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Chapter 5
New Properties of ARE Solutions for Strictly
Dissipative and Lossless Systems

Chayan Bhawal, Sandeep Kumar, Debasattam Pal
and Madhu N. Belur

Abstract Algebraic Riccati Equation (ARE) solutions play an important role in1

many optimal/suboptimal control problems. However, a key assumption in formu-2

lation and solution of the ARE is a certain ‘regularity condition’ on the feedthrough3

term D of the system. For example, formulation of the ARE requires nonsingularity4

of D + DT in positive real dissipative systems and, in the case of bounded real5

dissipative systems, one requires nonsingularity of I − DT D. Note that for lossless6

systems D + DT = 0, while for all-pass systems I − DT D = 0; this rules out the7

formulation of the ARE. Noting that the ARE solutions are also extremal “storage8

functions” for dissipative systems, one can speak of storage function for the lossless9

case too. This contributed chapter formulates new properties of the ARE solution;10

we then show that this property is satisfied by the storage function for the lossless11

case too. The formulation of this property is via the set of trajectories of minimal12

dissipation. We show that the states in a first-order representation of this set satisfy13

static relations that are closely linked to ARE solutions; this property holds for the14

lossless case too. Using this property, we propose an algorithm to compute the storage15

function for the lossless case.16
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2 C. Bhawal et al.

5.1 Introduction17

The algebraic Riccati equation (ARE) has found widespread application in many18

optimal and suboptimal control/estimation problems. For example, Kalman filter,19

LQ control, H∞ and H2 control; see [1, 11], for example. Since its introduction in20

control theory by Kalman, many conceptual and numerical methods to solve ARE21

have been developed [3, 11] for instance. In the context of dissipative systems, the22

ARE solutions are extremal storage functions of the system. More about the link23

between storage functions, dissipative systems and solvability of AREs can be found24

in [16, 18]. However, for a special class of dissipative systems, namely, conservative25

systems, the ARE does not exist. This happens due to the formulation of the ARE26

depending on a suitable regularity condition on the feedthrough term D of any input-27

state-output representation of a system. The precise form of the regularity condition28

depends on the supply rate function, with respect to which dissipativity holds. For29

example, in case of the “positive real supply rate,” uT y, where u is the input and y is30

the output of the system, existence of the corresponding ARE requires nonsingularity31

of D + DT . Similarly, for the “bounded real supply rate,” uT u − yT y, nonsingularity32

of I − DT D is required for existence of the corresponding ARE. Contrary to this33

regularity condition, systems that are conservative with respect to the positive real34

supply rate and the bounded real supply rate have D + DT = 0 and I − DT D = 0,35

respectively.1 Hence, for such systems the regularity conditions are violated, and36

consequently, the corresponding ARE does not exist. In this chapter, we formulate37

new properties of the ARE solution in terms of the set of trajectories of “minimal38

dissipation” as formulated recently in [17]: for reasons we will elaborate later, we39

will call this set “a Hamiltonian system.” We show that the ARE solution is closely40

linked to the static relations that hold between the states in a first-order representation41

of this set. We then show that this property is satisfied for the storage function for the42

conservative case too, though the ARE does not exist in this case. We use this result43

to develop an algorithm to compute the unique storage function for the conservative44

systems case.45

We now elaborate further on the key property that the ARE solution satisfies: which46

we extend to the lossless case. The property is based on an observation concerning47

the relation between ARE solutions and Hamiltonian systems. It is well known that48

when the feedthrough term satisfies the regularity conditions, that is, when the ARE49

exists, the solutions to the ARE can be found using suitable invariant subspaces of50

a corresponding Hamiltonian matrix. Note that, in the singular cases (lossless/all-51

pass), the Hamiltonian matrix does not exist. Consequently, this method involving the52

invariant subspace fails to work for the singular cases. However, this same method,53

when viewed from a different perspective opens up a new way of computing the54

1Lossless systems, with u input and y output, are conservative with respect to the “positive real
supply rate” uT y and have D + DT = 0. Similarly, all-pass systems are conservative with respect
to the “bounded real supply rate” uT u − yT y. For all-pass systems I − DT D = 0. Hence, all
arguments about ARE solutions and storage functions made for lossless systems are applicable to
all-pass systems as well.
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 3

ARE solutions, which extends naturally to the singular case, too. This new point of55

view stems from the fact that the first-order system defined by the Hamiltonian matrix56

associated to an ARE is nothing but a state representation of a system comprised of the57

“trajectories of minimal dissipation.” Consequently, choosing an invariant subspace58

im
[

I
K

]
of the Hamiltonian matrix to get K as a solution to the ARE, can be viewed59

as obtaining a subsystem of the Hamiltonian system by restricting the trajectories60

to satisfy an extra set of equations as z = K x , where x, z are state variables of the61

original system and its ‘dual’, respectively. The crucial fact about this new view-point62

is that, although, the Hamiltonian matrix and the ARE do not exist in the singular63

case, the Hamiltonian system, comprising of the trajectories of minimal system does64

exist. We show in this chapter that, in such cases too, the strategy of putting static65

relation z = K x leads to a storage function xT K x to the original system.66

The notation used in the chapter is standard. The set R and C denote the fields of67

real and complex numbers, respectively. The set R[ξ ] denotes the ring of polynomials68

in ξ with real coefficients. The set R
w×p[ξ ] denotes all w× p matrices with entries69

from R[ξ ]. We use • when a dimension need not be specified: for example, R
w×•

70

denotes the set of real constant matrices having w rows. R[ζ, η] denotes the set of real71

polynomials in two indeterminates: ζ and η. The set of w× w matrices with entries72

in R[ζ, η] is denoted by R
w×w[ζ, η]. The space C∞(R,Rw) stands for the space of73

all infinitely often differentiable functions from R to R
w, and D(R,Rw) stands for74

the subspace of all compactly supported trajectories in C∞(R,Rw).75

This chapter is structured as follows: Sect. 5.2 summarizes preliminaries required76

in the chapter. New properties of ARE solutions are presented in Sect. 5.3. In Sect. 5.4,77

we formulate and prove new results that help computation of storage function K for78

conservative behaviors based on the notion of “trajectories of minimal dissipation.”79

