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Abstract: This paper studies optimal input port selection for simple undirected graphs with an objective
to control the graph externally with least amount of supplied energy. Given a graph with n-nodes, we
address the problem of selecting k out of these for external input with this minimization objective. We
formulate a resistive-capacitive (RC) network analogy of such single integrator multiagent networks,
allowing us to consider the given problem as that of optimal selection of the input ports w.r.t. the energy
required for charging/discharging of the RC circuit. We set up a link between these optimal port locations
and values in the Fiedler vector of the corresponding graph Laplacian matrix L and other eigenvectors
of L. This paper contains new results involving passivity, Hamiltonian matrix and the Algebraic Riccati
equation in the context of RC networks associated with such graphs. We link this formulation to optimal
node(s) identification for optimal external communication with a multi-agent network of single integrator
systems.
Keywords: Multi-agent systems, algebraic Riccati equation, graph-Laplacian

1. INTRODUCTION

Often in a connected network of multiagent systems, it is es-
sential to communicate with one or more agents (from an ex-
ternal source) and these communicated agents are then able
to communicate within the network. In such a problem, it is
important to be able to identify which node to communicate to
from the external source. The objective being that least amount
of communication energy is utilized in this communication. The
connectivity of a graph and the ‘central node’ (with respect to a
suitable notion of centrality) would appear to play a key role
and this paper investigates if there is a relation between the
algebraic connectivity, component values of Fiedler vector, and
other eigenvectors of the graph Laplacian, and the port that is
best with respect to energy needed to achieve an objective: for
example, consensus, or other formations, or an average over all
formations.

This paper makes the above problem concrete by associating a
resistor-capacitor (RC) network with a given undirected graph
and this corresponds to a network of multi-agents with each
agent modelled as a single-integrator. Our work also applies
to more general diffusion problems where the interaction with
neighbours can be viewed as diffusion of heat or information.
This is made precise in the problem formulation section below.

The paper is organized as follows. The next section elaborates
on the problem formulation and a summary of related work in
the literature. Section 3 contains preliminaries that are essential
for stating the main results, which are stated in Section 4. We
elaborate on some examples of graphs in Section 5; this section
also contains some key inferences between graph Laplacian
eigenvector properties and optimal port locations for charg-
ing/discharging. The proofs of the main results are pursued in

Section 6. Some concluding remarks are summarized in Sec-
tion 7. The rest of this section contains notation.

The set R stands for the field of real numbers, and Rn stands for
n-tuples, stacked as a column vector. Vector norm considered in
this paper is the standard Euclidean 2-norm. The unit-sphere in
Rn consists of all vectors of unit 2-norm, and this set is denoted
by Sn−1.

2. PROBLEM FORMULATION AND RELATED WORK

In this paper we study the effect of charging and discharging pat-
terns for the single integrator network on selection of input ports
and the performance is compared with the algebraic graph the-
oretic properties of the corresponding structure. This problem
is linked to optimal actuator placement in multi-agent systems,
where each agent corresponds to a node in the network and the
input corresponds to energy given to control node potentials.

Optimality of port placement is loosely linked with placement
of one port at the ‘central node’: the notion of centrality defined
appropriately. We use energy as the parameter such as maximum
energy that can be extracted from the system or, analogously,
minimum energy that has to be provided to the system to reach
a desired state. This is obtained using extremal solutions of the
ARE: Kmax and Kmin; more about this is reviewed in Section 6.
We relate the ARE solution based optimal port locations with
graph properties of the system like eigenvectors of the graph-
Laplacian and graph-centrality.

Three types of optimization play a central role in this paper:
we summarize these here, while Sections 3 and 6 contain more
about this. The first two types have been addressed in various
papers: these two optimization play a role in the third one: that
being the focus of this paper.



(1) [Optimize over trajectories] Given a state vector a ∈ Rn,
minimize the energy supplied to the system, over all input
trajectories that take the state to a. Analogously, maximiz-
ing the energy extracted across all trajectories that start
from a state-vector a. This gives rise to Algebraic Riccati
Equation solutions: Kmin and Kmax; see equation (9).

(2) [Optimize over directions in Rn] Given a state space sys-
tem, across all vectors a ∈ Sn−1 (the unit sphere in Rn),
consider the vector that needs most energy for charging to
reach this vector: this corresponds to the eigenvector cor-
responding to maximum eigenvalue λmax(Kmax) defined
in equation (9): call this vector as the ‘hardest’ direction.
Similarly, λmin(Kmax) and the corresponding eigenvector
is the direction ‘easiest’ to charge. The eigenvectors corre-
sponding to maximum and minimum eigenvalues of Kmin
are interpreted as ‘easiest’ and ‘hardest’ to discharge. It
is well-known that the trace (scaled by n) of a symmetric
and positive semidefinite matrix K is the average of the
quantity aT Ka for a ∈ Sn−1: see [11], for example.

