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Abstract—This paper addresses structural controllability problem in
linear time invariant dynamical structured system: the minimum cost
constrained input selection problem (minCCIS). Constraints are imposed
on the input structure and the aim is to obtain an input selection that
minimizes the cost while satisfying the pre-specified constraints on the
input matrix. This problem is NP-hard. As a result, our focus is to devise
a computationally efficient framework to obtain a solution arbitrarily
close to an optimum solution. We propose a randomized algorithm based
on Markov Chain Monte Carlo (MCMC) technique. Firstly, we give a
polynomial time reduction of the problem to an optimization problem on
a system specific bipartite graph constructed, where the objective is to
maximize a utility function associated with the matchings in the bipartite
graph. Subsequently, we prove that an optimum solution of this bipartite
matching problem when translated back gives an optimum solution to the
minCCIS problem. Using a randomized algorithm based on the MCMC
technique for solving the utility based matching problem, we show that
an optimum solution to minCCIS can be found in time polynomial in the
number of state variables with high probability. Simulation results that
demonstrates the performance of the proposed scheme is also presented.

1. INTRODUCTION

Complex networks are an indispensable constituent in most of the
networks emerging from science and environment, including social,
biological, transportation, distribution and technological networks.
This paper deals with controllability of linear time invariant (LTI)
complex dynamical systems. Typically, networks are represented by
the state matrix A ∈ Rn×n and the input matrix B ∈ Rn×m, where
n is the number of states and m is the number of inputs. Here R
denotes the set of real numbers. In complex networks all the system
parameters are not precisely known. Further, in some cases even
though the graph of the network remains unaltered, the dynamics
varies with time, for instance traffic in a transportation network is
time varying. Thus, checking controllability of complex networks
using conventional control tools is not always feasible. Many papers
perform graph theoretic analysis, referred as structural analysis, using
the sparsity pattern of the system matrices to address various system
theoretic problems [1].

In this paper, we analyze controllability of large-scale systems
using structural analysis. Due to the large system dimension, devising
efficient algorithms to solve various optimization problems associated
with these networks is important and at the same time challenging.
Controllability of systems with a specified graph pattern is referred as
structural controllability. In the last few decades, structural control-
lability and various associated optimization problems were studied
and graph theoretic formulations of many of these were done [1],
[2], [3], [4], [5] and [6]. Our focus is on optimal selection of inputs
for achieving structural controllability of a structured system.

This paper addresses the minimum cost constrained input selection
problem (minCCIS). The costs associated with inputs are motivated
from the installation, maintenance and monitoring costs associated
with it or even the selection preferences. Selection preferences are
important in many applications, like leader selection where certain
agents are preferred over others for performing some specific tasks
[7] and this can be captured as cost associated with the input. Given
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a structured system, minCCIS aims at finding a minimum cost input
set for making the system structurally controllable. If costs are non-
zero and uniform, then minCCIS solves minimum cardinality input
selection, which is known to be NP-hard [8]. Thus minCCIS is
also NP-hard. Under the assumption that the structured system is
irreducible1, a polynomial time solution for a subclass of this problem
is given in [6]. These problems are addressed in their generality
in [9], where the authors proposed a deterministic polynomial time
approximation algorithm and proved its approximation ratio. In this
work, we address both these problems in full generality using a
randomized scheme. We propose an exact randomized algorithm
based on Markov Chain Monte Carlo (MCMC) technique for solving
both these problems and show that an optimal solution can be
obtained in polynomial time with high probability.
Key contributions of this paper are summarized below.
•We reduce the minimum cost constrained input selection (minCCIS)
problem, to a bipartite matching problem with utility maximization
(BMUM) in polynomial time (Algorithm 4.1).
•We prove that an optimum solution to the BMUM problem obtained
after reduction gives an optimum solution to the minCCIS problem
(Theorem 4.1).
• We propose a randomized algorithm based on MCMC to solve the
BMUM formulation of the minCCIS problem (Algorithm 5.1).
• We prove that the proposed randomized algorithm gives an optimal
solution to the minCCIS problem in O(n2.5)+Poly(n, log n), where
n is the number of states and Poly(n, log n) is a polynomial in n and
log(n) (Theorem 5.4).

The organization of this paper is as follows: Section 2 is devoted for
problem formulation. Graphical representation of structured systems
and few existing results is detailed in Section 3. Section 4 explains
the bipartite matching problem with utility maximization and the
reduction of the constrained minimum input problems to a matching
problem with utility maximization. Section 5 presents a randomized
algorithm based on MCMC for solving the minCCIS problem.
Section 6 discusses simulation results conducted for checking the
convergence of the proposed method. Finally, Section 7 gives the
concluding remarks.