Section 5.5 uses the main result in Sect. 5.4 and proposes a numerical algorithm to80

compute storage function of conservative systems. Section 5.6 contains numerical81

examples to illustrate the main results. Some concluding remark is presented in82

Sect. 5.7.83

5.2 Preliminaries84

In this section, we give a brief introduction to various concepts that are required to85

formulate and solve the problem addressed in the chapter.86

5.2.1 Behavior87

We start with some essential preliminaries of the behavioral approach: a detailed88

exposition can be found in [12].89
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4 C. Bhawal et al.

Definition 5.1 A linear differential behavior B is defined as the subspace of infi-90

nitely often differentiable functions C∞(R,Rw) consisting of all solutions to a91

set of linear ordinary differential equations with constant coefficients, i.e., for92

R(ξ) ∈ R
•×w[ξ ]93

B :=
{

w ∈ C∞(R,Rw) | R

(
d

dt

)
w = 0

}
. (5.1)94

The variable w in Eq. (5.1) is called the manifest variable of the behavior B. We95

denote linear differential behaviors with w number of manifest variables as Lw.96

Equation (5.1) is what we call a kernel representation of the behavior B ∈ Lw and97

we sometimes also write B = kerR( d
dt ). We assume the polynomial matrix R(ξ)98

has full row rank without loss of generality (see [12, Chap. 6]). This assumption99

guarantees existence of a nonsingular block P(ξ) (after a permutation of columns,100

if necessary, with a corresponding permutation of the components of w) such that101

R(ξ) = [
P(ξ) Q(ξ)

]
. Conforming to this partition of R(ξ), partition w into w =102 [ y

u

]
, where it has been shown that u, y are the input and output of the behavior103

B respectively: note that this partition is not unique. Such a partition is called an104

input-output partition of the behavior. The input-output partition is called proper if105

P−1 Q is a matrix of proper rational functions. Although there are a number of ways106

in which the manifest variables can be partitioned as input and output, the number107

of components of the input depends only on B: we denote this number as m(B), and108

call it the input cardinality of the behavior. The number of components in the output109

is called the output cardinality represented as p(B). It is well known that p(B) =110

rank R(ξ) and m(B) = w− p(B).111

In the behavioral approach, a system is nothing but its behavior: we use the112

terms behavior/system interchangeably. There are various ways of representing a113

behavior depending on how the system is modeled: a useful one is the latent variable114

representation: for R(ξ) ∈ R
•×w and M(ξ) ∈ R

•×m[ξ ],115

B :=
{

w ∈ C∞(R,Rw) | there exists � ∈ C∞(R,Rm) such that R

(
d

dt

)
w = M

(
d

dt

)
�
}
.116

117

Here � is called a latent variable.118

Controllability is another important concept required for this chapter.119

Definition 5.2 A behavior B is said to be controllable if for every pair of trajectories120

w1, w2 ∈ B there exists w3 ∈ B and τ > 0 such that121

w3(t) =
{

w1(t) for t � 0,
w2(t) for t � τ.

122

We represent the set of all controllable behaviors with w variables as Lw
cont. The123

familiar PBH rank test for controllability has been generalized: a behavior B with124

minimal kernel representation B = kerR( d
dt ) is controllable if and only if R(λ) has125

constant rank for allλ ∈ C. One of the ways by which a behavior B can be represented126

if (and only if) B is controllable is the image representation: for M(ξ) ∈ R
w×m[ξ ]127
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 5

B :=
{

w ∈ C∞(R,Rw)| there exists � ∈ C∞(R,Rm) such that w= M

(
d

dt

)
�

}
.

(5.2)

128

129

If M(ξ) is such that M(λ) has full column rank for all λ ∈ C, then the image130

representation is said to be an observable image representation: this can be assumed131

without loss of generality (see [12, Sect. 6.6]).132

5.2.2 Quadratic Differential Forms and Dissipativity133

This section contains a brief review of Quadratic Differential Forms (QDFs): more on134

QDFs can be found in [18]. We often encounter quadratic expressions of derivatives135

of the manifest and/or latent variables of the behavior B. Two-variable polynomial136

matrices can be associated with such quadratic forms. Consider a two-variable poly-137

nomial matrix φ(ζ, η) := ∑
j, k φ jkζ

jηk ∈ R
w×w[ζ, η] where φ jk ∈ R

w×w. The138

QDF Qφ induced by φ(ζ, η) is a map Qφ : C∞(R,Rw) → C∞(R,R) defined as139

Qφ(w) :=
∑

j, k

(
d j w

dt j

)T

φ jk

(
dkw

dtk

)
.140

Of course, when Σ ∈ R
w×w, then QΣ(w) = wTΣw. Using the definition of QDFs,141

we next define a dissipative system.142

Definition 5.3 ConsiderΣ = ΣT ∈ R
w×w and controllable B ∈ Lw

cont. The system143

B is said to be Σ-dissipative if144

∫

R

QΣ(w) dt � 0 for every w ∈ B ∩ D. (5.3)145

The function QΣ(w) is also called the supply rate: it is the rate of supply of energy to146

the system. For simplicity, we also callΣ the supply rate. Equation (5.3) formalizes147

the notion that dissipative systems are such that the net energy exchange is always148

an absorption when the trajectories considered are those that start-from-rest and149

end-at-rest, i.e. compactly supported. The link with existence of a storage function150

is well known for the controllable system case: a controllable behavior B ∈ Lw
cont is151

dissipative with respect to Σ if and only if there exists a quadratic differential form152