(3) [Optimize over input-port(s)] Given a graph Gn with n
vertices, and a fixed number of input-ports p with p < n,
identifying the optimal location of the p ports such that an
appropriate measure is minimized: this measure can be any
of

λmax(Kmax),λmin(Kmax), trace(Kmax),
λmax(Kmin),λmin(Kmin), or trace(Kmin).

(1)

As mentioned above, the third one above is the focus of
this paper, but this third one builds on existing results for
the earlier two. For easier reference, these parameters with
a brief meaning are summarized in Table 2.

In the context of multi-agent systems, a special role is played
by the vector 1̃ defined as the vector with all components equal
to one: we call this consensus. In order to be able to compare
with other quantities (like eigenvalues of symmetric matrices),
we consider 1̃: but after normalizing it to unit 2-norm. Define
1 as the vector in Rn with all components positive and equal
and having unit 2-norm. In addition to the quantities listed in
equation (1), 1T Kmax1 and 1T Kmin1 also play a role. Using the
fact that Kmin and Kmax are symmetric and positive semidefinite
matrices, and using Courant-Fischer-Weyl min-max theorem,
we have

λmin(Kmax)6 1
T Kmax16 λmax(Kmax).

Thus, while energy to reach consensus is an important measure
to optimize, energy for worst case scenario λmax(Kmax), and
average energy (trace(Kmax) (averaged over Sn−1) are important
too. For ease of reference, the various quantities are summarized
in Table 2.

Optimization in port/actuator placement has been of interest in
other papers too: amongst them, we list here the ones relatively
more relevant to our work. Minimal actuator placement for
minimum control effort to achieve a given state transfer has
been presented in [19]: here the authors consider a bound on the
control-effort and, further, the notion of energy is different from
uT y, as used in our paper: the controllability Gramian turns out
to play a key role there. In [3], a network approximation scheme
for minimizing the global energy cost for multi-agent systems
to achieve consensus over undirected network topologies is
proposed: the focus being on distributed control and hence on
the proposed approximation and its analysis. With robustness
and response to stochastic disturbance inputs as the focus, the
problem of optimal leader selection in a multiagent network
has been studied in [15] and [9]. From a relatively more graph-
theoretic/‘generic’ view, minimum input selection with respect
to controllability of the network has been pursued in [13]

and [7]: these papers focus on generic systems results (with a
prespecified graph structure) and not on the amount of control
effort. In our paper we propose the selection of the optimal
input ports from the Fielder vector (and other eigenvectors) of
the Laplacian matrix. For a requirement where k-input ports to
be selected, we propose a way to select the best combination
of k input-ports, with ‘best’ defined using the quantities listed
in equation (1) above. The notion of power used in this paper
is uT y and this allows use of passivity results: in the context
of RC circuits constructed from graph networks, we formulate
new results regarding solutions of Algebraic Riccati Equations
(ARE) using the Laplacian matrix structure, and use these
results to link optimal port selection to Fiedler vector and
other eigenvectors of the Laplacian matrix, thus linking ARE
solutions and algebraic-graph theory.

3. PRELIMINARIES

In this section we cover preliminaries that are essential to state
the main results (in Section 4), further preliminaries are pursued
in Section 6.

3.1 The graph-Laplacian and algebraic connectivity

We deal with graphs that are undirected: this is viewed as current
flow (and more generally diffusion) allowed in both directions
along each edge. Further, we consider only simple graphs, i.e.
graphs with no self-loops. We denote the undirected graph
G(V,E), where E is the set of all edges and V is set of all vertices
with |V |= n. Though many of the results in this paper are valid
for weighted graphs, we focus on unweighted graphs; each edge
weight is assigned value 1. For the graph G (also denoted by Gn,
to indicate the number of vertices), we construct its adjacency
matrix A, which corresponds to a symmetric n×n matrix, with
the (i, j)-th entry Ai j defined as 1 if and only if there exists an
edge between ith and jth node. Since Gn does not contain any
self loops, all diagonal entries of A are zero.

For a graph Gn the Laplacian matrix L is defined as L := D−
A, where D is a diagonal matrix, with each diagonal entry
corresponding to the degree of the node. The Laplacian of an
undirected graph is a symmetric positive semidefinite matrix,
and denote its real and non-negative eigenvalues (sorted) as
follows:

0 = λn 6 λn−1 6 · · ·6 λ2 6 λ1. (2)
The second smallest eigenvalue λn−1 captures the ‘connectivity’
of this graph and called the Fiedler value, λn−1 is called the
algebraic connectivity of Gn. The eigenvector corresponding to
λn−1 is called the Fiedler vector and plays a central role in
our paper; this vector has been well studied in various graph
connectivity studies, in spectral partitioning on graphs: see [5,1],
for example.

