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Stabilization, Pole Placement, and Regular
Implementability

Madhu N. Belur and H. L. Trentelma®enior Member, IEEE

~ Abstract—in this paper, we study control by interconnection of  tions for regular implementability. Section Il contains the main
linear differential systems. We give necessary and sufficient con- problems of this paper. These problems deal with shaping the
ditions for regular implementability of a given linear differential trajectories of the to-be-controlled variabtes using the con-

system. We formulate the problems of stabilization and pole place- . . e
ment as problems of finding a suitable, regularly implementable trol variablesc. We consider the problems of stabilization and

sub-behavior of the manifest plant behavior. The problem formula-  POle placement. The main results of this section are two theo-
tions and their resolutions are completely representation free, and rems that solve these problems. The proofs of the theorems are

specified only in terms of the system dynamics. Control is viewed as given in Section IV. As an illustration, in Section V we apply our
regular interconnection. A controller is a system that constrains the main results to the case that the plant to-be-controlled is given

plant behavior through a distinguished set of variables, namely, the . . t—stat tout tati Imol tati f
control variables. The issue of implementation of a controller in the In Input=state—output representation. Impiementation of a con-

feedback configuration and its relation to regularity of intercon-  trollerin afeedback configuration plays a very prominentrole in
nection is addressed. Freedom of disturbances in a plant and reg- control theory. This issue is addressed in Section VI. Finally, in
ular interconnection with a controller also turn out to be inter-re-  Section VII, we give a motivation for the fact that in our problem
lated. formulations we restrict ourselves to regular interconnections.
Index Terms—Behaviors, controller implementation, intercon- We first discuss some of the notation to be used in this paper,
nection, pole placement, regular implementability, stabilization.  gnd review some basic facts from the behavioral approach. We
use the standard notatid®™ for the n-dimensional real Eu-
I. INTRODUCTION AND NOTATION clidean space. Often, the notatiH is used ifw denotes a typ-
) ) o ical element of that vector space, or a typical function taking its
I N THIS PAPER, we discuss the issue of stabilization Qfye in that vector space. Vectors are understood to be column

linear dynamical systems. The problem is studied in the bgsc1ors in equations. In text, however, we write them as row vec-

havioral context and control is viewed as interconnection. TWérs

view of treating control problems ha_ls been used before in, fortnq ring of (one-variable) polynomials with real coefficients
example, [2], [3], [7], [16], and [19], in a#l., control context i, the indeterminaté is denoted byR[¢]. R™ <2 [¢] denotes
in [1], [4], [5], [12]-[14], [17], and [18], for adaptive control in yha set of matrices with, rows andn, columns in which each

[9], and for distributed systems in [6]. In contrast to [19] Wher@ntry is an element dR[¢]. We use the notatioR**™ when
the problems of stabilization and pole placement were consifls, humber of rows is unspecified.

ered for the case thatl system variables are available for inter- |, inis paper, we deal with linear time-invariant differential

connection (the so-called full information case), we work in thg stems in short, linear differential systems. A linear differen-
generality that we are allowed to use only some of the Syst§y sy stem is defined as a dynamical system whose beh@iior
variables for the purpose of interconnection. These variables fRqual to the set of solutions of a set of higher order, linear,

called the control variables. Restricting oneself to using onjyynsiant coefficient differential equations. More precisely,
the control variables for interconnection introduces the issuetﬂgre exists a polynomial matri& € R*<¥[¢] such that

implementabilityinto the control problem, see [18] and [9]. Ingg _ {w € LR, RY)|R(d/dt)w = 0}. Here, L1°(R, R¥)
the.context of stgbilization, an_important rqle is played by the.notes the space of locally integrable functions ffmo R¥,
notion ofregular implementabilityWe establish necessary an%ndR(d/dt)w — 0is understood to hold in the distributional

sufficient conditions for a given behavior to be regularly implesenge  The set of linear differential systems with manifest

mentable. This result is then applied to solve the problems 0fi-pjew taking its value irR¥ is denoted byt¥.

stabilization and pole placement by interconnection. We make a clear distinction between the behavior as defined