Qψ(w) such that153

154

d

dt
Qψ(w) � QΣ(w) for all w ∈ B.155

The QDF Qψ is called a storage function for B with respect to the supply rate Σ .156

The notion of a storage function captures the intuition that the rate of increase of157

stored energy in a dissipative system is at most the power supplied. In this chapter, we158
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6 C. Bhawal et al.

shall be dealing with supply rates QΣ induced by real symmetric constant nonsin-159

gular matricesΣ only. We need a count of the number of positive eigenvalues (with160

multiplicities) of the symmetric matrixΣ : call this number the positive signature of161

the matrix Σ and denote it by σ+(Σ).162

For a Σ-dissipative system, m(B), the input cardinality of the behavior, cannot163

exceed the positive signature σ+(Σ) of the supply rateΣ i.e.m(B) � σ+ (�) (details164

in [18, Remark 5.11] and [19]). For this chapter, we restrict ourselves to the so-called165

maximum input cardinality condition, i.e.166

m(B) = σ+(�). (5.4)167

Given Σ ∈ R
w×w and a system described by the observable image representation168

w = M( d
dt )�, the QDF QΣ(w) can also be expressed as QΦ(�) in the latent variables169

induced by Φ(ζ, η) ∈ R
m×m[ζ, η] is given by170

Φ(ζ, η) := M(ζ )TΣM(η).171

Conservative systems are a special class of dissipative systems and this work172

focusses on the conservative systems’ case: this is when the algebraic Riccati equation173

does not exist.174

Definition 5.4 Consider a symmetric and nonsingular matrix Σ ∈ R
w×w and a175

behavior B ∈ Lw
cont. The system B is called Σ-conservative if176

∫

R

QΣ(w)dt = 0 for all w ∈ B ∩ D.177

In order to simplify the exposition in this chapter, we shall be using the positive real178

supply rate 2uT y i.e.179

180

QΣ =
[

u
y

]T

Σ

[
u
y

]
induced byΣ =

[
0 I
I 0

]
(5.5)181

where u and y are the input and output of the system respectively. Systems con-182

servative with respect to the positive real supply rate are known in the literature as183

lossless systems: see Footnote 1. We will be dealing with only lossless systems in this184

chapter. However, the results in the chapter can be extended to system conservative185

with respect to other supply rates also.186

5.2.3 State Representation and Trimness187

A state variable representation of a behavior B is a latent variable representation188

where the latent variable x satisfies the axiom of state: whenever (w1, x1), (w2, x2) ∈189
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 7

Bfull and x1(0) = x2(0), the concatenation2 (w1, x1) ∧0 (w2, x2) at t = 0 also190

satisfies the equations of Bfull in a weak/distributional sense. For such a system, we191

have a first-order description, called the state-space description:192

E
dx

dt
+ Fx + Gw = 0 where E, F,G are constant real matrices. (5.6)193

194

A state-space description is said to be minimal if the number of components in195

the state x is the minimum amongst all possible state representations. The number of196

states corresponding to a minimal state representation of B is called the McMillan197

degree of the behavior B. When the state x is not minimal (but is observable from198

the system variable w), it is known that one or more components in x satisfy a static199

relation and the states are said to be nontrim. A more formal definition of state trim200

is presented next.201

Definition 5.5 The state x in Eq. (5.6) is said to be trim if for every a ∈ R
n there202

exist a w ∈ B such that x(0) = a and (w, x) satisfies Eq. (5.6).203

The algorithm proposed in this chapter is based on this notion of state trimness.204

The static relation between the state x of the given lossless system and the “dual205

state” z of the adjoint system are used to find the unique storage function for the206

lossless case: see Theorem 5.13 below.207

5.2.4 Minimal Polynomial Basis208

This section contains a review of the notion of a minimal polynomial basis.209

The degree of a polynomial vector r(s) ∈ R
n[s] is the maximum degree among210

the n components of the vector. The degree of the zero polynomial and the zero211

vector in R
n[s] is defined as −∞.212

For R(s) ∈ R
n×m[s], the set of all polynomial vectors v(s) ∈ R

m[s] that satisfy213

R(s)v(s) = 0 forms a vector space over the field of scalar rational functions. It is214

known from the literature that such a vector space admits a polynomial basis called215

the right nullspace basis of the polynomial matrix R(s): see [8, Sect. 6.5.4]. There216

is a special nullspace basis called the minimal polynomial basis of the polynomial217

matrix R(s) which is of importance to us in this chapter. Consider the polynomial218

matrix R(s) ∈ R
n×m[s] of rank n. Let the set {p1(s), p2(s), . . . , pm−n(s)} be a219

nullspace basis of R(s) ordered be their degrees d1 � d2 � · · · � dm−n. The220

set {p1(s), p2(s), . . . , pm−n(s)} is said to be a minimal polynomial basis of R(s)221

if every other nullspace basis {q1(s), q2(s), . . . , qm−n(s)} with degree c1 � c2 �222

2For trajectories (w1, x1) and (w2, x2), their concatenation at t0, denoted by (w1, x1)∧t0 (w2, x2),
is defined as

(w1, x1) ∧t0 (w2, x2)(t) :=
{
(w1, x1)(t) for t < t0
(w2, x2)(t) for t � t0.