Optimal actuator placement can be considered as identifying the
most influential node of the graph, see [2] for example. Some
of the centrality measures defined for a graph are betweenness
[10], closeness [17], eigenvector centrality, Local Fiedler Vector
Centrality (LFVC, [6]) and Laplacian centrality [16]. LFVC
and Laplacian centrality use entries in the Fiedler vector to
determine the centre of the graph: ‘node centrality’ is defined
as

node-LFVC(i) = ∑
j∈Ni

(yi− y j)
2 (3)

where yi is ith entry of Fiedler vector (normalized to length 1)
and Ni is set of neighbouring nodes of i. It is known that the node
corresponding to the smallest magnitude in the Fiedler vector



has the highest node-LFVC. Our inferences in Section 5 pursue
further along this direction using eigenvector corresponding to
λn−1 for the best single port, and more generally, eigenvector
corresponding to λn−p for the best p-ports: see Observations 5.1
and 5.2.

3.2 Undirected graphs, RC circuits and multi-agent networks

Given an undirected graph, we define an RC electrical network.
Each edge is replaced with an ‘interconnecting’ resistance rc.
Each node has a potential with respect to the ground (say, node
0): this is the voltage across a capacitor, with a parasitic resis-
tance rp; this models capacitor leakage. For ease of exposition,
we assume all capacitances as 1 F . We consider the circuit to
be charged by one or more current sources, each with a series
source resistance rs: this is connected to one or more nodes
in the graph. As an example, see graph G1 as shown in the
Figure 1a and its RC equivalent representation in Figure 1b. The
graph with input nodes, say node-3 and node-4, and analogous
RC circuit with current sources is shown in Figure 2b.

The analysis of RC networks with one or more charging input-
ports applies to a network of multi-agents, with each agent
modeled as a single integrator, and diffusion captured as a
flow across neighbouring agents. As in our work, the Laplacian
matrix (despite the leakage due to the parasitic resistance) plays
a key role in any diffusion problems arising in multi-agent
networks. The charging of the RC network using a current
source is analogous to external communication to one or more
ports: the objective is to identify one or more nodes that help
minimize external communication energy.
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Fig. 1. Graph, multi-agent network and analogous RC circuit

4. MAIN RESULTS

This section contains main results of this paper. For ease of
exposition, the theorems are stated here, while the proofs are
in Section 6.4.

4.1 State space model for RC network

The next result, though a straightforward application of circuit
theory, states that the RC circuit with input-ports constructed
from the graph (see Figure 2, for example) has a state space
with a so-called internal symmetric structure (see [18]). This
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(a) Graph G1 with two inputs (for external communication)

rs rc

rs rc

ip3

rs
ip4

rs

c rp

c rp

c rp c rp

V1

V2

V3 V4

(b) Analogous RC network of G1 with ports at nodes 3 & 4

Fig. 2. Multi-agent receiving external communication and anal-
ogous RC circuit with input ports

Table 1: Symbols and their meaning
Symbol Definition

Gn A general graph with n nodes
Pn The path-graph on n nodes
Sn The star-graph on n nodes
c Capacitance (assumed to be 1 F for ease of exposition)
rc Connecting resistance
rp Leakage resistance across capacitor
rs Source resistance

λi(P) i-th largest eigenvalue of the matrix P (assuming P has
real eigenvalues

L Laplacian of a graph
vgi Fiedler and ‘generalized’-Fiedler vectors

Table 2: Notation, objectives, meaning
Parameter Definition, interpretation
Rn The real vector-space with n-components stacked as a

column vector
Sn−1 The unit-sphere in Rn, containing all vectors with Eu-

clidean norm = 1; each vector is a formation (normalized
to length 1)

1 The unit-vector in Sn−1 with all components equal and
positive; suggests consensus

Kmax Maximum solution of the passivity Algebraic Riccati
Equation (ARE) (equation (6), Section 6.2)

Kmax Minimum solution of the passivity Algebraic Riccati
Equation (ARE) (equation (6), Section 6.2)

vT Kmaxv Minimum energy required to reach formation-vector v
vT Kminv Maximum energy extractable from formation-vector v
1

T Kmax1 Minimum energy required to reach consensus
1

T Kmin1 Maximum energy extractable from consensus
λmax(Kmax) Minimum energy to reach the hardest v ∈ Sn−1

λmin(Kmax) Minimum energy to reach the easiest v ∈ Sn−1

λmax(Kmin) Maximum energy extractable from the easiest v ∈ Sn−1

λmin(Kmin) Maximum energy extractable from the hardest v ∈ Sn−1

trace(Kmax)
n Average over all vectors v ∈ Sn−1 of the minimum energy

required to reach a vector v
trace(Kmin)

n Average over all vectors v ∈ Sn−1 of the maximum energy
extractable from a vector v

structure helps other results in our paper, and also helps in, for
example, model order reduction of large order ZIP systems: see
again [18].