_ The paper is structured as follows. We start with the notag he space of all solutions of a set of (differential) equations,

tion that we use in this paper. A brief review of basic definiynq the set of equations itself. A set of equations in terms of

tions and concepts of the behavioral approach forms the 1aj@fich, the behavior is defined, is calledepresentatiorof the

part of this section. In Section II, we discuss the problem @f.pavior. LetR € R&*¥[¢] be a polynomial matrix. If a be-

restricting control to just the control variables. The relevant n@zior % is represented byg(d/dt)w = 0 then we call this a

tions are introduced and we give necessary and sufficient congliyne| representation d8. Further, a kernel representation is
Manuscript received March 12, 2001; revised August 27, 2001 and Aug&aid to beminimalif every other kernel representation®8fhas

30, 3001. Recommen_ded by Associate_ Editor M. E. Val_cher.' __at leastg rows. A given kernel representati(ﬁ(d/dt)w =0,
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representations is given b(d/dt)w = O orjustRw = 0. X &€ C*T.If B € £¥ is represented byR(d/dt)w = 0 thenB
The “d/dt” is often suppressed to enhance readability. We wil$ stable if and only ifR is Hurwitz.

also encounter behavio® with manifest variablev, that are ~ For autonomous behaviors, we also speak about poles of the
represented by equations of the fof\d/dt)w = M(d/dt)¢, behavior. Let8 € £¥ be autonomous. Then there existdag
in which an auxiliary, latent variablé appears. HereR and R¥*¥[¢] such that8 is represented minimally bi(d/d¢)w =
M are polynomial matrices with the same number of row$. Obviously, for any nonzera € R, aRR also yields a kernel
Through such an equation, we can consider the subspace ofefiresentation dB. Hence, we can choogesuch thatlet(R)
w € LP°°(R,RY) for which there exists ad € £°(R,Rl) isamonic polynomial. This monic polynomial is denotedysy
such that the equation holds. A technical detail is that, by itse#fnd is calledhe characteristic polynomial dB. v depends
this subspace is not an element®f, because it is not a closedonly on 98, and not on the polynomial matri® we used to
subspace (closed in the topologydf¢(R, R¥)). Therefore, we defineit: if R;, R, both represerf8 minimally then there exists
call B(d/dt)w = M (d/dt)¢ a latent variable representation ofa unimodular/ such thatR, = UR;. Hence, ifdet(R;) and

B if det(Ry) are monic thenlet(R;) = det(R;). Thepolesof B
loe w loe 1 are defined as the roots gfs. Note thatys = 1 if and only if
B= {w € LI*(R,R")[3 € LI™(R,R™) B8 = 0. Abehavior is stable if and only if all its poles areli .

d closure We now discuss the issue of control as interconnection. A
) w=M <§) K} plant behavior (denote it b§p) consists of all trajectories sat-
isfying a set of differential equations. One would like to restrict

where the closure is taken in th&°c topology. Then, by the this space of trajectories to a desired subsystém, 7. This re-
elimination theorem (see [7, Ch. 6, Th. 6.2.6B,c £¥. striction can be effected by increasing the number of equations

In this paper, we avoid the issue of properness of rational rdpat the variables of the plant have to satisfy. These additional
resentations (transfer functions). Hence, we often restrict ol@ws themselves define a new system, called the controller (de-
selves to signals that are infinitely often differentiable fundioted byC). The interconnection of the two systems (the plant
tions of time. The space of functions that are infinitely ofteAnd the controller) results in the controlled behaviorAfter
differentiable with domaitR and co-domaiiR¥, is denoted by interconnection, the variables have to satisfy the lawzotti 7
C*(R,RY). Let B € £¥ be represented by the kernel repandC. More precisely, leP> € £¥ (the plant) and” € £¥ (the
resentationR(d/dt)w = 0 with rank(R) < w (which also controller). Then thdull interconnectiorof 7 and( is defined
means that it is under-determined). Then some component§sfthe system with behavi@ N C. Note thatP N C is again
w = (wy,wa, ..., wy) are unconstrained by the requiremengn element of2¥. A given behaviolk € £V is calledimple-
w € B. These components are termedmsutsor are said to mentable with respect % by full interconnectiorif there exists
be free (in the C=° sense, for the purpose of this paper). ThaC € £¥ such that = P N C. The full interconnection of
maximum number of such components is calledittpeit car- andc is calledregular, if
dinality of 8 (denoted a&(8)). Oncen(®8) free components
are ch0§e_n, th_e remginimg—rq(%) components are dftermined p(PNC) =p(P) +p(C).
up to a finite-dimensional affine subspace®® (R, R¥1(®)),
These are calledutputs and the number of outputs is denoted et Ry = 0 andCw = 0 be minimal kernel representations of

