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Abstract— This paper studies spectral-zero-interpolation
based methods for model order reduction (MOR). We focus
on symmetric passive systems in which we prove new results
about spectral zeros and balancing of state systems using
extremal Algebraic Riccati Equation (ARE) solutions. We first
show that for symmetric state space systems, not just are
the poles and system zeros interlaced, but in fact, the poles,
spectral zeros and system zeros are interlaced too. In the context
of positive real balanced state-space realization, we introduce
a notion of ‘quasi-balanced’, which turns out to inter-relate
various extremal Riccati equation solutions of the literature.
Finally, using the interpretation that the extremal ARE solutions
indicate the minimum/maximum energy considerations during
charging/discharging processes, we propose methods to choose
a suitable subset of spectral zeros at which the reduced order
system should interpolate the original transfer function in order
to have lower error with respect to the H-infinity, H-2 and
Hankel norms.
Keywords: spectral zeros, maximum and minimum Riccati equa-
tion solutions, error in approximation, balancing methods in MOR

1. INTRODUCTION

Modeling and control of physical systems are generally
done by construction of suitable dynamical systems. Mod-
eling complex dynamical systems results in a model that
often has a very large order: it is essential to obtain a
lower order approximation so that simulation and controller
design is computationally feasible. There are many methods
of obtaining a reduced order approximation from a larger
order model [10], [4], [5], [3]: the methods depend crucially
on the criteria of measuring the approximation error. It
is generally required that the reduced model preserve the
stability and passivity of the original system. Many methods
for model reduction with stability and passivity preservation
have been proposed, for example, in [16], [7], [17]. Many
of these methods focus on a specific class of systems. Of
particular importance for this paper is the approach presented
in Antoulas [2] and Sorensen [18] where a technique with
efficient numerical algorithms to perform model order reduc-
tion is proposed which guarantees preservation of passivity
and stability. The approach proposed in Antoulas [2] is
based on positive-real interpolation through Krylov projection
methods. Interpolation based methods stand the advantage of
good computational efficiency in obtaining the reduced order
model. The reduced order model is obtained by interpolating
a subset of the spectral zeros of the original system but
the technique requires computation of the spectral zeros
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before hand. Sorensen [18] develops a method of model
reduction that does not require explicit interpolation of the
spectral zeros in the implementation. This method relies on
computing a suitable basis for the invariant subspace of a
Hamiltonian matrix associated with the system for computing
the reduced order model. Different reduced order models
(ROMs) result depending on the set of spectral zeros chosen
for interpolation. Assuming n is the order of the full-order
system, and k is the desired order of ROM, then a central
question remains as how to choose the k spectral zeros from
the n spectral zeros.

This paper addresses the question of how to choose k
spectral zeros for the ROM from n original spectral zeros. A
notion of ‘residues’ of spectral zeros and criteria for selection
of dominant spectral zeros based on their residues were
proposed in [12]. Loosely speaking, spectral zeros close to
the imaginary axis, being dominant, suggest their retention.
On the other hand, arguing by controllability/observability
Gramian considerations, a small residue in the partial fraction
expansion suggests non-retention. This paper makes this
intuitive method more concrete. We first obtain and prove
new results in the context of spectral zeros and balancing
methods and then propose methods to choose the spectral
zeros and analyze this choice with respect to various notions
of error between the original system and the reduced order
system.
The rest of the paper is organized as follows. Section 2 con-
tains some preliminaries required for the paper. In Section 3
we present and prove some new results in spectral zeros
based balancing. Section 4 lists the different notions of errors
employed for comparing ROM with original system and two
new criteria for selection of spectral zeros are proposed here.
Some concluding remarks are given in Section 5.

2. PRELIMINARIES

In this paper we consider linear time-invariant dynamical
system Σ with i/s/o representation (A,B,C,D) and transfer
function G(s).

Σ ∶ ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) , G(s)=C(sI −A)−1B +D (1)

where A ∈ Rn×n,B ∈ Rn×p,C ∈ Rm×n,D ∈ Rm×p.