Theorem 4.1. Consider an undirected graph Gn with n nodes
and p input-ports: at nodes denoted by ( j1, j2, · · · , jp) with
jk ∈ {1,2, . . . ,n}, and let L denote the corresponding graph
Laplacian matrix. Introduce the ground-node, and construct the
corresponding RC network of the graph with each edge as a
resistance rc, each node connected to the ground-node with
capacitance c = 1 F and with parasitic resistance rp. Suppose
input at each of the p nodes is a current source through input
source resistance rs.
Then, the system ẋ = Ax + Bu and y = Cx + Du, with state
as the voltages at nodes 1,2,. . . ,n, the input u and y as the
port current and voltage across the current source respectively,
admits an internally symmetric state space realization and has
system matrices as follows:

A =
−L
crc
−

In

crp
,

B( jk,k) =

{
1 for jk ∈ { j1, j2, . . . , jp},
0 otherwise,

C = BT and D = rsIp.

(4)

See Section 6.4 for the proof. Note that the fact that the input
to the system is the port currents and the system output is the
corresponding port-voltages: this gives a special structure to the
system, which we exploit in this paper, namely a collocated
sensor-actuator system having a symmetric state-space realiza-
tion.

An important point to note is that the eigenvectors of the graph
Laplacian L are the same as the eigenvectors of A, and the
eigenvalues of A and L are related by a simple relation. For a
connected graph Gn, the vector 1 is an eigenvector of both L
and A, and this consensus vector corresponds the steady state
capacitor voltage configuration: when there is no leakage across
the capacitor. Further, when studying convergence to the steady
state vector 1, the Fiedler vector of L, say vn−1, is the slowest
mode of the system dynamics. We mentioned in Section 2 about
the magnitude of the components in the Fiedler vector helping
in identifying the ‘central node’. We refer to the eigenvector
vn−2 corresponding to λn−2 as the ‘second-slowest’ mode; the
eigenvector vn−3 corresponding to λn−3 as the ‘third-slowest’
mode. Note that, when the eigenvalues are distinct, these modes
are perpendicular to each other. We pursue this argument further
in Section 5.

The rest of this section deals with solutions of the Algebraic
Riccati Equation (ARE) corresponding to power supply: iT v,
with i the currents supplied at the ports (input), and v the
voltages across the current source (output):

AK +KA+(KB−B)(D+DT )−1(BT K−BT ) = 0.
The rest of this paper contains new results and some observa-
tions between the Laplacian matrix eigenvectors and the ARE
solution properties (see Table 2). The next result considers the
special case when the capacitor has no leakage, i.e. rp = ∞. In
this case, all Algebraic Riccati Equations solutions have consen-
sus as their common eigenvector. While more details of
Theorem 4.2. Consider an undirected and connected graph Gn
on n nodes and the corresponding RC circuit as described
in Theorem 4.1. Suppose the capacitors have no leakage, i.e.
parasitic resistance rp = ∞. Then, 1 is an eigenvector of every
ARE solution and 1 is the corresponding eigenvalue.

See Section 6.4 for the proof. As summarized in Tables 1
and 2, when considering minimum energy required to reach
consensus or any other formation vector say v, the ARE solution

Kmax, the maximum of all the ARE solutions, plays a key role:
vT Kmaxv is this energy. Similarly, vT Kminv, is the maximum
energy available for extraction from the vector v. The next result
states that for case of the no-leakage in capacitor the consensus
vector is the easiest to reach (amongst all vectors on the unit-
sphere Sn−1) and also the hardest to ‘discharge’, again amongst
all vectors on the unit-sphere Sn−1: note that the capacitance is
assumed to be ‘normalized’ to 1 F.
Theorem 4.3. Consider an undirected and connected graph Gn
on n-nodes and construct the corresponding RC-circuit as in
Theorem 4.1. Assume the capacitors have no leakage, i.e. para-
sitic resistance rp = ∞. Let Kmin and Kmax be the minimum and
maximum ARE solutions. Then,

λmin(Kmax) = 1 = λmax(Kmin).

See Section 6.4 for the proof. We note that for the case when
rp <∞, i.e. for the case that there is nonzero leakage across each
capacitor, then the consensus vector 1 is no longer an eigenvec-
tor. However, for the special case when all nodes are input-ports,
then the following result states that 1 is an eigenvector of each
ARE solution.
Theorem 4.4. Consider system as described in Theorem 4.1,
with parasitic resistance 0 < rp < ∞. Suppose each of the n-
nodes is an input port. Then 1 is an eigenvector of every solution
of the ARE

for the system.