by p(%). Thus, possibly after a permutation of components: andc respectively. Then the full interconnection@andC is
w € B can be partitioned a® = (u, y), with them(*8) com-

ponents ofx as inputs, and thg(8) components of; as out- C
puts. We say thatu, i) is an input—output partition ab € 9B, tation of PN C. Detailed discussions on control as interconnec-
with input » and outputy. The input—output structure 8 € tion and regular interconnections can be found in [19]. Regular
£¥ is reflected in its kernel representations as follows. Supterconnections have also been of interest in [2] and [3].
poseR(d/dt)w = 0 is a minimal kernel representation . Finally, we review the concept of controllability in the context
Partiton 2 = [@ P], and accordinglys = (wy,w2). Then of the behavioral approach. A behaviBre £¥ is controllable
w = (w1, ws) iS an i/o partition (with inputv; and outputws)  if for all wy,ws € B, there exists & > 0 and aw € B such
if and only if P is square and nonsingular. In general, there exitftat w(t) = w1 (¢) for ¢t < 0 andw(t + T) = wo(¢) fort > 0.
many input—output partitions, but the integef$3) andp(®8) A weaker notion isstabilizability, which is defined as follows.
are invariants associated with a behavior. It can be verified thfatbehavior’8 is stabilizable if for allw, € B, there exists a
p(*B) is equal to the rank of the polynomial matrix in any (notv € 98 such thatw(t) = wy(¢) for ¢t < 0, andw(t) — 0 as
necessarily minimal) kernel representatior®®{for details see ¢ — oo. Thus every trajectory in a stabilizable behavi®rcan
[71). be steered to 0, asymptotically.

A behavior whose input cardinality is equal to O is calked Often, we encounter behavio® € £¥ that are neither au-
tonomous An autonomous behavidB is said to be stable, if tonomous nor controllable. Thantrollable partof a behavior
for all w € B, we havew(t) — 0 ast — oo. In the context of 23 is defined as the largest controllable sub-behavi@8oT his
stability, we often need to describe regions of the complex plaisedenoted byB ... A givenB € £¥ can always be decom-
C. We denote the closed right-half of the complex plan€By posed asB = B.oni & Bau, WhereB ., is the (unique)
and the open left-half complex plane @y . A polynomial ma- controllable part of8, and®8,,; is a (nonunique) autonomous
trix R € R**Y[{] is calledHurwitz if rank(R()\)) = w for all  sub-behavior of5. For details we refer to [7].

such that® <i
dt

regular if and only if w = 0 is a minimal kernel represen-
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We shall relate the notions of stabilizability to that of inter-
connection. Interconnections and stabilizability in the behav- to-be-controlled
ioral context have been issues in many publications, see, for variables
example, [16] and [3]. Also, [7] contains a detailed exposition. w
We need the following proposition from [19] that relates stabi-
lizability and regular, full interconnection. Fig-1. Plant
Proposition 1: Let P € £¥ and letR € R**¥[¢]. Assume
that R(d/dt)w = 0 is a kernel representation &. Then the control
following statements are equivalent: variables
1) Pis stabilizable; €
2) rank(R()\)) = rank(R) forall A € C*;
3) there exists & € £V such thatkC is stable and imple- Fig. 2. Controller.
mentable w.r.t? by regular, full interconnection.

Furthermore, if the representatidi(d/dt)w = 0 is minimal
then any of the above statements is equivalent to

control
variables
[+

w CONTROLLER

4) there exists & € R**¥[¢] such tha\{g} is nonsingular

and Hurwitz.