2. PROBLEM FORMULATION

Consider the state space representation of an LTI system, ẋ(t) =
Ax(t) + Bu(t), where A ∈ Rn×n and B ∈ Rn×m denote the state
matrix and the input matrix respectively. The structured matrices,
Ā ∈ {0,?}n×n and B̄ ∈ {0,?}n×m, corresponding to the system matri-
ces A and B are defined as

Ai j = 0 whenever Āi j = 0, and

Bi j = 0 whenever B̄i j = 0. (1)

Here, 0’s in Ā and B̄ fixes the corresponding entries in A and B
matrices as zeros and ? denotes a free independent parameter entry
in those locations. In short, the sparsity pattern of (A,B) and (Ā, B̄)
pairs are the same and hence (Ā, B̄) represents an equivalence class
of systems. A pair (Ā, B̄) that satisfies equation (1) is referred as

1A digraph is said to be irreducible if there exists a directed path between
any two arbitrary nodes in it.
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the structured system representation of the system with numerical
realization (A,B). The strength of structural controllability is that it
is a generic property. Thus, structural controllability implies control-
lability of “almost all” pairs of (A,B) which has the same structure
as (Ā, B̄) [10]. Before formulating the problem formally, we define
structural controllability.

Definition 2.1. [10] The pair (Ā, B̄) is said to be structurally con-
trollable if there exists at least one controllable numerical realization
(A,B) with the structure specified by Ā and B̄.

Consider W ⊆ {1, . . . ,m} and let B̄W be the restriction
of B̄ to columns only in W . Furthermore, let K = {W :
(Ā, B̄W ) is structurally controllable}. Thus K is the set of all feasible
solutions to the optimization problem addressed in this paper. Note
that the set K is non-empty. This is because if W = {1, . . . ,m},
(Ā, B̄W ) = (Ā, B̄) is structurally controllable. The minimum cost
constrained input selection problem (minCCIS) is posed as: given
structurally controllable (Ā, B̄) and cu, a vector where every entry
cu( j), j = 1,2, . . . ,m, indicates the cost of actuating input u j, the
minCCIS problem consists of finding a minimum cost input selection
in B̄ such that the system is structurally controllable.

Problem 2.2. Given structurally controllable (Ā, B̄) and cu( j), j =
1,2, . . . ,m, find I? ∈ arg min

I∈K
∑ j∈I cu( j).

If the costs are non-zero and uniform, then minCCIS solves
minimum cardinality input selection from a constrained input set for
structural controllability, referred as the minCIS problem [8]. We
analyze and solve only Problem 2.2 here. The proposed analysis and
results directly apply to minCIS also.

Remark 2.3. Note that our results can be generalized to any cost
function cu :K→ R that can be computed in O(Poly(n)).

The minCIS problem is shown to be NP-hard [8] and hence
minCCIS is also NP-hard. Our approach here is to provide an efficient
technique based on randomized algorithms for solving miCCIS prob-
lem. To this end, we formulate Problem 2.2 as a bipartite matching2

problem on a system specific bipartite graph, where the objective is
to maximize a utility function associated with the matchings in it.
The construction of this bipartite graph is elaborated in Section 4.
Before discussing bipartite matching formulations of these problems,
we give few graph theoretic concepts and some constructions used
in the sequel in the section below.

3. GRAPHICAL REPRESENTATION OF STRUCTURED SYSTEMS

In this section, we define few graph theoretic terminologies as-
sociated with the structured system (Ā, B̄). Given a structured state
matrix Ā, the digraph representation D(Ā) is a triple consisting of a
vertex set VX , an edge set EX , and a function assigning each edge
an ordered pair of vertices. The set VX called as the state nodes
is defined as VX := {x1,x2, . . . ,xn} and the edge set is defined as
(x j,xi) ∈ EX if Āi j = ?. Similarly, the system digraph representation
of (Ā, B̄) is denoted as D(Ā, B̄) := (VX ∪VU ,EX ∪ EU ), where the
vertex set VU := {u1, . . . ,um} are the input nodes. The edge set of
D(Ā, B̄) is the union of edge sets EX and EU , where (u j,xi) ∈ EU
if B̄i j = ?. Further, the input u j is said to be assigned to a state
variable xi if B̄i j = ?. Thus the digraphs D(Ā) and D(Ā, B̄) captures
the influences of states and inputs on the dynamics of each state.
Using the digraphs constructed here a graph theoretic condition for

2A bipartite graph GB = ((V1∪V2),EB) is a graph satisfying V1∩V2 = /0 and
EB ⊆V1×V2. A matching is a set of edges such that no two edges share the
same end point. For a bipartite graph GB = ((V1∪V2),EB), a perfect matching
is a matching whose cardinality is equal to min(|V1|, |V2|).

checking structural controllability of structured systems exists which
requires understanding of two concepts, i.e., accessibility and dilation,
elaborated below.

In a digraph, a vertex vi is said to be reachable from another vertex
v j if there exists a directed path from v j to vi. A state node xi, for
i = 1,2, . . . ,n, is said to be inaccessible if node xi is not reachable
from any input vertex. More precisely, an inaccessible node is one
which cannot be influenced by an input. On the other hand, a digraph
D(Ā, B̄) is said to have a dilation, if given a set of nodes S ⊂ VX ,
the neighbourhood node set of S, T (S) has fewer nodes than S. Here
xi ∈ T (S), if there exist a directed edge from xi to a node in S and
ui ∈ T (S), if there exist a directed edge from ui to a node in S.
Notice that S⊆VX and T (S)⊆VX ∪VU . Lin proved a necessary and
sufficient condition for structural controllability using the concepts
of accessibility and dilation.