A. Model order reduction problem
The problem of model order reduction is to approximate

the dynamics of the system Σ represented by equation (1),
to a lower dimension k ≪ n system Σ̂ = (Â, B̂, Ĉ, D̂):

Σ̂ ∶ {
ˆ̇x(t) = Âx̂(t) + B̂u(t)
y(t) = Ĉx̂(t) + D̂u(t)

, Ĝ(s) = Ĉ(sI − Â)−1B̂ + D̂
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where Â ∈ Rk×k, B̂ ∈ Rk×p, Ĉ ∈ Rm×k, D̂ ∈ Rm×p.
The input-output map of Σ̂ should be close to Σ in an

appropriate sense that is elaborated in the following section.
Often, system features and structure such as stability, pas-
sivity, Hamiltonian structure and subsystem interconnectivity
should be preserved in the reduced order system.
The following assumptions hold for the rest of this paper.

1) the system is SISO,
2) all eigenvalues of A are real and negative,
3) the system Σ is controllable, observable and passive.

B. Passivity and positive realness
Passive systems are a class of systems which absorb

externally supplied energy, cannot generate energy, i.e. have
no source within, but can store energy. Passivity of a system
is defined as follows with respect to the external variables,
input u and output y.

Definition 2.1. [18] A system Σ is said to be passive if

∫
t

−∞
u(τ)T y(τ) dτ ⩾ 0 for all t ∈ R and all u ∈ L2(R).

The system Σ is strictly passive if there exists δ > 0 such that

∫
t

−∞
u(τ)T y(τ)dτ ⩾ δ∫

t

−∞
u(τ)Tu(τ)dτ∀t ∈ R, u ∈ L2(R).

For LTI systems, positive realness is linked to passivity.

Definition 2.2. [1] A real rational transfer function G(s) is
said to be positive real if G(s) satisfies:

1) G(s) is analytic for Re(s) > 0,
2) G(s) +G(s)∗ ⩾ 0 for all Re(s) > 0

It is well-known that an LTI system Σ is passive if and
only if its transfer function is positive real. In this paper,
we assume strict passivity and this rules out spectral zeros
on the imaginary axis: spectral zeros are defined next.

C. Spectral Zeros
The spectral zeros of a positive real systems with transfer

function G(s) are defined as λ ∈ C such that:

G(λ) +G(−λ)T = 0.

Considering systems for which (D +DT ) is invertible, the
spectral zeros are the eigenvalues of the Hamiltonian matrix
H ∈ R2n×2n defined as:

H ∶= [A −B(D +DT )−1C B(D +DT )−1BT

−CT (D +DT )−1C −(A −B(D +DT )−1C)T ]. (2)

Due to symmetry about the imaginary axis jR, if H does
not have jR eigenvalues, then of the 2n spectral zeros of
the system, n-spectral zeros are in the C− plane and their n
mirror images in C+ plane.

We are interested in characterizing systems which are
guaranteed to have real spectral zeros.

D. State Space Symmetric Realization
As in [1],[15], a minimal state space system (A,B,C,D)

is said to be state-space symmetric if

A = AT , C = BT , D =DT . (3)

It may be noted that these systems are also called internally
symmetric [22] and are distinct from externally symmetric
systems where G(s) = G(s)T . Of course, internally symmet-
ric systems are also externally symmetric, but not conversely.
These systems are part of a broader class of systems called
relaxation systems [22]. These systems correspond to phys-
ical systems which have only one “type” of energy storage
possibility, e.g. only potential energy or only kinetic energy,
but not both. Another family of examples which have only
one type of storage is that of RC or RL electrical networks.
It has also been shown that systems with zeros interlacing
poles (ZIP) also admit a state space symmetric realization
[19].

As defined in [22, Proposition 4], a system Σ with transfer
function G(s) and state space realization (A,B,C,D) is
said to be state space symmetric realizable if there exists
a nonsingular matrix T > 0 such that

A = T −1ATT ⩽ 0, B = T −1CT , D =DT .