In the aforementionedank(Z())) is understood to be the rank
of the complex matrix®(}), while rank(R) is the rank of the

polynomial matrixR. We say that the controllat € £¥ sta-

bilizes P, if the system obtained by the full interconnection o
P andC is stable, and the interconnection is regular. Note th
from the above proposition, P is not stabilizable then there==" X -
does not exist € £¥ which stabilizesP. wo IS said to be detectable fromy if (wy,w}), (w1, w)) € B

Thus controlling a system means restricting the system B@P“eswé(t) N wg_(t) — Vast oo In the af(_)reme_ntloned
havior to a desired sub-behavior. Stability of the sub-behavistrne! representation, detectability«o} from wLis equivalent
is usually the desired feature. An alternate feature is specifyiffyf®2(A) having full-column rank for alh € C*. For details,
the poles of the sub-behavior. For a given behawidsy placing sée [7].
the poles in a given region, we mean, finding a controller such
that the fully interconnected system is autonomous, the poles Il. REGULAR IMPLEMENTABILITY
of the corresponding controlled system are in the given regionSuppose we have a plant to be controlled, with two types
and the interconnection is regular. It was shown in [19] that §ff variables, see Figs.1, 2, and 3. In the given plant, the vari-
one does not require the interconnection to be regular, then Higtes whose trajectories we intend to shape (calledaHze-
pole placement problem is essentially a triviality. The followingontrolled variable} are denoted byw. These to-be-controlled
proposition from [19] that relates controllability, regular full in-variables can be controlled through a setoftrol variablesc,
terconnection, and pole placement, will help us in solving th®&er which we can “attach” a controller. These are the variables,
pole placement problem for the general case. that can be measured and/or actuated upon. Often we have some

Proposition 2: Let 7 € £¥ and letR € R**"[£]. Assume common components i andc. We formulate the problem,
that R(d/dt)w = 0 is a kernel representation & Then, the however, for the general case, in which we have access to just

Fig. 3. The plant and controller after interconnection.

Ri(d/dt)yw, + Ro(d/dt)ws = 0 be a kernel representation of
ﬁ. Then observability ofv; from w; is equivalent taR;(\)
grflving full column rank for allh € C. The weaker notion of
detectabilityis defined along similar lines. Give ¢ £¥1+Wz,

following statements are equivalent: the control variables.
1) Pis controllable; Before the controller acts, there are two behaviors of the plant
2) rank(R()\)) = rank(R) forall A € C; that are relevantPy,; (called thefull plant behavioy that for-

3) for all monicr € R[¢], there exists & € £¥ such that malizes the dynamics of the variablesande, and the behavior
xx = randk is implementable w.r.tP by regular, full P (called themanifest plant behaviprthat formalizes the dy-
interconnection. namics of the to-be-controlled variablesonly. Thus

Furthermore, if the representatidi(d/dt)w = 0 is minimal

_ loc W+C
then any of the above statements is equivalent to: Pran = {(w, ¢) € LR, R | (w, )

4) for all » € R[£], there exists & € R**¥[{] such that satisfies the plant equatiohs
d t[}z} P ={we LR,RY)|3c
e =T
C such tha(w, ¢) € Pean}"""°. (@H)

We shall also deal with systems in which the signal space
comes as a product space, with the first component viewedlaghis paper, we assume that the plant is a linear differential
an observed, and the second as a to-be-deduced variable. Westgdkem, i.e.Pr,n € £¥7C. The particular representation by
about observability (in such systems). GivBne £¥1+¥2 with  which it is given, is immaterial to us. The manifest plant be-
manifest variablav = (w;,ws), w2 is said to beobservable haviorPis obtained byeliminatingc from P, SO, by the elim-
from wy if (wy,wh), (wi,wy) € B impliesw), = wj. Let ination theoremP € £¥.
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A controller restricts the trajectories thatan assume andis Theorem 4: Let P, € £¥1C. Let P, A/ € £¥ be the corre-
described by @ontroller behaviorlC € £¢: sponding manifest plant behavior and hidden behavior respec-
loe c o ) tively. Let P, be the controllable part oP. Let £ € £¥.
C = {ce L(R,R) | c satisfies the controller equations Then,K is implementable w.r.tP; by regular interconnection