Proposition 3.1. [11] The system (A,B) is structurally controllable,
if and only if the digraph associated with it, i.e., D(Ā, B̄) has no
inaccessible nodes and no dilations.

Accessibility crucially depends on the connectivity of the graph.
A digraph D is said to be strongly connected if for each pair of
ordered vertices vi,v j, there exists an elementary path from vi to v j.
If a digraph is strongly connected, then it is said to be an irreducible
digraph. A subgraph of a graph G=(VG,EG) is a graph H =(VH ,EH)
such that VH ⊆VG and EH ⊆ EG and the assignment of the endpoints
to edges in H is the same as in G. A maximal strongly connected
subgraph is a subgraph that is strongly connected and is not properly
contained in any other subgraph that is strongly connected. Using
these the following definition holds.

Definition 3.2. [12] A strongly connected component (SCC) of a
digraph D is a maximal strongly connected subgraph of D.

By condensing each SCC in D(Ā) as a supernode, we generate a
directed acyclic graph (DAG) in which each super node corresponds
to a single SCC and a directed edge exists between two SCCs if
and only if there exists a directed edge connecting vertices in the
respective SCCs in the original digraph. A characterization of the
SCCs in the digraph D(Ā) is given in Definition 3.3.

Definition 3.3. An SCC is said to be non-top linked if it has no
incoming edges to its vertices from the vertices of another SCC.

By composing the input nodes on the DAG formed by condensing
the SCCs of D(Ā), accessibility of D(Ā, B̄) can be verified. All state
nodes in D(Ā, B̄) are said to be accessible if and only if all non-
top linked SCCs in D(Ā) are input accessible. Given a digraph D =
(VD,ED), the SCCs and the DAG associated with it can be obtained
in O(|VD|+ |ED|) computations [12]. Thus accessibility of a system
can be verified in polynomial number of computations. In order to
analyze the dilation condition, there exists an equivalent bipartite
graph matching condition. For this the state and the system bipartite
graphs B(Ā) and B(Ā, B̄) are constructed as follows: the bipartite
graph B(Ā) is constructed with vertex set (VX ′ ∪VX ) and edge set
EX , where VX = {x1,x2, . . . ,xn}, VX ′ = {x′1,x′2, . . . ,x′n} and (x′j,xi) ∈
EX ⇔ (xi,x j) ∈ EX . Similarly, the system bipartite graph B(Ā, B̄) is
constructed with vertex set (VX ′ ∪ (VX ∪VU )) and edge set EX ∪EU .
Here, VU = {u1,u2, . . . ,um} and (x′j,ui) ∈ EU ⇔ (ui,x j) ∈ EU . Using
B(Ā, B̄) the following result holds.

Proposition 3.4 (Theorem 2, [4]). A digraph D(Ā, B̄) has no
dilations if and only if the bipartite graph B(Ā, B̄) has a perfect
matching.

Taken together, the structured system (Ā, B̄) is said to be struc-
turally controllable if and only if all non-top linked SCCs are
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Ā =

? ? 0 0 0
0 ? 0 0 0
? ? 0 ? ?
0 0 0 ? 0
0 0 ? 0 0

 , B̄ =

? 0 ?
0 ? ?
0 ? 0
0 0 ?
0 0 0


(a) System (Ā, B̄)

x1
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x3

x4x5

(b) D(Ā)

x1

x2

x3

x4x5

u1

u2

u3

(c) D(Ā, B̄)

Figure 1: The state digraph and system digraph representation of the
structured system (Ā, B̄) given in Figure 1a are shown in Figure 1b and
Figure 1c respectively.
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(a) B(Ā)
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VX ′ VX ∪VU

(b) B(Ā, B̄)

Figure 2: The bipar-
tite graphs B(Ā) and
B(Ā, B̄) of the struc-
tured system (Ā, B̄)
given in Figure 1a.

input accessible and there exists a perfect matching in B(Ā, B̄).
An illustrative example demonstrating the construction of the di-
graphs associated with a structured system is given in Figure 1.
In the example given in Figure 1, there are four SCCs listed as:
C1 = {x1},C2 = {x2},C3 = {x3,x5} and C4 = {x4}. The non-top
linked SCCs are N1 = {x2} and N2 = {x4}. Figure 2 illustrates
the bipartite graph construction for this structured system. Next, we
reduce the minCCIS problem to a bipartite matching problem with
utility maximization.