The transfer function G(s) of a state space symmetric
realizable system can be written as

G(s) = g∞ +
k=n
∑
k=1

gk
s + λk

(4)

where g∞ > 0, gk > 0 and 0 ⩽ λ1 < ⋯ < λn. The above
system has following symmetric state space realization

A = diag(−λ1,−λ2, ...,−λn),

BT = C = [g
1
2

1 g
1
2

2 ⋯ g
1
2
n ], D = g∞.

Symmetric state-space systems have been well-studied. A
class of well-studied systems with collocated actuator and
sensor [20], [9], [11] also utilize such symmetry B = CT .
Collocated sensors and actuators in decentralized control
systems reduce the complexity and hence are economically
appealing. In other words, symmetric state-space systems are
an important class of systems and their study is motivated by
many practical situations.

E. Algebraic Riccati Equation

The algebraic Riccati equation (ARE) for a system Σ
in i/s/o realization A,B,C,D with respect to the passivity
supply rate is

ATK +KA+ (KB −CT )(D +DT )−1(BTK −C) = 0. (5)

The system Σ is positive real if and only if there exists a
positive definite solution K = KT to the above equation.
The set of ARE solutions is known to be a bounded and
finite set with a maximum Kmax and a minimum Kmin:

0 < Kmin ⩽ K ⩽ Kmax .

The solutions of the ARE in equation (5) can be computed
from the n−dimensional invariant subspace of the associated
Hamiltonian matrix, H as follows:.

H [ X
Y

] = [ X
Y

]R and define K ∶= Y X−1 (6)
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where X,Y ∈ Rn×n, R ∈ Rn×n is a diagonal matrix with
n eigenvalues of the Hamiltonian matrix, i.e. the n-spectral
zeros. Each solution K can be associated with n-spectral
zeros chosen from the set of 2n spectral zeros. Each solution
K of the ARE gives rise to what we call a ‘closed loop
state transition matrix’ AK corresponding to the H-invariant
subspace dictated by the n−chosen spectral zeros: we define
AK as

AK ∶= A −B(D +DT )−1C +B(D +DT )−1BTK. (7)

The eigenvalues of the state transition matrix AK are the n
spectral zeros chosen for construction of K. When either n
stable or n anti-stable spectral zeros are chosen, we get an
extremal solution of the ARE, i.e.

H [ X+
Y+

] = [ X+
Y+

]R+ and H [ X−
Y−

] = [ X−
Y−

]R− (8)

where X±, Y± ∈ Rn×n; Re(σ(R+)) > 0;Re(σ(R−)) < 0 Then
Kmax = Y+X−1

+ and Kmin = Y−X−1
− .

F. Model order reduction by spectral zeros interpolation

Antoulas [2] and Sorensen [18] propose algorithms for
passivity preserving model reduction by interpolation of
spectral zeros and subspace interpolation: we review this next.

1) Spectral zero interpolation method: Antoulas [2] pro-
posed and proved that if a subset (SĜ) of the spectral zeros
(SG)are interpolated (preserved) in the reduced model, then
the reduced model would also be passive.

Proposition 2.1. [2, Lemma 4.1] If SĜ ⊂ SG and also that
Ĝ(λ) = G(λ) for all λ ∈ SĜ and that Ĝ is a minimum degree
rational interpolation of the values of G in the set SĜ. Then
the reduced system Σ̂ with transfer function Ĝ is both stable
and passive.

This method requires computation of 2k spectral zeros
to be interpolated. Given 2k spectral zeros s1, . . . , s2k the
projection matrices are constructed as follows:

Ṽ = [(s1In −A)−1B ⋯ (skIn −A)−1B]
W̃ = [(sk+1In −A)−1B ⋯ (s2kIn −A)−1B]. (9)

Proposition 2.2. The reduced system Σ̂ obtained by projec-
tion as

Â =WTAV, B̂ =WTB, Ĉ = CV (10)

where V = Ṽ and W = W̃ (Ṽ T W̃ )−1, is both stable and
passive and interpolates the transfer function of Σ at points
si [2, Proposition 4.1]:

Ĝ(si) = G(si), for i = 1,2, ...,2k.