The full controlled behaviorKyy is obtained by the intercon- throughc if and only if the following conditions are satisfied:

nection of Py andC through the variable and is defined as

e NCKCP
]Cfull = {(wv C) | (w7 C) S 7)full andc S C} (2) ° ’C + Pcont = 'P

The manifest controlled behavid€ is obtained by eliminating

¢ from Ky and is defined as The previous theorem has two conditions. The first one is

exactly the condition for implementability through(as in the
K = {w|3JcecCsuchthalw,c) € Py }ces™e. (3) controllerimplementability theorem). The second condition for-
malizes the notion that the autonomous parPa$ taken care
In that case, we say thitis implemented b¢, orCimplements  of by K. While the autonomous part @ is not unique Peons
K throughe. A given £ € £Y is calledimplementable with s, This makes verifying the regular implementability of a given
respect toPra by interconnection through, if there exists a x computable. As a consequence of this theorem, note tiat if
controllerC € £, such thakCis implemented by. Ifitis clear s controllable, therC € £V is regularly implementable if and

from the context, we often suppress the specifications “W.rgnly if it is implementable, see also the main results of [8].
Pran” and “throughe.” An importantissue is the question which

K € £¥ are implementable, i.e., for whidfi € £¥ there exists
a controllerC € £€ such that (3) holds. A crucial concept to
answer this question is the notion of hidden behaviorhilden In this section, we discuss the problems of pole placement
behavior A/ is the behavior consisting of the plant trajectoriegnd stabilization. The problem statements and the theorems in-
that occur when the control variables are zero volve the behaviors of the plant, etc., which have been defined
Section Il.
N={w e LY[R,R) | (w,0) € Prun} - (4)  Pole placement problem:Given Pey € £9+€, find condi-

We have access to only the control variakieshence the notion tions under Whicﬁ there exists, and compute, for every monic
of A"being hidden from the control variables. " R[g’],.ac €L sth that ]

The following proposition from [18] settles the question of * the interconnection dPru andc is regular;
implementability for a giverk € £¥. We refer to this proposi-  * the mann‘('ast. controlled_behawts{rls autonomous and has
tion as the controller implementability theorem. characteristic polynomial.

Proposition 3: Let Pra € £¥1€ be a given full plant be- Suppressing the controll€rfrom the problem formulation, the
havior, and let?, A" € £w be the manifest plant behavior andoroblem can alternatively be stated as:
hidden behavior, respectively. Th&he £ is implementable ~ Given Pr,n, find conditions under which there exists, and
W.I.t. Pgq by interconnection throughif and only if Ac K ¢ compute, for every monie € R[] a regularly implementable,
P. autonomousC € £¥ such thatyx- = 7.

In addition to implementability issues, the hidden behaxior ~ When the manifest controlled behavicris only required to
plays a role in observability and detectability®f,;. It can be be stable, we refer to the problem as that of stabilization.
easily seen that, ifPr1, w is observable fronz if and only if ~ Stabilization problem: GivenPp,y; € £¥+¢, find conditions
N = 0, andw is detectable frona if and only if A'is stable.  for the existence of, and compufes £ such that

I1l. POLE PLACEMENT AND STABILIZATION

Roughly speaking, for a giveR:,y we want to find a con-  « the interconnection dPs,;; andC is regular;
troller C such that the manifest controlled behavidhas desired » the manifest controlled behavid€ is autonomous and
properties. However, we shall restrict ourselve€’ssuch that stable.

the interconnection 0Py, andC is regular. A motivation for again, suppressing the controll€rfrom the formulation, the
this is provit_;led in Sec_:tion VII. The interconnectionf{ and  stapilization problem can be restated as:
C throughc is regular if GivenPyy, find conditions for the existence of, and compute
. W )

p(Krat) = p(Prat) +p(C) ﬁnl::la:r?]\ggtrfbls £¥ that is autonomous, stable and regularly
i.e., if the output cardinalities dP;,; andC add up to that of ~ The main results of this section are the following theorems,
Kl which establish necessary and sufficient conditions for pole

A given K € £¥ is calledregularly implementablé there Placement and stabilization.