4. BIPARTITE MATCHING REPRESENTATION OF MINCCIS

In this section, we first brief about bipartite matching problem with
utility maximization (BMUM). Then, we detail a polynomial time
reduction of the minCCIS problem to an instance of the BMUM
problem. On obtaining a solution to the matching problem we show
how to translate it back to the corresponding solution of the minCCIS
problem. We also prove that an optimum solution of the matching
problem when translated back corresponds to an optimum solution of
the minCCIS problem. Thus, any algorithm that solves the BMUM
problem also solves the minCCIS problem. The BMUM problem is
described below.

A. Bipartite Matching with Utility Maximization

Consider a complete3 bipartite graph G = ((V1 ∪V2),L), where
|V1|= n1, |V2|= n2 and (i, j)∈ L for every i∈V1 and j ∈V2. Without
loss of generality, let n1 6 n2. A matching is a set of edges, M ⊆ L
such that no two edges share a common node, i.e., degree of each
node in M is one. A perfect matching M in the bipartite graph G =
((V1 ∪V2),L) is a matching such that |M| = min(|V1|, |V2|). For a
complete graph G, a perfect matching M exists and |M|= n1, since
n1 6 n2. Let Ω denote the set of all perfect matchings in G and
let U : Ω→ R be a real valued function. Note that |Ω| = O(nn1

2 ).
The function U can be thought as assigning utility to each perfect
matching and the aim is to find a perfect matching M?, where M? ∈
arg max

M∈Ω
U(M).

Even though there is no specific structure imposed on U(·), we
assume that given any perfect matching M, U(M) can be computed

3A bipartite graph G = ((V1∪V2),L) is said to be complete if L =V1×V2,
i.e., all left side nodes have an edge to all the right side nodes in the graph.

Algorithm 4.1 Pseudo-code for reducing minCCIS to bipartite match-
ing with utility maximization

Input: Structured matrices Ā ∈ {0,?}n×n, B̄ ∈ {0,?}n×m and cost
vector cu ∈ Rm

Output: Bipartite graph GB = ((V,Ṽ ),E) and utility function U(·)
1: Initialize set Bi = φ , for i = 1, . . . ,m
2: Find the non-top linked SCCs in D(Ā), N = {Ni}q

i=1
3: B j←{Ni : B̄r, j = ?, and xr ∈Ni}, for j = 1, . . . ,m
4: Construct bipartite graph GB = ((V,Ṽ ),E), where V =
{S1,S2, . . . ,Sm} and Ṽ = {z1,z2, . . . ,z2m} and E =V ×Ṽ

5: Find a perfect matching in GB, say M
6: Inputs selected under M, I(M)←{ j : (S j,zi) ∈M, i > m}
7: Define S̃(M)←

⋃
j∈I(M)B j

8: if N ⊆ S̃(M) and B(Ā, B̄I(M)) has a perfect matching then
9: U(M) = ∑

j∈{1,2,...,m}
cu( j)− ∑

i∈I(M)

cu(i)

10: else
11: U(M) =−κ

12: end if

in time polynomial in the input size. However, since cardinality
of the set of perfect matchings (Ω) is huge, finding one with
maximum utility using some exhaustive search based technique is
not computationally efficient. Further, U(·) is a global function (since
it depends on the matching and not on individual edges) and hence
it cannot be captured as edge weights, which excludes the option of
using minimum weight matching matching algorithm to solve this. In
this paper, we use a randomized algorithm. In the next subsection, we
reduce the minCCIS problem to an instance of the BMUM problem.

B. Polynomial Time Reduction of the minCCIS Problem to the
BMUM Problem

This section describes a reduction of the minCCIS problem to
an instance of the BMUM problem in polynomial time. Further,
we also show that an optimal solution to the BMUM problem
obtained after the reduction procedure, when translated back gives an
optimal solution to the minCCIS problem. In the BMUM problem
constructed, every perfect matching corresponds to an input selection.
Here, the utility must be defined in such a way that an optimum
matching is one that gives a minimum cost input selection over all
possible input selections that make Ā controllable with the selected
inputs. The pseudo-code for reducing the minCCIS problem to an
instance of the BMUM problem is given in Algorithm 4.1.

Given an instance of the minCCIS problem, we reduce it to a
BMUM problem using Algorithm 4.1. The steps in Algorithm 4.1
are elaborated here. Consider a structured system (Ā, B̄) and a cost
vector cu. Let N = {N1, . . . ,Nq} denote the set of the non-top linked
SCCs in D(Ā). Thus for achieving accessibility of D(Ā, B̄), all these
SCCs must be input accessible. Now we define a set consisting of
elements {B j}m