See Section 6.4 for the proof.

5. EXAMPLES AND KEY INFERENCES

This section pursues the relation between optimal port location
and magnitude of the Fiedler vector components. We noted in
Section 2 about the link between the centrality of a node in a
graph and the magnitude of the component of the Fiedler vector
vn−1, the eigenvector corresponding to λn−1(L). As mentioned
after Theorem 4.1, the eigenvectors of the graph Laplacian
corresponding to λn−1, λn−2, λn−3, called as say, vn−1, vn−2,
vn−3, are the slowest mode, second-slowest mode, third-slowest
mode, respectively. Assume each of these vectors are normal-
ized to unit 2-norm.

While perpendicularity of these modes is assured due to the
symmetry of matrices A and L (assuming distinctness of the
eigenvalues), the magnitude of the components in vn−p, the loca-
tion of the smallest p of them, signify the best p locations. More
precisely, if p optimal ports have to be found (w.r.t. λmin(Kmax)
or trace(Kmin)), then one identifies the p-smallest components in
vn−p, and these p-nodes are the optimal port locations w.r.t. the
criteria. Perhaps this is linked to the Courant-Fischer-Weyl min-
max theorem for symmetric matrices, with the Laplacian matrix
revealing the slowest, second-slowest, third-slowest modes of
the RC-network. This is the key observation that we pursue
further in this section.

We present observations based on various graphs and consider
the corresponding RC-networks as described in Theorem 4.1.
The experiments have been performed using tools developed in
Python and Scilab.

Consider the graph shown in Figure 3a. Our first observation
based on the examples is that the best single port choice w.r.t.
average energy tallies with the definition of centrality of node
w.r.t. node-LFVC (defined in equation (3).)



Observation 5.1. For a single port network, the trace of Kmin is
minimum if the selected port corresponds to minimum absolute
value in Fiedler vector.

The next observation is for the case of p-ports.
Observation 5.2. For a given network in which p ports are to be
identified, considering the pth slowest eigenvector of the graph
Laplacian provides the optimal p-locations of ports: these nodes
correspond to the p smallest absolute value components of the
eigenvector.

Tables 3 and 4 compare results of different parameters described
in Table 2 for the Graph G2 (in Figure 3a), computed for
rp = 500 Ω and rs = 5 Ω, rc = 1 Ω (and c = 1 F. We see that
the minimum absolute value of the Fiedler vector components
corresponds to energy extracted from consensus for the node
with 1 port. This result compares with the definition of centrality
defined using LFVC in equation (3). Further, in both tables,
the correlation between actual optimal port location (using the
Riccati equation solution Kmin) and generalized-Fiedler vector
component values is visible: this has been shown in bold font
for easy of readability.

The various graphs and corresponding plots are shown in Fig-
ures 3-6.

6. FURTHER PRELIMINARIES AND PROOFS OF
THEOREMS 4.1-4.4

In this section we prove the main results: Theorems 4.1-4.4. For
the proof, we need additional preliminaries which are reviewed
next.

6.1 Spectral zeros

The spectral zeros of a positive real systems with transfer
function G(s) are defined as λ ∈ C such that det (G(λ ) +
G(−λ )T ) = 0. Consider a minimal state space realization of
G(s) as ẋ = Ax + Bu and y = Cx + Du. Considering systems
for which (D + DT ) is invertible, the spectral zeros are the
eigenvalues of the Hamiltonian matrix H ∈ R2n×2n defined as:

H :=
[

A−B(D+DT )−1C B(D+DT )−1BT

−CT (D+DT )−1C −(A−B(D+DT )−1C)T

]
. (5)

Due to symmetry about the imaginary axis jR, if H does not
have jR eigenvalues, then of the 2n spectral zeros of the system,
n-spectral zeros are in the C− plane and their n mirror images in
C+ plane.

6.2 Algebraic Riccati Equation

The algebraic Riccati equation (ARE) for the above system with
respect to the so-called ‘passivity supply rate’, i.e. power defined
as uT y, is

AT K +KA+(KB−CT )(D+DT )−1(BT K−C) = 0. (6)
The system Σ is positive real if and only if there exists a positive
definite solution K = KT to the above equation. The set of ARE
solutions is known to be a bounded and finite set with a maximal
Kmax and a minimal Kmin and every ARE solution K satisfying
0 6 Kmin 6 K 6 Kmax. The solutions of the ARE in equation (6)
can be computed from the n−dimensional invariant subspace of
the associated Hamiltonian matrix H as follows:.