2) Retention of minimum dissipation trajectories: Trentel-
man et al [21] presented a behavioral approach to passivity
preserving model order reduction. Their method is based
on construction of a basis for a selected invariant subspace
corresponding to the chosen spectral zeros as presented in
[18]. Their paper introduced the notion of ‘sub-behavior of
minimal dissipation’ of a system, where it was shown that if

a particular part of this sub-behavior of minimal dissipation
is inherited by the reduced system, then the reduced system
is passive and stable. It also showed that by interpolation
of spectral zeros in the ROM, the corresponding parts of
the ‘sub-behavior of minimal dissipation’ of the system are
inherited by the ROM.

In order to explain further things in our paper, for con-
ceptual simplicity, we propose a modified subspace based
interpolation algorithm (Algorithm 2.1) for MOR using the
invariant subspace of the Hamiltonian matrix H .

Algorithm 2.1 Modified subspace-interpolation algorithm

Input: Original system Σ ∶ (A,B,C,D), k ≪ n.
Output: Reduced system Σ̂(Â, B̂, Ĉ, D̂).

1: Compute the k-dimensional H-invariant stable subspace
of H as:

H [ X
Y

] = [ X
Y

]R− where X,Y ∈ Rn×k;

Re(λ) < 0 and λ ∈ σ(R−)

2: Compute XTY =∶ QS2QT with Q-orthogonal, S-
diagonal.

3: Construct projection matrices

V ∶=XQS−1 and W ∶= Y QS−1

4: The reduced order system is obtained as

Â =WTAV ; B̂ =WTB; Ĉ = CV ; D̂ =D

3. NEW RESULTS IN SPECTRAL ZERO BASED BALANCING

In this section we first present some new results of pos-
itive real balancing in systems with state space symmetric
realization, then we introduce positive real quasi-balancing.

Definition 3.1. [3, Section 7.5.4] A positive real system Σ
with i/s/o representation (A,B,C,D) is said to be in positive
real balanced realization if the extremal solutions of the ARE,
Kmax and Kmin, are related as

Kmax =K−1
min.

Using the above preliminaries, the following result follows
by straight-forward verification of balancing.

Lemma 3.2. A positive real system in state space symmetric
realization is positive real balanced.

A. Positive real quasi-balancing

Due to spectral zeros interpolation, there is a certain
balancing with respect to the extremal solutions of ARE in
the ROMs, we define them as positive real quasi-balancing.

Definition 3.3. A positive real system Σ is said to be in
positive real quasi-balanced form if one of the extremal
positive definite solutions of the ARE is identity. Positive real
quasi-balanced Form-I if Kmax = I and positive real quasi-
balanced Form-II if Kmin = I .
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Lemma 3.4. A strictly passive system Σ, with i/s/o realization
(A,B,C,D) can be transformed into a positive real quasi-
balanced realization (Ã, B̃, C̃, D̃) such that

1) Form-I: Kmax = I , if (Ã, B̃, C̃, D̃) are constructed
by Algorithm 2.1 from the H-invariant subspace of the
n−anti-stable spectral zeros (real(λi) > 0), and

2) Form-II: Kmin = I , if (Ã, B̃, C̃, D̃) are constructed by
Algorithm 2.1 from the H-invariant subspace of the n-
stable spectral zeros (real(λi) < 0)

The proof follows by a careful use of the matrices defined
in Algorithm 2.1 while defining the model order reduction
technique, and hence is skipped.