.
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8 C. Bhawal et al.

· · · � cm−n is such that di � ci , fori = 1, 2, . . .m−n. The degrees of the vectors of223

minimal polynomial basis of R(s) are called the (Forney invariant) minimal indices224

or Kronecker indices (more details in [8, Sect. 6.5.4]).225

5.3 The Algebraic Riccati Equation (ARE)226

and Hamiltonian Systems227

With a proper input-output partition (u, y), a controllable dissipative behavior B228

admits the following minimal i/s/o representation.229

ẋ = Ax + Bu, y = Cx + Du, A ∈ R
n×n, B, CT ∈ R

n×p and D ∈ R
p×p

(5.7)230

with (C, A) observable. We assume here that the number of input m(B) = number of231

output p(B): this assumption is in view of the maximum input cardinality condition232

andΣ =
[

0 I
I 0

]
. The storage functions of a dissipative behavior are closely related to233

the algebraic Riccati inequality (ARI) and the Hamiltonian matrix. One of the results234

relating LMI, controllable behavior and storage function is the Kalman–Yakubovich–235

Popov (KYP) lemma: details in [6, Sect. 5.6]. For easy reference, we present the K Y P236

lemma, in a behavioral context, as a proposition next.237

Proposition 5.6 A behavior B ∈ Lw
cont, with a controllable and observable minimal238

i/s/o representation as in Eq. (5.7), isΣ-dissipative if and only if there exists a solution239

K = K T ∈ R
n×n to the LMI240

[
AT K + K A K B − CT

BT K − C −(D + DT )

]
� 0. (5.8)241

For systems with D + DT > 0, the Schur complement with respect to D + DT in242

LMI (5.8) results in the algebraic Riccati inequality243

AT K + K A + (K B − CT )(D + DT )−1(BT K − C) � 0. (5.9)244

The corresponding equation to the inequality (5.9) is called the algebraic Riccati245

equation (ARE). Symmetric solutions to the ARE have a one-to-one correspondence246

to n-dimensional invariant subspaces of the matrix below (details in [10, Theorem247

3.1.1]).248

H =
[

A − B(D + DT )−1C B(D + DT )−1 BT

−CT (D + DT )−1C −AT + CT (D + DT )−1 BT

]
(5.10)249
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 9

The matrix H is known as the Hamiltonian matrix. Every n-dimensional H invari-250

ant subspace spanned by columns of

[
I
K

]
corresponding to a suitably chosen set of251

eigenvalues of H , provides a solution K to the ARE.252

The detailed procedure to find the solution to the ARE from n-dimensional253

eigenspaces of the Hamiltonian matrix can be found in [4]. We provide a brief254

review of the procedure next. In the lines of [10] and [13, Definition 5.1.1], we255

define a Lambda set (Λ) to define the partition of eigenvalues of the Hamiltonian256

matrix H . Λ̄ denotes the set of complex conjugates of the elements in Λ.257

Definition 5.7 Consider an even polynomial p(ξ) ∈ R[ξ ] with no roots on the258

imaginary axis. A set of complex numbers Λ ⊂ roots (p) is called a Lambda set of259

the roots of p if the following conditions are satisfied:260

1. Λ = Λ̄261

2. Λ ∩ (−Λ) = ∅262

3. Λ ∪ (−Λ) = roots of p(ξ) (counted with multiplicity)263

Condition 1 in Definition 5.7 implies that the Lambda set should contain conjugate264

pairs of complex roots of p(ξ). By condition 2, polynomial p(ξ) should not have265

any roots on the imaginary axis.266

In this chapter, we use the word Lambda set with respect to the eigenvalues of267

a matrix to mean the Lambda set corresponding to the roots of the characteristic268

polynomial of the matrix. Constructing Lambda set from the set of eigenvalues of269

H (spec(H )), we find the solutions to the ARE. This is a well-known result in the270

literature [10] and we present it as a proposition here.271

Proposition 5.8 Consider a minimal i/s/o system given by Eq. (5.7) and the alge-272

braic Riccati equation AT K + K A + (K B − CT )(D + DT )−1(BT K − C) = 0.273

The corresponding Hamiltonian matrix H ∈ R
2n×2n is given by Eq. (5.10). Assume274

that the Hamiltonian matrix H has no eigenvalues on the imaginary axis and define275

Λ to be a Lambda set of spec (H ). Let the n-dimensional H -invariant subspace276

corresponding to the Lambda set Λ be277

SΛ := im

[
X1
X2

]
, where X1, X2 ∈ R

n×n
278

Then, X1 is invertible and K := X2 X−1
1 is a real symmetric solution to the ARE.279

The solutions to the ARE are storage functions xT K x of the behavior B with x the280

state in i/s/o representation (Eq. (5.7)).281

In order to describe the algorithm and the main results of the chapter, we need the282

definition of the orthogonal complement of a behavior B.283

Definition 5.9 Consider a controllable behavior B ∈ Lw
cont and a symmetric Σ ∈284

R
w×w. The Σ-orthogonal complement behavior B⊥Σ of B is defined as285
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10 C. Bhawal et al.