j=1. Element B j corresponds to the jth input and B j
consists of all those non-top linked SCCs in D(Ā) that have a directed
path from input u j. More precisely, those non-top linked SCCs which
have at least one node in it reachable from u j belong to the set B j
(Step 3). Next we construct the bipartite graph GB. The vertex set
of GB is (V ∪ Ṽ ), where V = {S1, . . . ,Sm} and Ṽ = {z1, . . . ,z2m}.
Here vertex set V is a representative of inputs in B̄ and vertex set Ṽ
has no additional connection to the structured system except that its
cardinality is twice the number of inputs in the system, i.e., |Ṽ |= 2m.
Further, GB is a complete bipartite graph and hence all vertices in V
are connected to all vertices in Ṽ .
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Let M denote a perfect matching in GB. Each perfect matching in
GB is an input selection and we describe here how the selection is
made. Since |V | = m and |Ṽ | = 2m, |M| = m. Thus only m nodes
in the set Ṽ are matched in M. Associated with M, the input set
selected is defined as I(M) as shown in Step 6. Indices of all Si’s
that are matched in M to nodes in the set {zm+1, . . . ,z2m} are included
in I(M). In other words, matched nodes in Ṽ whose indices are
greater that m results in the selection of some inputs. A set S̃(M)

is defined as shown in Step 7. Here S̃(M) consists of all non-top
linked SCCs that are input accessible in the input selection I(M).
The utility of the matching M is defined as follows: if the input
selection I(M) results in a controllable input selection, then a utility
is assigned to matching M taking into consideration the costs of the
inputs in I(M). However, if the input selection I(M) results in an
uncontrollable input set, then a large negative value is assigned as
the utility of the matching M. To assign utility, we need to check
the two conditions for structural controllability corresponding to the
input selection obtained. Accessibility is guaranteed if N ⊆ S̃(M)
and no-dilation is guaranteed if B(Ā, B̄I(M)) has a perfect matching.
If both these conditions are satisfied, then the utility of M, U(M) =

∑
j∈{1,2,...,m}

cu( j)− ∑
i∈I(M)

cu(i) (Step 9). The utility is maximum if a

minimum cost input set satisfies both the accessibility and the no-
dilation conditions. However, if the system is not controllable for the
input selection I(M), then U(M) =−κ , where κ is a large positive
value (Step 11). The output of Algorithm 4.1 is the bipartite graph
GB and the utility function U(·).

The theorem below proves that an optimal solution to the BMUM
problem constructed for a structured system gives an optimal solution
to the minCCIS problem.

Theorem 4.1. Consider a structured system (Ā, B̄) and input cost
vector cu. An optimal solution to the bipartite matching problem
with global utility maximization on the bipartite graph GB and utility
function U(·) constructed using Algorithm 4.1 for (Ā, B̄) gives an
optimal solution to the minCCIS problem.

Proof. Let M? be an optimal solution to the bipartite matching
problem with utility maximization (BMUM). Then, U(M?)> 0. This
is because there exists a perfect matching in GB whose utility is
not −κ . For example M = {(Si,z j) : i = 1, . . . ,m and j = i + m}
satisfies U(M) = 0. Note that, M ∈Ω, since GB is a complete graph.
Thus U(M?) > 0. Hence from Step 8 of Algorithm 4.1, I(M?) is
an input selection such that (Ā, B̄I(M?)) is structurally controllable.
Thus I(M?) ∈ K. Now we need to show that I(M?) is an optimal
solution to the minCCIS problem. We prove this using a contradiction
argument. Suppose that M? is an optimal matching of the BMUM
problem, but I(M?) is not an optimal solution to the minCCIS
problem. Then there exists I ′ ⊆ {1, . . . ,m} such that (Ā, B̄I ′) is
structurally controllable and ∑i∈I ′ cu(i)< ∑i∈I(M?) cu(i). Thus

−∑
i∈I ′

cu(i) > − ∑
i∈I(M?)

cu(i),

∑
j∈{1,2,...,m}

cu( j)− ∑
i∈I ′

cu(i) > ∑
j∈{1,2,...,m}

cu( j)− ∑
i∈I(M?)

cu(i),

∑
j∈{1,2,...,m}

cu( j)− ∑
i∈I ′

cu(i) > U(M?). (2)

Since GB is a complete graph, there exists a matching M′ = {(Si,z j) :
j ∈ I ′}. Let us define I(M′) := I ′. We know U(M?)> 0. Then from
equation (2), ∑ j∈{1,2,...,m} cu( j)−∑i∈I(M′) cu(i) =U(M′)> 0. Hence,
M′ is a perfect matching in GB and U(M′)> U(M?). This contradicts
the assumption that M? is an optimum matching in GB with respect
to the utility function U(·). This completes the proof.

Thus using an optimal solution to the BMUM problem one can
obtain an optimal solution to the minCCIS problem. The complexity
of Algorithm 4.1 is given below.

Theorem 4.2. Consider a structured system (Ā, B̄) and an input cost
vector cu. Then, Algorithm 4.1 reduces the minCCIS problem to an
instance of the BMUM problem in complexity O(n2), where n denotes
the number of states in the system. Also, finding utility for a matching
in this bipartite graph involves O(n2.5) computations. Further, an
optimal solution to the minCCIS problem can be obtained from an
optimal solution to the BMUM problem in O(n) computations.