H
[

X
Y

]
=

[
X
Y

]
R and define K := Y X−1 (7)

where X ,Y ∈ Rn×n, R ∈ Rn×n is an upper-triangular matrix
with n eigenvalues of the Hamiltonian matrix, i.e. the n-spectral

zeros. When either n stable or n anti-stable spectral zeros are
chosen, we get an extremal solution of the ARE, i.e.

H
[

X+
Y+

]
=

[
X+
Y+

]
R+ and H

[
X−
Y−

]
=

[
X−
Y−

]
R− (8)

where X±,Y± ∈ Rn×n; Re(σ(R+)) > 0, Re(σ(R−)) < 0. Then
Kmax = Y+X−1

+ and Kmin = Y−X−1
− .

6.3 Optimum charging/discharging

The extremal positive definite solutions of the ARE Kmin and
Kmax have special significance in terms of the energy dissipation
by the system. For a given a ∈ Rn, consider Ba, the set of all
continuous system trajectories (u,x,y) satisfying equation (4)
with x(0) = a. Then,

aT Kmaxa = inf
(u,x,y)∈Ba
x(−∞)=0

∫ 0

−∞

uy dt,

aT Kmina = sup
(u,x,y)∈Ba

x(∞)=0

−
∫

∞

0
uy dt.

(9)

Thus aT Kmaxa is the minimum (or more precisely, infimum)
energy required to reach a state x(0) = a from state of rest
x(−∞) = 0. As in the RC-network we are dealing with, the
states are the voltages of each node, aT Kmaxa is the minimum
energy required to charge the circuit up to node voltages given
by a = [v1,v2, · · · ,vn]. This is called ‘optimal charging’ of the
system. Similarly, aT Kmina is the maximum energy that can be
extracted as the system is brought to rest x(∞) = 0 starting from
state x(0) = a.

6.4 Proofs of main results

In this section we prove the results stated in Section 4.

Proof of Theorm 4.1

Consider an undirected graph G with n-nodes and Laplacian
matrix given by L ∈ Rn×n. Construct the corresponding RC
network with each edge resistance as rc and node capacitances
to ground as c with parasitic resistance rp as illustrated in
Figure 1b.

Considering x = [v1, · · · ,vn]
T -as the node voltages, it follows

using nodal analysis that cẋ = (− 1
rc

L− 1
rp

In)x. If one applies
inputs at p-nodes in the undirected graph G, and if we represent
the inputs as currents (ix1 , · · · , ixp ) at the nodes (x1,x2, · · · ,xp)
through a source resistance rs as illustrated in Figure 2b, then
the node analysis obtained above is modified for only for the
input nodes. If j = xk is an input node with applied input ik,
then the node analysis of j-th node can be given as (if node j is
connected by t-edges to nodes by:(xe1 , · · · ,xet ) as given by the
j-th row of L):

cv̇ j =−
1
rc
(tv j− ve1 −·· ·− vet )−

v j

rp
+ i j (10)

Combining the equations 10 and 11, the node analysis of the
complete RC network can be given by:

c
d
dt

v1
...

vn

= (− L
rc
− In

rp
)

v1
...

vn

+
i1

...
in

 (11)

where ix = 0 if x is not a input node, and ix = ik if x-is the k-th
input node. The equation (11) can be represented as:

ẋ = Ax + Bu (12)



Table 3: Result of parameter values for one input port in different node pairs of graph G2 of Figure 3a
Node Fiedler vector 1

T Kmin1 1
T Kmax1 λmin(Kmin) λmax(Kmin) λmin(Kmax) λmax(Kmax) trace(Kmin) trace(Kmax)

1 70.094 0.555 1.869 5.34×10−11 0.557 1.797 1.22×1010 0.615 1.224×1010

2 40.932 0.574 1.81 5.10×10−10 0.574 1.742 1.24×109 0.604 1.257×109

3 5.259 0.586 1.773 1.40×10−10 0.586 1.707 4.034×109 0.597 4.4047×109

4 14.776 0.577 1.799 1.92×10−09 0.577 1.732 3.23×108 0.602 3.289×108

5 18.147 0.582 1.785 3.06×10−10 0.582 1.719 1.796×109 0.6 1.827×109

6 26.856 0.581 1.787 8×10−10 0.581 1.72 6.742×108 0.6 6.799×108

7 45.988 0.562 1.847 2.93×10−10 0.563 1.777 1.965×109 0.611 2.015×109

Table 4: Result of parameter values for two port input in different nodes of graph G2 of Figure 3a
Nodes 1

T Kmin1 1
T Kmax1 λmin(Kmin) λmax(Kmin) λmin(Kmax) λmax(Kmax) trace(Kmin) trace(Kmax)