B⊥Σ :=
{

v ∈ C∞(R,Rw) |
∫ ∞

−∞
vTΣw dt = 0 for all w ∈ B ∩ D

}
.286

It is well known that an i/s/o representation of B (with w = (u, y) ∈ B) gives one287

for B⊥Σ : see [18, Sect. 10]. If ẋ = Ax + Bu, y = Cx + Du is a minimal i/s/o288

representation of B, then (with respect to the positive real supply rate), a minimal289

i/s/o representation B⊥Σ (with v ∈ B⊥Σ , v = (u, y)) is290

ż = −AT z + CT u and y = BT z − DT u. (5.11)291

For a given behavior B ∈ Lw
cont and supply rate Σ , we call B ∩ B⊥Σ a Hamil-292

tonian system and denote it by BHam: see Remark 5.10 below for a brief background.293

It has been shown in [17] that these trajectories are trajectories of minimal dissipa-294

tion for the given supply rate. The first-order representation for this set has a good295

structure: this has been used in [15] for example. Define E :=
⎡

⎣
In 0 0
0 In 0
0 0 0

⎤

⎦ and296

H :=
⎡

⎣
A 0 B
0 −AT CT

C −BT D + DT

⎤

⎦. A (possibly nonminimal) first-order representation of297

BHam is given by298

(
d

dt
E − H

) ⎡

⎣
x
z
y

⎤

⎦ = 0. (5.12)299

Define R(ξ) := (ξE − H); we call R(ξ) a ‘Hamiltonian pencil’.300

Remark 5.10 In classical optimal control theory, given a quadratic cost functional,301

the system of trajectories satisfying the corresponding Euler–Lagrange (EL) equation302

can be considered a Hamiltonian system. Further, the trajectories are called stationary303

with respect to this cost: see [14, Sect. 4] for example. The EL equation with respect304

to the integral of QDF QΣ turns out to be ∂Φ( d
dt )� := M(− d

dt )
TΣM( d

dt )� = 0 with305

� ∈ C∞(R,Rm). For �� satisfying this system of equations, w� := M( d
dt )�

� turns out306

to be stationary with respect to wTΣw: see [14, Proposition 4.1]. For a behavior B ∈307

Lw
cont and its orthogonal complement B⊥Σ , it is shown in [7, Theorem 3.3] that B∩308

B⊥Σ = M( d
dt )ker∂Φ( d

dt ); with this background, we call B ∩ B⊥Σ a Hamiltonian309

behavior and the matrix pencil R(ξ) related to the first-order representation of BHam,310

a Hamiltonian pencil.311

Corresponding to a Λ-set of the eigenvalues of H , we associate a behavior312

(BHam)Λ ∈ Lw such that (BHam)Λ contains (possibly polynomial times) exponential313

trajectories with the time-exponent λi an element in Λ. Further (BHam)Λ is a sub-314

behavior of BHam, i.e., all the trajectories in (BHam)Λ are trajectories in BHam. This315

notion has been used elsewhere too. For example, for Λ-set corresponding to the n316

eigenvalues of H in C
+, the corresponding (BHam)Λ = (BHam)antistab as defined317
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 11

in [17, Theorem 3.6]. The same notion has also been used in [15, Sect. 3]. We present318

a theorem next which shows the relations between Hamiltonian systems and storage319

functions of a behavior. Some of the equivalences are known. This theorem is the320

one we extend to the lossless case in Theorem 5.13 below.321

Theorem 5.11 Consider a controllable, strictly dissipative behavior B ∈ Lw
cont322

with minimal state-space representation as in Eq. (5.7) and McMillan degree n. The323

corresponding Hamiltonian behavior BHam = kerR( d
dt ) where R(ξ) := ξE − H ∈324

R
(2n+p)×(2n+p) is the Hamiltonian pencil defined in Eq. (5.12). Suppose K ∈ R

n×n
325

is a solution to the ARE corresponding to the behavior B. Then, the following326

statements hold.327

1. The Hamiltonian behavior BHam is autonomous, i.e. det R(ξ) �= 0.328

In fact deg det R(ξ) = 2n.329

2. d
dt xT K x = 2uT y for all

[
u
y

]
∈ (BHam)Λ.330

3. rank

[
R(ξ)

−K I 0

]
= rank R(ξ) = 2n+ p.331

4. rank

[
R(λ)

−K I 0

]
= rank R(λ) < 2n+p for each λ ∈Λ(roots det R(ξ)).332

Proof Statement 1 is trivial and so we do not dwell on it further: see [18, Sect. 4].333

The polynomial matrix R(ξ) is full row rank and hence 3 is true. Statement 2 has334

been proved in [18, Theorem 4.8]. Hence, we proceed to prove Statement 4.335

4: In order to prove 4 of Theorem 5.11, we first prove that336

ker

[
R(λ)

−K I 0

]
= kerR(λ) for any λ ∈ Λ(roots det R(ξ)) = Λ(spec(H )).337

Of course ker

[
R(λ)

−K I 0

]
⊆ ker R(λ) holds and the reverse inclusion requires338

to be proved.339

Conversely, let v ∈ ker R(λ). Hence v is an eigenvector3 of R(ξ) corresponding to340

eigenvalue λ. By Proposition 5.8 we have
[

I
K
0

]
spans the eigenspace of R(ξ). Hence341

v ∈ span
[

I
K
0

]
. It is obvious that

[ −K
I
0

]
is orthogonal to

[
I
K
0

]
. Hence [ −K I 0 ] v = 0.342

Thus we conclude that kerR(λ) ⊆ ker

[
R(λ)

−K I 0

]
, and this proves equality of the343

kernels. This proves that the ranks are equal. Hence 4 follows. This completes the344

proof of Theorem 5.11. �345

3As in [5], for a square and nonsingular polynomial matrix R(s), we call the values of λ ∈ C at
which rank of R(λ) drops the eigenvalues of the polynomial matrix R(s) and we call the vectors in
the nullspace of R(λ) the eigenvectors of R(s) corresponding to λ.
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12 C. Bhawal et al.

