATIVE PERFORMANCE WHEN THE BIAS IS OF 

EXPONENTIAL NATURE 

(%) of 

x̃53(1100) 

 

Value of c 

DR 

(%) for 

SSBN 

IR  

(%) for 

SSBN 

DR 

(%) for 

CSBN 

IR  

(%) for 

CSBN 

2 5.3×1011 7.65 0.5 0.05 0.05 

4 1.06×1012 94.7 94.65 0.1 0.1 

6 1.59×1012 94.7 94.65 94.5 94.5 

8 2.12×1012 94.7 94.65 94.65 94.65 
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