Proof. Given Ā, finding the SCCs of the digraph D(Ā) has complex-
ity O(|VX |+ |EX |), where |VX | and |EX | denote the number of nodes
and edges in D(Ā) respectively. Here, |VX | = n, |EX | = O(n2) and
m 6 n. Given the set of SCCs in D(Ā), the set of non-top linked
SCCs, N , can be found in O(n) computations. Given the set of
non-top linked SCCs, the computation required for finding each of
the B j’s in Step 3 is O(n). Thus, constructing the bipartite graph
GB = ((V,Ṽ ),E) and the set {Bi}m

i=1 has O(n2) computations. Now,
we calculate the complexity involved in calculating utility. Finding a
perfect matching involves O(n2.5) operations. Given a matching M,
finding sets I(M) and S̃(M) has complexity O(m). For a feasible M,
U(M) can be calculated in O(m) operations. Thus, utility calculation
has complexity O(n2.5).

Let M? = {(Si,z j) : i ∈ {1, . . . ,m} and j ∈ {1, . . .2m}} be an opti-
mal solution to the BMUM problem. Then complexity of finding an
optimal solution, I(M?) = {i : (Si,z j) ∈M?, j > m}, to the minCCIS
problem is O(m). Thus an optimal solution to the minCCIS problem
can be obtained in O(n) computations from an optimal solution of
the BMUM problem.

From the above results, given an efficient scheme to solve the
BMUM problem, one can solve the minCCIS problem efficiently.
However, the BMUM problem is an NP-hard problem [13, Theo-
rem 2.1]. In the section below, we propose a randomized algorithm
based on MCMC technique to solve the minCCIS problem using its
BMUM formulation.

5. RANDOMIZED ALGORITHM FOR SOLVING THE MINCCIS
PROBLEM

This section discusses a randomized algorithm based on MCMC
for solving the minCCIS problem using the BMUM problem formula-
tion of the bipartite graph GB constructed using Algorithm 4.1. Given
a problem instance of minCCIS, the BMUM formulation is obtained
first using Algorithm 4.1. The input to the randomized algorithm is
the bipartite graph GB and the utility function U obtained as output
of Algorithm 4.1.

The pseudo-code for the randomized algorithm is presented in
Algorithm 5.1. Here Ω is the set of all perfect matchings in GB.
We start with a random perfect matching from Ω, say M0. We run
the algorithm for T steps. In step t, we randomly choose a perfect
matching Mt ∈ Ω where the choice distribution depends on Mt−1.
Select Si ∈ V and z j ∈ Ṽ uniformly at random. Note that since
m < 2m, in any perfect matching node Si is always matched to some
node in Ṽ . As for z j, there are three possibilities: (a) z j is matched
to Si, i.e. the edge (Si,z j) is already a part of the matching Mt−1.
(b) z j is not matched, and (Si,zk) is a part of the matching Mt−1 for
some zk ∈ Ṽ . (c) z j is matched to Sr, i.e. (Si,zk) and (Sr,z j) both
belong to Mt−1. In each of the possible cases, we do the following:
In case (a), we do nothing and retain the same matching as before.
Thus, Mt = Mt−1 in this case. In case (b), we construct a perfect
matching M̃t by removing edge (Si,zk) and then adding the edge
(Si,z j) to Mt−1. Similarly in case (c), we construct M̃t by removing
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Algorithm 5.1 Pseudo-code for the proposed algorithm

Input: Bipartite graph GB = ((V ∪Ṽ ,E), where |V |= m, |Ṽ |= 2m
Output: Matching MT

1: Initialize V = {S1, · · · ,Sm} and Ṽ = {z1, · · · ,z2m}, step t = 0
2: Start with a random complete matching, say M0
3: while t 6 T do
4: Select nodes Si ∈V and z j ∈ Ṽ uniformly at random
5: if (Si,z j) ∈Mt then
6: M̃t+1←Mt
7: else if (Si,zk) ∈Mt and z j is unmatched then
8: M̃t+1← (Mt ∪{(Si,z j)})\{(Si,zk)}
9: else if (Si,zk) ∈Mt and (Sr,z j) ∈Mt then

10: M̃t+1← (Mt ∪{(Si,z j),(Sr,zk)})\{(Si,zk),(Sr,z j)}
11: end if
12: Calculate U(M̃t+1)

13: prob = min{1,eβ (U(M̃t+1)−U(Mt ))}
14: Mt+1← M̃t+1 w.p. prob and Mt+1←Mt otherwise
15: t← t +1
16: end while

edges (Si,zk) and (Sr,z j), and adding edges (Si,z j) and (Sr,zk) to
Mt−1. Note that these operations are possible since GB is a complete
graph. Once the matching M̃t is constructed, we compute U(M̃t). If
U(M̃t)>U(Mt−1), then we let Mt = M̃t ; otherwise we only accept M̃t
as a new choice with probability exp{β (U(M̃t)−U(Mt−1))}, where
β is a constant. Note that in each iteration of the proposed algorithm,
we randomly pick a matching from the neighborhood of the current
one, and propose to use it. If the chosen matching has equal or more
utility than that of the current one, then we accept it as a new one,
else we accept it only probabilistically with probability depending
on the utility of the proposed and the current matching. Specifically,
closer the utility of the proposed matching to that of the existing one,
higher is the probability of accepting the proposed matching.