5.4 Storage Functions for Lossless Systems346

Due to the condition D + DT = 0 for lossless systems, Proposition 5.8 cannot be347

used to find storage functions of lossless systems. However, for lossless systems, the348

LMI (5.8) still exists with equality and solution to this LME can be interpreted as349

storage functions even in the absence of the ARI and Hamiltonian matrix. The LME350

is equivalent to solving the following matrix equations.351

AT K + K A = 0 and BT K − C = 0 (5.13)352

For a lossless behavior B, the first-order representation of the Hamiltonian system353

BHam is354 ⎡

⎣
ξ In − A 0 −B

0 ξ In + AT −CT

−C BT 0

⎤

⎦

⎡

⎣
x
z
y

⎤

⎦ = 0. (5.14)355

Our main result (Theorem 5.13) below uses the nontrimness aspect in the states above.356

A special case of [2, Lemma 11] relates to trimness: we state this as a proposition357

below for easy reference.358

Proposition 5.12 Consider aΣ-dissipative behavior B ∈ Lw
cont and its orthogonal359

complement behavior B⊥Σ with supply rate induced by the nonsingular matrix Σ360

of Eq. (5.5) (i.e. the positive real supply rate). Assume the behavior satisfies the361

maximum input cardinality (Eq. (5.4)). Then the following are equivalent.362

1. B is lossless.363

2. B = B ∩ B⊥Σ = B⊥Σ364

Since the McMillan degree of B is n, from Proposition 5.12, we infer that McMil-365

lan degree of the Hamiltonian behavior BHam is also n. However, the Hamiltonian366

behavior in Eq. (5.14) has 2n states and hence B ∩ B⊥Σ = BHam is not state367

trim, i.e., there is a static relationship between state x and the dual state z. The next368

theorem helps extract the static relations of the first-order representation (5.14) of369

behavior BHam and in the process yields the unique storage function for the lossless370

behavior B.371

Theorem 5.13 Consider a controllable, lossless behavior B ∈ Lw
cont with minimal372

state-space representation as in Eq. (5.7). The McMillan degree of B is n. The373

corresponding Hamiltonian behavior BHam = ker R( d
dt ) where R(ξ) := ξE − H is374

the Hamiltonian pencil described in Eq. (5.12) with D+ DT = 0. Then the following375

statements hold.376

1. The Hamiltonian behavior BHam is not autonomous, i.e. det R(ξ) = 0.377

2. There exists a unique symmetric matrix K ∈ R
n×n that satisfies378

d

dt
xT K x = 2uT y for all

[
u
y

]
∈ BHam = B. (5.15)379
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 13

3. There exists a unique symmetric matrix K ∈ R
n×n that satisfies380

rank

[
R(ξ)

−K I 0

]
= rank R(ξ). (5.16)381

Proof Statement 1 is well known and details on it can be found in [7, 14] for example.382

Statement 2 shows the existence of a storage function and this has been dealt with383

in [18, Remark 5.9]. Hence we prove 3 next.384

3: We prove Eq. (5.16) of Theorem 5.13 here.385

Using 2 of Theorem 5.13, we have386

d

dt
xT K x = 2uT y i.e. ẋ T K x + xT K ẋ = 2uT y387

388

Using system Eq. (5.7) of behavior B, we have389

[
x
u

]T [
AT K + K A K B − CT

BT K − C 0

] [
x
u

]
= 0for each(x, u) satisfying system equations.390

391

Since (A, B) is controllable and u is input to the system, there is a system trajectory392

(x, u) that passes through each (x0, u0) for x0 ∈ R
n and u0 ∈ R

m. Hence393

[
AT K + K A K B − CT

BT K − C 0

]
= 0394

Therefore, we infer that395

AT K + K A = 0 and BT K − C = 0 (5.17)396

It is known from [18, Sect. 10] that397

d

dt
xT z = 2uT y = d

dt
xT K x which evaluates to ẋ T z + xT ż − ẋ T K x − xT K ẋ = 0.398

399

Using the Eqs. (5.7) and (5.11), we have400

(Ax + Bu)T z + xT (−AT z + CT u)− (Ax + Bu)T K x − xT K (Ax + Bu) = 0401

i.e. uT BT z + xT CT u − xT (AT K + K A)x − uT BT K x − uT BT K x = 0402
403

Using Eq. (5.17), we have404

2uT BT (z − K x) = 0 (5.18)405
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14 C. Bhawal et al.

Equation (5.18) is satisfied for all system trajectories and at every time instant. This406

proves that BT (z − K x) = 0. We crucially use (A, B) controllability and (C, A)407

observability, together with Eq. (5.17) to conclude that z − K x = 0 is satisfied over408

all system trajectories. Thus we proved that adding the laws
[−K I 0

]
⎡

⎣
x
z
y

⎤

⎦ to the409

system equations R( d
dt )

⎡

⎣
x
z
y

⎤

⎦ imposes no further restriction on B. This proves that410

rank

[
R(ξ)

−K I 0

]
= rank R(ξ), and thus completes the proof of Theorem 5.13.411

�412

The next corollary states that Conditions 2 and 3 of Theorem 5.13 are equivalent.413

This equivalence condition is used to develop an algorithm to compute the storage414

function of a lossless behavior B.415

Corollary 5.14 Consider a controllable, lossless behavior B ∈ Lw
cont with mini-416

mal state-space representation as in Eq. (5.7). Let the McMillan degree of B be417

n. Consider the corresponding Hamiltonian behavior BHam = ker R( d
dt ) where418

R(ξ) := ξE −H is the Hamiltonian pencil described in Eq. (5.12) with D+DT = 0.419