3, 4 0.678 1.513 2.30×10−06 0.678 1.474 3.0×105 0.715 3.15×105

3, 5 0.68 1.499 1.38×10−05 0.681 1.469 5.64× x104 0.71 7.2×104

3, 6 0.681 1.499 1.56×10−05 0.682 1.467 4.73× x104 0.712 6.2×104

4, 5 0.675 1.523 1.37×10−05 0.675 1.481 5.92× x104 0.718 7.95×104

4, 6 0.679 1.509 4.00×10−07 0.679 1.473 1.99× x106 0.723 2.03×106

5, 6 0.678 1.509 4.00×10−06 0.678 1.474 2.02×105 0.715 2.19×105

2, 3 0.68 1.501 6.37×10−08 0.68 1.471 1.15×107 0.722 1.15×107

3, 7 0.677 1.513 4.00×10−06 0.678 1.476 1.93×105 0.738 2.14×105

2, 4 0.68 1.495 1.75×10−05 0.68 1.471 4.61×104 0.736 6.29×104

2, 5 0.682 1.489 9.60×10−06 0.682 1.466 7.56×104 0.731 9.16104

4, 7 0.674 1.523 2.00×10−07 0.675 1.482 3.13×106 0.749 3.19×106

5, 7 0.674 1.522 4.10×10−06 0.674 1.483 2.08×105 0.741 2.71×105

2, 6 0.683 1.485 1.17×10−05 0.683 1.464 4.82×104 0.733 7.56×104

6, 7 0.666 1.55 5.71×10−09 0.667 1.499 1.05×108 0.734 1.06×108

1, 3 0.676 1.513 6.09×10−08 0.676 1.479 1.19×107 0.747 1.20×107

1, 4 0.675 1.508 3.40×10−06 0.676 1.48 2.52×105 0.76 2.90×105

2, 7 0.678 1.493 4.10×10−06 0.678 1.474 1.87×105 0.758 2.01×105

1, 5 0.678 1.501 2.80×10−06 0.678 1.474 3.01×105 0.755 3.64×105

1, 6 0.679 1.489 1.50×10−06 0.679 1.472 5.15×105 0.757 5.28×105

1, 2 0.655 1.577 1.78×10−09 0.656 1.523 3.85×108 0.743 3.86×108

1, 7 0.673 1.507 2.90×10−06 0.673 1.485 3.0×105 0.781 4.18×105

where A ∈ Rn×n,B ∈ Rn×p,u ∈ Rp-scaled input currents with
A = (− 1

rcc L− 1
rpc In), and entries of B defined by B(i, j) = 1

when i = xk and j = k, and 0 otherwise. Further, the input u =
1
c

[
ix1 , . . . , ixp

]T
. Considering the voltage across the input source

current as the output, the output equation can be expressed as:
y =Cx + Du, (13)

with C = BT and D = rsIp, thus completing the proof. 2

Proof of Theorem 4.2 Consider a system with n-nodes and p-
inputs with parasitic resistance rp = ∞. From Theorem 4.1 we
have

A = AT =− 1
rcc

L and 1T A = A1= 0

B =CT , D = rsIp which gives (D+DT )−1 =
1

2rs
Ip.

The Algebraic Riccati Equation for the passivity supply rate is
given as:

AK +KA+(KB−B)(D+DT )−1(BT K−BT ) = 0.
Multiplying 1 on both sides we get:
1

T AK1+1
T KA1+1

T (KB−B)(D+DT )−1(BT K−BT )1= 0,

and hence 1
T (KB−B)(D+DT )−1(BT K−BT )1= 0,

which gives 1
T (KB−B)Ip(BT K−BT )1= 0.

Simplifying further, we get 1T (KB−B)(BT K−BT )1= 0 which
implies that (BT K−BT )1= 0. Use this in what follows: multi-

ply the ARE by 1 on the right to get:

AK1+KA1+(KB−B)(D+DT )−1(BT K−BT )1= 0,
which results in AK1 = 0. Since 1 is the only (independent)
vector in the kernel of A, the vector 1 is an eigenvector of the
ARE solution K also.

Let λ be the eigenvalue of K corresponding to eigenvector 1, i.e.
K1= λ1, then using (BT K−BT )1= 0 (derived above): we get
BT K1 = BT

1 and this proves λBT
1 = BT

1, and hence λ = 1
This proves that the eigenvalue corresponding to eigenvector 1
of any storage function K is 1. 2

Proof of Theorem 4.3 Consider a system with n-nodes and p-
inputs with parasitic resistance rp = ∞. From Theorem 4.1, we
have A = AT ,B = CT ,D = DT and hence the system is a so-
called state space symmetrical realization. Using [12, Lemma
3.2], a passive system in minimal state space symmetrical real-
ization is also ‘positive real balanced’, i.e. Kmax = K−1

min.