A system Σ represented by (A,B,C,D) in positive real
quasi-balanced Form-I realization Kmax = I can be converted
to positive real quasi-balanced Form-II realization Kmin =
I with i/s/o (Ã, B̃, C̃, D̃) by basis transformation matrix T
such that Ã = T −1AT, B̃ = T −1B, C̃ = CT, D̃ = T where
T = P −1 with P being the Cholesky factor of Kmax, i.e.
PTP ∶= Kmax, with P upper-triangular and having positive
diagonal entries.

The following lemma is helpful for proving our main result
about spectral zeros being real (Theorem 3.6).

Lemma 3.5. Consider the function

f(x) ∶=
n

∑
i=1

qi
pi − x2

with qi, pi > 0 for i = 1, . . . , n, and pi ≠ pj for i ≠ j. Then,
f(x) has only real roots.

The proof of the above lemma is skipped due to space
constraints. The lemma is crucially used to prove the theorem
below: one of the main results of this paper.

Theorem 3.6. A SISO system Σ which admits a state space
symmetric realization (A,B,C,D) has, not just all poles and
zeros as real, but also all spectral zeros as real. Assume the
system poles −pi, system zeros −zi and stable spectral zeros
−si are indexed such that:

p1 < p2 < ⋯ < pn, z1 < z2 < ⋯ < zn, s1 < s2 < ⋯ < sn

and assume, without loss of generality, p1 < z1. Then,

p1 < s1 < z1 < p2 < s2 < ⋯sn < zn .

In other words, not just are the poles and zeros interlaced,
but between every pair of pole-zero, there is also a stable
spectral zero.

The proof uses the previous lemmas and Bolzano’s theo-
rem about change of signs of a polynomial function over an
interval when the interval contains a root of the polynomial.
We skip the proof for paucity of space.

4. NOTIONS OF ERROR IN MODEL ORDER REDUCTION

The degree of closeness of the reduced system Σ̂ with
the original system Σ is measured by the respective system
outputs over a range of inputs. Consider Figure 1.

The transfer function from u to δerror is G(s)−Ĝ(s). There
are many metrics one can use to evaluate the error system,

δerroru

-

+G(s)

Ĝ(s)

Fig. 1: Block diagram for error

three of the popular metrics are: H∞-norm, H2-norm and
Hankel-norm.
H∞ − norm: The H∞-norm of a stable transfer function
G(s) is defined as:

∣∣G(s)∣∣H∞
∶= max

ω∈R
∣∣G(jω)∣∣2 (11)

where ∣∣ ⋅ ∣∣2 denotes the induced 2-norm of a matrix.
H2 − norm: The H2-norm of a stable transfer function G(s)
is defined as:

∣∣G(s)∣∣H2 ∶= ( 1

2π
∫

∞

−∞
∥G(jω)∥2F dω)

1
2

(12)

where ∣∣ ⋅ ∣∣F denotes the Frobenius1 norm of a matrix.
Hankel norm: The Hankel norm of a stable transfer function
G(s) is defined as:

∣∣G(s)∣∣Hnkl ∶= ( sup
u∈L2∖{0}

∫
∞
0 y2dt

∫
0
−∞ u2dt

)
1
2

(13)

and is known to be equal to (λmax(PQ)) 1
2 where P and Q

are respectively the controllability and observability Grami-
ans of a given state space system.

A. Criterion for selection of spectral zeros
The closeness of the reduced model with the original

system depends on choice of spectral zeros (2k spectral zeros
from 2n-spectral zeros) selected for interpolation. Antoulas
[2], Sorensen [18] and Trentelman et al [21] did not consider
the question of a criterion for selection of spectral zeros. We
illustrate this selection problem with an example. Consider a
4th order system given by the transfer function

G(s) = (s + 1)(s + 3)(s + 5)(s + 7)
(s + 2)(s + 4)(s + 6)(s + 8)

.