Then a necessary and sufficient condition for K = K T ∈ R
n×n to be a storage func-420

tion for B is421

rank

[
R(ξ)

−K I 0

]
= rank R(ξ). (5.19)422

Proof (Necessity) This follows from Statements 2 and 3 of Theorem 5.13.423

(Sufficiency) We assume a symmetric matrix K ∈ R
n×n satisfies Eq. (5.19) and424

show that K satisfies Eq. (5.15) i.e. K induces the storage function for B. Using425

Eq. (5.19), behavior BHam has trajectories that satisfy z = K x . By definition of426

“dual states,” the relation between “states” and its “dual states” is427

d

dt
xT z = 2uT y i.e.

d

dt
xT K x = 2uT y.428

Hence K satisfies Eq. (5.15) if and only if K satisfies Eq. (5.19). This completes the429

proof of Corollary 5.14. �430

Using Corollary 5.14, we conclude that [−K I 0] is in the row span of the431

polynomial matrix R(ξ). The corollary guarantees that K ∈ R
n×n serves as the432

unique storage function of the lossless behavior B. In the next section, we present433

an algorithm to find the unique storage function of the lossless behavior B using the434

fact that [−K I 0] is in the row span of R(ξ).435
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 15

5.5 Lossless System’s Storage Function: Algorithmic Aspects436

Algorithm 5.5.1 is based on extraction of static relations in first order representation437

of the Hamiltonian behavior BHam described in Sect. 5.4. The Hamiltonian pencil438

R(ξ) is an input to the algorithm and a unique symmetric matrix K that induces439

storage function of the lossless behavior is the output.440

Algorithm 5.5.1 Static relations extraction-based algorithm.

Input: R(ξ) := ξE − H ∈ R[ξ ](2n+p)×(2n+p), a rank 2n polynomial matrix.
Output: K ∈ R

n×n with xT K x the storage function.
1: Calculate a minimal polynomial nullspace basis of R(ξ).
2: Result: A full column rank polynomial matrix M(ξ) ∈ R[ξ ](2n+p)×p.

3: Partition M(ξ) as

[
M1(ξ)

M2(s)

]
where M1(ξ) ∈ R[ξ ]2n×p.

4: Calculate a minimal polynomial nullspace basis of M1(ξ)
T .

5: Result: A full column rank polynomial matrix N (ξ) ∈ R[ξ ]2n×(2n−p).

6: Partition N (ξ) =
[

N11 N12(ξ)

N21 N22(ξ)

]
with N11, N21 ∈ R

n×n. (See Theorem 5.15 below)

7: The storage function xT K x induced by the symmetric matrix K is given by

K := −N11 N−1
21 ∈ R

n×n

Using the partition of the various matrices in the Algorithm 5.5.1, we state the441

following result about the unique storage function for a lossless behavior.442

Theorem 5.15 Consider R(ξ) := ξE − H ∈ R[ξ ](2n+p)×(2n+p) as defined in443

Eq. (5.12) constructed for the lossless behaviorB ∈ L
2p
cont. Let M(ξ) ∈ R[ξ ](2n+p)×p

444

be any minimal polynomial nullspace basis (MPB) for R(ξ). Partition M =
[

M1(ξ)

M2(ξ)

]
445

with M1 ∈ R[ξ ]2n×p. Let N (ξ) be any MPB for M1(ξ)
T . Then, the following state-446

ments are true.447

1. The first n (Forney invariant) minimal indices of N (ξ) are 0, i.e. first n columns448

of N (ξ) are constant vectors.449

2. Partition N into
[
N1 N2(ξ)

]
with N1 ∈ R

2n×n and further partition N1 =
[

N11
N21

]
450

with N21 ∈ R
n×n. Then,451

a. N21 is invertible.452

b. K := −N11 N−1
21 is symmetric.453

c. xT K x is the unique storage function for B, i.e. d
dt xT K x = 2uT y for all454

system trajectories.455
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16 C. Bhawal et al.

Proof 1: Using Statement 1 of Theorem 5.13, we have det R(ξ) = 0. Hence there456

exists a nullspace M(ξ) of R(ξ). Since rank R(ξ) = 2n where n is the McMillan457

degree of the behavior B and R(ξ) ∈ R
(2n+p)×(2n+p)[ξ ], we have that the minimal458

polynomial basis M(ξ) ∈ R
(2n+p)×p[ξ ].459

Using Corollary 5.14, we have
[−K I 0

]
is in the row span of R(ξ). Therefore,460

[−K I 0
]

M(ξ) = 0 i.e.
[−K I 0

] [
M1(ξ)

M2(ξ)

]
= 0, where M1 ∈ R[ξ ]2n×p

461

This implies that462

[−K I
] [

M1(ξ)
] = 0 i.e. M1(ξ)

T
[−K

I

]
= 0463

The nullspace of M1(ξ)
T must have n constant polynomial vectors. Hence the first464

n (Forney invariant) minimal indices are 0. This proves 1 of Theorem 5.15.465

2: Here we prove 2 of Theorem 5.15.466

The minimal nullspace basis of M1(ξ)
T is the columns of N (ξ) ∈ R[ξ ]2n×(2n−p).467

Partition N into
[
N1 N2(ξ)