Fix parameter β <∞. Let Zβ

t be a random variable that denotes the
matching used by the proposed algorithm in t th iteration for the given
β . Consider the discrete time stochastic process M(β ) = {Zβ

t }t>0.
For the Markov chain M(β ), with state space Ω, constructed above
the following result holds.

Lemma 5.1. Consider a structured system (Ā, B̄) and input cost
vector cu. Let M(β ) denote the Markov chain corresponding to the
bipartite graph GB constructed using Algorithm 4.1. Then, for β <∞,
M(β ) is a discrete time Markov chain (DTMC). Further, M(β ) is
aperiodic and irreducible.

Proof. Consider the discrete time stochastic process {Zβ

t }t>0, where
Zβ

t is a random variable that denotes the matching used by Algorithm
5.1 in t th iteration. The sequence Zβ

0 ,Z
β

1 , · · · is a random sequence
as the chain M(β ) progress through the state space Ω. From the
transition definition given in Algorithm 5.1 (Steps 4-11) it is clear
that the state at the (t + 1)th instant, Zβ

t+1, depends only on the
previous state Zβ

t . That is, P (Zβ

t+1|Z
β

0 ,Z
β

1 , · · · ,Z
β

t ) = P (Zβ

t+1|Z
β

t ).
Thus M(β ) is a Discrete Time Markov Chain (DTMC) on Ω.

In order to prove M(β ) is irreducible, we need to show that any
arbitrary state F in the chain can be reached from any arbitrary state I
in the chain. The chain is constructed in such a way that between any
two states in it there exists a positive probability for state transition
(Steps 13-14 of Algorithm 5.1). Thus it is irreducible. The aperiodic
proof is also straight forward. Since all states in the chain have a
positive probability of remaining in the same state in the next step,

the chain is aperiodic. Thus the chain M(β ) is a DTMC which is
irreducible and aperiodic.

For a given β , let P(β ) = [PM′M(β )]M,M′∈Ω denote the transition
probability matrix on the DTMC M(β ). Since the state space of
the MCMC is finite, i.e., |Ω| is finite, Lemma 5.1 concludes that
M(β ) is a positive recurrent chain and hence it admits the steady
state distribution, say πππ(β ) = [πM(β )]M∈Ω. The DTMC M(β ) is
said to be reversible if for any two adjacent states M1 and M2 in
Ω, πM1(β )PM1M2(β ) = πM2(β )PM2M1(β ). Now, we characterize the
steady state distribution.

Lemma 5.2. Fix any β < ∞. The DTMC M(β ) is time reversible
and for every M ∈Ω, πM(β ) =

exp{βU(M)}
∑M′∈Ω exp{βU(M′)} .

Proof. Every entry Pi j(β ) of the probability transition matrix P(β )
is given by Pi j(β ) =

1
m×2m ai j(β ), where m and 2m are the number

of nodes in the respective sets of the bipartite graph and ai j(β ) is
the acceptance probability from state i to state j respectively.
Using ai j(β ) = min {1,exp{β (U( j)−U(i))}}, we get

aM1M2(β ) =

{
1 if U(M2)> U(M1),

exp{β (U(M2)−U(M1))} if U(M2)< U(M1).

Now consider two cases: (a) U(M2) > U(M1) and (b) U(M2) <
U(M1). When U(M2)> U(M1),

πM1(β )PM1M2(β ) =
exp{βU(M1)}

∑M′∈Ω exp{βU(M′)} ×
1

2m2 ×1,

πM2(β )PM2M1(β ) =
exp{βU(M2)}

∑M′∈Ω exp{βU(M′)} ×
1

2m2 ×

exp{βU(M1)}
exp{βU(M2)}

,

= πM1(β )PM1M2(β ).

When U(M2)< U(M1),

πM1(β )PM1M2(β ) =
exp{βU(M1)}

∑M′∈Ω exp{βU(M′)} ×
1

2m2 ×

exp{βU(M2)}
exp{βU(M1)}

,

πM2(β )PM2M1(β ) =
exp{βU(M2)}

∑M′∈Ω exp{βU(M′)}
× 1

2m2 ×1

= πM1(β )PM1M2(β ).

Thus DTMC M(β ) is time reversible and this completes the proof
of Lemma 5.2.

Lemmas 5.1 and 5.2 thus concludes that the Markov chain M(β )
has a unique stationary distribution πππ(β ) = [πM(β )]M∈Ω, where
πM(β ) =

exp{βU(M)}
∑M′∈Ω exp{βU(M′)} . Thus the steady state distribution is the

desired one as it concentrates on points M ∈ Ω such that U(M) =

U(M?) as β → ∞. Further, since P(t)
M′M(β )→ πM(β ) as t → ∞ for

every M′ and M ∈ Ω, it should be enough to run the algorithm for
some “large enough” steps T to be able to “closely” sample from the
distribution πππ(β ). However, determining T for the required sampling
accuracy is challenging. To quantify this time, we use the following
result from [13].