The spectral zeros for the system are: s1 = ±7.20; s2 =
±5.31; s3 = ±3.41; s4 = ±1.54. We construct order 3
approximation of the above system by using algorithm 2.1.
In total, 4 number of ROMs of order 3 each are possible by
choosing set of 3 spectral zeros from set of 4. Figure 2 shows
the bode plot of the original system and its order 3 ROMs,
where SYS123 means ROM constructed by interpolating
spectral zeros s1, s2, s3. From Figure 2, it is evident that the
choice of spectral zeros for interpolation is very critical for
the closeness of the ROM to the original system

B. Spectral zeros and system poles
The spectral zeros of a strictly passive system with a

biproper transfer function G(s) lie within the range of the

1The Frobenius norm of a matrix is defined as the square-root of the sum
of the squares of all matrix-entries’ magnitudes.
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Fig. 2: Bode plot for original system and ROMs

poles and zeros. If we write the transfer function G(s) in
terms of its partial fractions then one can relate each spectral
zero with a pole.

G(s) = 1 + k1
s + p1

+ k2
s + p2

+⋯ + kn
s + pn

; ki > 0 (14)

The zeros zi of the system are decided by the poles pi and
the partial fraction coefficient ki. The spectral zeros of the
system lie between each pole-zero pair i.e. zi < si < pi. There
are 2n spectral zeros- (s1, s2, . . . , sn; si < 0) and their mirror
images (−s1,−s2, . . . ,−sn). One can relate each of spectral
with the associated pole and the partial fraction coefficient.
This helps in associating the state with the spectral zero.

Example 4.1. Consider an order 4 system Σ with biproper
transfer function G(s):

G(s) = 1 + k1
s + 1000

+ k2
s + 100

+ k3
s + 10

+ k4
s + 1

;ki > 0

When we keep k1 = k2 = k3 = k4 = 1, then the stable spectral
zeros are s1 = −1000.50, s2 = −100.50, s3 = −10.49, s4 =
−1.38 Now if we represent the transfer in symmetric state
space realization:

ẋ(t) = [
−1000 0 0 0

0 −100 0 0
0 0 −10 0
0 0 0 −1

] [
x1
x2
x3
x4

] (t) + [
1
1
1
1
]u(t)

y(t) = [ 1 1 1 1 ]x(t) + 1.u(t) (15)

For the system given in Example 4.1, one can associate
spectral zeros (s1, s2, s3, s4) with the states (x1, x2, x3, x4).
This will help in constructing a mode-wise criteria for se-
lection of spectral zeros. The system is strictly passive when
none of the spectral zeros are on the imaginary axis. The
system becomes lossless when all the spectral zeros are on the
imaginary axis. As the spectral zeros are moved away from
the imaginary axis the system becomes more dissipative.

C. Minimum dissipation criterion for spectral zeros selection

The approach of MOR presented in [21], by retaining sub-
behaviour of minimal dissipation can also be interpreted as

deleting those part of the original system along which a rel-
atively large amount of dissipation takes place. The extremal
positive definite solutions of the ARE Kmin and Kmax have
special significance in terms of the energy dissipation by the
system. For a given a ∈ Rn, consider Ba, the set of all
continuous system trajectories (u,x, y) satisfying equation
(1) with x(0) = a. Then,

aTKmaxa = inf
(u,x,y)∈Ba,
x(−∞)=0

∫
0

−∞
2uy dt, (16)

aTKmina = sup
(u,x,y)∈Ba,

x(∞)=0
∫

∞

0
−2uy dt. (17)

Thus aTKmaxa is the minimum energy required to reach a
state x(0) = a from state of rest x(−∞) = 0 and aTKmina
is the maximum energy that can be extracted as the system
is brought to rest x(∞) = 0 from state x(0) = a. The states
are generally the energy storage elements, for example in
electrical networks capacitors (C) and inductors (L) store
energy and they define the states. Now, the energy required
to reach a state is the sum of the energy stored in the
state and the energy dissipated during reaching the state.
Similarly, energy that can be extracted from a state is the
difference of the energy stored in the state and the energy
dissipated during reaching the state of rest. Therefore, if the
given system is in state space symmetric realization, then
one can utilize either of Kmax or Kmin to construct mode-
wise measures of the dissipation of a system. Since, Kmax =
Y+X−1

+ > I where the columns of [X+

Y+
] are unit 2−norm

length, X+ becomes ill-conditioned as system dissipation
increases. Hence, computation of Kmax becomes error prone.
Therefore, we propose minimum dissipation criterion for
selection of spectral zeros based on Kmin, wherein the least
dissipative spectral zeros are to be chosen for interpolation
for constructing ROM. We define two new “measures” for
choosing the minimum dissipating spectral zero. We use the
state space symmetric realization as relate the spectral zeros
with the states.