]
with N1 ∈ R

2n×n and further partition N1 =
[

N11
N21

]
468

with N21 ∈ R
n×n. Further469

span

[
N11
N21

]
= span

[−K
I

]
.470

This proves that N21 is invertible and therefore K = −N11 N−1
21 . The entire proof is471

based on Theorem 5.13 and Corollary 5.14, hence the symmetric matrix K found by472

Algorithm 5.5.1 induces storage function of the lossless behavior B i.e. d
dt xT K x =473

2uT y for all system trajectories. Hence 2 of Theorem 5.15 follows. This completes474

the proof of Theorem 5.15. �475

Algorithm 5.5.1 is based on computation of nullspace basis of polynomial matrices.476

Computation of nullspace basis of a polynomial matrix can be done by block Toeplitz477

matrix algorithm: more details can be found in [9, 20].478

5.6 Examples479

In this section, we consider two examples: one in which we have strict dissipativity480

and another in which we have losslessness. We use Algorithm 5.5.1 for calculating481

K for the lossless case.482

Example 5.16 In this example, we illustrate the conditions in Theorem 5.11. Con-483

sider a strictly dissipative behavior B with transfer function G(s) = s+2
s+1 . A minimal484
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5 New Properties of ARE Solutions for Strictly Dissipative and Lossless Systems 17

i/s/o representation of the system is ẋ = −x + u and y = x + u. The Hamiltonian485

pencil for the behavior B as obtained from Eq. (5.12) is486

R(ξ) =
⎡

⎣
ξ + 1 0 −1

0 ξ − 1 −1
−1 1 −2

⎤

⎦487

Hence det R(ξ) = 4 − 2ξ2 �= 0, deg det R(ξ) = 2 and R(ξ) ∈ R
3×3[ξ ] i.e.488

Hamiltonian system is autonomous. The roots of det R(ξ) = {−√
2,

√
2}. Following489

Definition 5.7, two Lambda sets can be formed Λ1 = {−√
2} and Λ2 = {√2}. For490

Λ1, the storage function KΛ1 = 0.171. Notice that491

rank

[ −√
2+1 0 −1
0 −√

2−1 −1
−1 1 −2

]
= 2 and rank

[ −√
2+1 0 −1
0 −√

2−1 −1
−1 1 −2

−0.171 1 0

]

= 2.492

It can be verified that the storage function for Lambda setΛ2 is KΛ2 = 5.828 and it493

also satisfies the conditions in Theorem 5.11. Consider any other arbitrary value of494

K which is not a solution to the ARE corresponding to the behavior B. Say K = 1495

then496

rank

[ −√
2+1 0 −1
0 −√

2−1 −1
−1 1 −2
−1 1 0

]

= 3.497

Hence for any other arbitrary value of K , rank

[
R(ξ)

−K I 0

]
�= rank R(ξ).498

Next we consider transfer function of a lossless behavior B that brings out the use499

of Theorem 5.13. In order to calculate the storage function K we use Algorithm 5.5.1.500

501

Example 5.17 Consider a lossless behavior B with transfer function G(s) = s
s2+1

.502

A minimal i/s/o representation of the behavior is503

ẋ =
[

0 1
−1 0

]
x +

[
0
1

]
u and y = [

0 1
]

x + 0 u504

The Hamiltonian pencil for the behavior B as obtained from Eq. (5.12) is505

R(ξ) =

⎡

⎢⎢⎢⎢
⎣

ξ −1 0 0 0
1 ξ 0 0 −1
0 0 ξ −1 0
0 0 1 ξ −1
0 −1 0 1 0

⎤

⎥⎥⎥⎥
⎦

and one can check that det R(ξ) = 0.506

Thus the behavior BHam is not autonomous. We next calculate the storage function507

using Algorithm 5.5.1.508
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18 C. Bhawal et al.

1. A minimal polynomial nullspace basis (MPB) of R(ξ) is M(ξ) =
⎡

⎣
1
ξ
1
ξ

1+ξ2

⎤

⎦.509

510

2. Partitioning M(ξ) by Step 3 of Algorithm 5.5.1, we have: M1(ξ) =
[

1
ξ
1
ξ

]

.511

3. MPB of M1(ξ)
T is N (ξ) =

⎡

⎢
⎢⎢⎢
⎣

−4 −√
2 −3ξ√

2 −4 3

4
√

2 −3ξ

−√
2 4 3

⎤

⎥
⎥⎥⎥
⎦

.512

4. Using Step 6 of the same algorithm, we partition N (ξ). Hence N11 =

[−4 −√
2√

2 −4

]
513

and N21 =

[
4

√
2

−√
2 4

]
.514

5. Therefore, the matrix K = −N11 N−1
21 =

[
1 0
0 1

]
induces the storage function of515

the lossless behavior B.516

It can be verified that rank

[
R(ξ)

−K I 0

]
= rank R(ξ) = 4.517

With any arbitrary K =
[

2 0
0 1

]
(say), we will have rank

[
R(ξ)

−K I 0

]
= 5. Hence518

for arbitrary K , rank

[
R(ξ)

−K I 0

]
�= rank R(ξ).519

5.7 Concluding Remarks520

This chapter dealt with the formulation of new properties of the ARE solution for the521

case when the equation exists: namely, when regularity conditions on the feedthrough522

term are satisfied. These results were extended to the case when the ARE does not523

exist: for example, the lossless case. For this case, the “ARE” solution is the storage524

function, which is unique for the lossless case. We formulated an algorithm that525

computes this storage function. The algorithm was developed exploiting the fact that526

the states in the Hamiltonian system (corresponding to a conservative behavior) are527

not trim. Static relations of the form z = K x helped to extract this nontrimness and528

hence led to a storage function xT K x to the original system.529
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