Proposition 5.3. [13, Theorem 5.2] The mixing time of the Markov
chain M that has state space Ω as all possible perfect matchings of
a complete bipartite graph G = ((V1 ∪V2),L) with |V1| = n1, |V2| =
n2 and n1 6 n2 is bounded by τε 6 32n1

2 n2
2 α6 (−c+n1 log(n2)+

log(ε−1)), where α = exp{β (Umax − Umin) and c = log α , where
Umax and Umin are the maximum and the minimum values of utility.
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Using Proposition 5.3 one can obtain an optimum matching in
time polynomial in the input size with high probability. In other
words, an optimal solution can be obtained efficiently with very high
probability. Thus the following result holds.

Theorem 5.4. Consider a structured system (Ā, B̄) and an input
cost vector cu. Then, using the BMUM formulation of the minCCIS
problem, an optimum solution to the minCCIS problem can be
obtained with high probability in O(n2.5) + Poly(n, log n), where
Poly(n, log n) is a polynomial in n, log n.

Proof. Given a structured system there exists a polynomial time
reduction of complexity O(n2.5) that reduces the minCCIS problem to
an instance of the BMUM problem (Theorem 4.2). Let GB denotes the
bipartite graph constructed and let U be the utility function obtained
using Algorithm 4.1. Let M? be an optimum matching of the BMUM
problem on GB and U . By Theorem 4.1 an optimum solution to the
BMUM problem gives an optimum solution to the minCCIS problem.
In addition, by Proposition 5.3, the Markov chainM(β ) constructed
for finding an optimum matching in the bipartite graph GB is rapid
mixing. Thus the complexity involved in solving the BMUM problem
is Poly(n, log n), where Poly(n, log n) is a polynomial in n, log n.
Thus, an optimum solution to the minCCIS problem can be obtained
with high probability in time O(n2.5)+Poly(n, log n).

Remark 5.5. By duality between controllability and observability in
LTI systems, all the results in this paper are directly applicable to the
minimum cost constrained output selection problem, which consists
of selecting a minimum cost output set from a given structured
output matrix C̄ and a output cost vector cy that ensures structural
observability of a given Ā.

6. SIMULATION RESULTS

We conducted simulations for finding a minimum cost set of inputs
required to make a structured system controllable using the proposed
MCMC based method. The input to the experiment is a structured
system (Ā, B̄), where Ā ∈ {0,?}500×500 and B̄ ∈ {0,?}500×50. The
cost vector considered has uniform and non-zero, i.e., cu = [1, . . . ,1]T .
Thus GB is a complete bipartite graph with 50 nodes on one side and
100 nodes on the other side. The MCMC is run from 100 different
initial conditions and the utility is averaged over 100.

The utility of a perfect matching M is U(M) =∑ j∈{1,2,...,m} cu( j)−
∑i∈I(M) cu(i), where m is the number of inputs (which is 50 here)
and I(M) = { j : (S j,yi) ∈ M, i > m} is the set of selected inputs
under matching M. If the matching is not feasible we give utility
as −100. The minimum and maximum utilities associated with a
feasible matching are 0 and 49 respectively. U(M)= 0, corresponds to
a matching where all inputs are selected and U(M) = 49 corresponds
to the matching M where exactly one input is selected to make
the system controllable. U(M) = 50, is not possible, since atleast
one input should be selected. Figure 3 shows the convergence of
the algorithm to the optimum utility with respect to the number of
iterations. This plot is obtained by running MCMC from 100 different
initial conditions and averaging it.

The plot shows that the proposed scheme converges to optimum
solution it a very less time and hence is a promising scheme for
solving the minCCIS problem in large-scale systems with large
system dimensions.

7. CONCLUSION

This paper deals minimum cost constrained input selection (minC-
CIS) for structural controllability of large complex systems. Con-
straints are imposed on the input structure and each input is associated

with a cost. The objective is to find a minimum cost input selection
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Figure 3: Plot showing convergence of MCMC for minCIS.

that achieves structural controllability. Since the problem is NP-
hard, we reduced it to a bipartite graph matching problem with a
global utility maximization (BMUM) (Algorithm 4.1) in polynomial
time complexity. We also proved that an optimum solution of
the BMUM problem gives an optimum solution to the minCCIS
problem (Theorem 4.1). Since the BMUM problem is NP-hard, we
proposed a randomized algorithm based on MCMC technique to solve
the BMUM formulation of the minCCIS problem. The constructed
discrete time Markov chain is shown to be irreducible, aperiodic and
accommodates a unique stationary distribution that maximizes the
utility function. It is shown in [13] that the chain constructed here is
rapid mixing. Hence an optimal solution to the minCCIS problem can
be obtained in polynomial time with high probability. In other words,
using the randomized MCMC based scheme proposed here a solution
to the minCIS and the minCCIS problems can be obtained in time
polynomial in n, where n is the number of states in the structured
system.
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