1) Measure I (αi): When the system is positive real
balanced Kmax =K−1

min, the columns of Kmin give a measure
of the dissipation for the corresponding spectral zero linked
with the pole as A is diagonal. Now, if we chose to construct
the state transition matrix AKmin

with respect to Kmin as
defined in equation (7), then the eigenvalues of AKmin

are
the n-stable spectral zeros. We use the eigenvectors of AKmin

to define a mode-wise dissipativity measure αi.

Definition 4.2. For a given strictly passive system Σ with
biproper transfer function G(s) and symmetric state space
realization (A,B,C,D), with (v1, v2, . . . , vn) being the
2−norm unit length eigenvectors of AKmin

, the mode-wise
dissipativity measure of each stable spectral zero si, is
defined as αi:

αi ∶= vTi Kminvi.

A higher value of αi indicates the corresponding spectral
zero si is less dissipative as more energy can be extracted
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from the corresponding state. The criteria says that k spectral
zeros with largest αi to be chosen for k−order reduced model.

2) Measure II (βi): We compute the weighted inner prod-
uct of each column of Kmin with respect to the system poles
and define it as mode-wise normalized energy measure βi
for each spectral zero si.

Definition 4.3. For given strictly passive system Σ with
biproper transfer function G(s) and symmetric state space
realization (A,B,C,D), such that the state xi corresponds
to the pole pi and spectral zero pair (si,−si), the mode-wise
normalized energy measure is defined as βi:

βi ∶= ∣pi∣ ∥Kminei∥22
where ei is the ith column of the identity matrix.

Similarly, here also higher βi means the corresponding
spectral zero is less dissipative. Hence, for k−order reduced
model spectral zeros with the largest βi are to be chosen.

5. CONCLUSION

We studied the class of symmetric passive systems and
obtained new results on spectral zeros and on balancing
of state-space realizations of such systems. We introduced
positive real quasi-balancing and showed in Lemma 3.4 that
a system can be transformed to positive real quasi-balanced
form using MOR algorithm by interpolation of spectral zeros.
We also inter-related the matrices that help transform between
positive real quasi-balanced realizations Form-I and Form-II.
Then in Theorem 3.6 we proved that a SISO system which
admits state space symmetric realization has only real spectral
zeros and further that each spectral zero lies between a pole-
zero pair: this was one of the main results of this paper.

In the context of model order reduction from a large
original order n to a smaller order k ≪ n, we proposed
methods to choose k spectral zeros from n based on the
relative dissipativity of each spectral zero. We formulated two
measures of dissipativity of each spectral zero: mode-wise
dissipativity measure αi and mode-wise normalized energy
measure βi. Preliminary analysis of the choices of spectral
zeros with respect to these measures using error norms: H∞,
H2 and the Hankel norms have shown encouraging results.
A thorough analysis about the suitability of the two measures
with respect to the particular error norms is a matter of future
work.

A few remarks about computational complexity. It was
shown in [18] about how the subspace interpolation does
not require all spectral zeros (and the eigenvectors) to be
computed, but just the spectral zeros that are to be retained
in the ROM. This was through the computation of the
so-called partial Schur form instead of the full Schur form.
In order to choose the spectral zeros to be retained, only
the measures proposed in our paper need to be estimated
instead of the eigenvectors corresponding to these spectral
zeros. Methods to efficiently estimate these measures for
each spectral zero needs further investigation.
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