From Theorem 4.2, we know that maximal and minimal storage
functions Kmax and Kmin both have eigenvalue 1, and moreover,
the corresponding eigenvector is 1.
Since Kmax and Kmin are positive definite and Kmax = K−1

min
therefore eigenvalue λ = 1 corresponds to the largest eigenvalue
of Kmin and the smallest eigenvalue of Kmax. 2

Proof of Theorem 4.4 Consider a system with n-nodes with
parasitic resistance 0 < rp < ∞ and input applied to all the n-
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Fig. 3. Undirected graphs

(a) Graph G2 (Figure 3a) (b) Graph G3 (Figure 3b) (c) Graph G4=P9 (Figure 3c)

Fig. 4. Maximum energy extractable from consensus: 1T Kmin1
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Fig. 5. Value of maximum energy extractable from the best formation vector v ∈ Sn−1: λmax(Kmin)

(a) trace(Kmin) of G2 (b) trace(Kmin) for G3 (c) trace(Kmin) for G4=P9

Fig. 6. Value of ‘average’ energy extractable across all formation vector v ∈ Sn−1: trace(Kmin)

nodes, then from Theorem 4.1 we have

A = AT =− 1
rcc

L− 1
rpc

In which gives A1=− 1
rpc

1.

Further, B = CT = In and D = rsIn and this implies (D +
DT )−1 = 1

2rs
In. Multiplying 1 on both sides, we get:

1
T AK1+1

T KA1+1
T (KB−B)(D+DT )−1(BT K−BT )1= 0,

=⇒ − 2
rpc1

T K1+1
T (KB−B)(D+DT )−1(BT K−BT )1= 0,

and hence
1

2rs
1

T (K− In)(K− In)
T
1=

2
rpc

1
T K1.

Since K is symmetric and positive definite, we use its so-called
‘square root’

√
K, the unique symmetric and positive definite

matrix whose square equals K, to get: 1T (K− In)(K− In)1 =
4rs
rp
1

T
√

K
√

K 1which gives (K− In)1=
√

4rs
rp

√
K 1. Using this

next in the expression obtained by multiplying the ARE by 1:

AK1+KA1+(KB−B)(D+DT )−1(BT K−BT )1= 0,

gives (− 1
rcc L− 1

rpc In)K1− 1
rpc K1+ 2

rpc K1= 0 and this implies
1

crc
LK1= 0. This proves that 1 is an eigenvector of every ARE

solution K. 2



7. CONCLUDING REMARKS

In this section we summarize the key contributions in this paper.
We considered the problem of choosing the best (one or more)
agent(s)/port(s) to communicate to externally, so that the energy
required to communicate is minimized. This problem was made
concrete by considering an RC analogue circuit for a given
undirected graph Gn. The state-space symmetry was brought out
in Theorem 4.1.

When dealing further with the problem of optimal port selec-
tion, multiple optimizing aspects were considered, we list them
again:
•: Given a state-vector v and specified charging/discharging port
locations, vT Kmaxv is the minimum net energy required to be
supplied to reach this state: minimum across all possible input
profiles that take the state from 0 to v. (See equation (9).)
•: The minimum eigenvalue λmin(Kmax) is the minimum energy
required to be provided across all vectors v ∈ Sn−1 of unit-
length, and in a sense the corresponding eigenvector is the best
vector charging-wise. Due to Kmin = K−1

max, the eigenvectors
corresponding to λmin(Kmin) and λmax(Kmax) are the same, and
hence the corresponding ‘best’/‘worst’ association to eigenvec-
tors of Kmin: see Table 2.
•: Given a number of ports, say p, the problem considered in this
paper is that of identifying which ports are ideal with respect to
a criteria: λmax(Kmax), λmin(Kmax), λmax(Kmin), λmin(Kmin), or
alternatively, the average of all vectors v ∈ Sn−1, i.e. the trace
of the matrix: Kmax while charging and Kmin while discharging.
We proved new results using the symmetric state space realiza-
tion properties between ARE solutions, common eigenvectors,
eigenvalues and consensus directions.

We brought out how the Laplacian’s eigenvectors provide the
choices for the optimal port locations: while centrality of the
node in a graph was linked to the Fiedler eigenvector in the liter-
ature, the choice of 2 or more ports gets analogously linked with
eigenvectors corresponding to third-smallest, fourth-smallest,
etc. Examples in Section 4 turn out to validate this observation.
The advantage of this connection is that Laplacian matrix eigen-
vectors are easier to compute and have stable algorithms due to
the matrix symmetry, unlike computation of Hamiltonian matrix
eigenvectors and/or Riccati equation solutions.

A future direction is to pursue further links between centrality
with respect to other notions and optimal charging/discharging
port locations.
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