exists aC € £€ such thatk is implemented by, and if the =~ Theorem 5:Let Py, € £, For every monie- € R[¢],
interconnection oPr,; andC is regular. Similar to plain imple- there exists a regularly implementable, autonomiug £¥
mentability, an important question is under what conditionsS/ch thatyx. = r if and only if A" = 0 and 7 is controllable,
given sub-behaviok’ of Pis regularly implementable. The fol- equivalently, if and only if
lowing theorem is the main result of this section, and provides ¢ in Ppy, w is observable frona;
necessary and sufficient conditions for this. » Pis controllable.
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Theorem 6:Let Pr,y € £¥7C. There exists a regularly im- D a nonsingular, diagonal matrix. Accordingly, partition
plementable, autonomous, stalllec £¥ if and only if V'is  w = (wy,w,). This immediately yield®..y:, the controllable
stable andP is stabilizable, equivalently, if and only if part of P

* in P, w is detectable frong;
 Pis stabilizable.
Note that, neither in the problem formulations nor in the cor;é

. S : 1)=(2)]: LetC € £¥ be a controller that regularly implements
d!t|ons appearing in Theorems 5 and 6, do represgntatmns of .gLet Crwy + Cyws = 0 be a minimal kernel representation
given plant appear. Indeed, our problem formulations and th%

: ) Y. Then, since the interconnection is regukais represented
resolutions are completelgpresentation freeand are formu- .
. . . minimally by

lated purely in terms of properties of thehaviorP;,;. Thus,
our treatment of the pole placement and stabilization problems D 0 wy
is genuinely behavioral. Of course, theorems 5 and 6 are ap- {01 CJ [ } =0.
plicable to any particular representation7f,; as well. As an
example, in Section V we treat the case tRaf; is represented As a result, note that’; has full-row rank. We need to show
in input—state—output representation. P C K+ Peont- Let (w1, w2) € P. Letwy € C(R,R¥2) be

In both the stabilization problem and the pole placemeftich thattiw; +Cows = 0. Obviously,(wi, wa) = (w1, w2)+
problem, we have restricted ourselves to regular interconné@,wz —w2) € K+Pecont. The converse inclusiok; +Peont, C
tions. We give an explanation for this in Section VII. At thisP, is immediate.
point we note that if in the above problem formulations we [(2)=(1)]: Let K satisfy K + Peont = P. AssumekC is rep-
replace “regularly implementable” by merely “implementable resented minimally by w; + K,w» = 0. Now, note that
then in the stabilization problem a necessary and sufficieftts, w2) € P if and only if there exists a# € L{°(R,R"*)
condition for the existence df is that\is stable (equivalently: suchthatws,ws) = (w1, £)~+(0, w2 —£), with Kyw; + Kol =
in Pra, w is detectable from). In the pole placement problem,0. Using this, it is immediate that
necessary and sufficient conditions are that= 0 (i.e., in

. . D 0 w1 0

Pra1, w is observable frona) and thatP is not autonomous. [K 0} [ } = {—K }E

We close this section with some words on the case that, in- ! 2

stead of only the behavior @s— oo of the w-trajectories, we s g latent variable representation®8f with latent variable/.
also want to modify the behavior of thetrajectories in the con- Tg eliminate?, premultiply K> by a unimodular matrix/ €
trolled behavior. Given a full plant behaviét,,, this leadsto __. . 0 .

the problem of findingCem € £%1€ thatis stable and regularIyR “*[¢], such thatl/k> = {KQJ with K full-row rank.
implementable w.r.tP;,; (the full stabilization problem), and . K
the problem of finding, for every monic polynomiek R[£], a Correspondingly, leV K, = [K;
K € £91¢ such thak e = randKpn is regularly imple-

mentable w.r.tPsy (the full pole placement problem). These { D 0} {wl} —0
problems can be easily tackled by including theariable in Ky 0] [w2

the to-be-controlled variables, i.e., by introducing a new system
with to-be-controlled variable’ = (w, ¢), and control variable

c¢. The details are left to the reader. [D 0] Z; = 0 is also a kernel representation @,

Peont = {(0,w2) | wa € LI(R,R¥*)}.

w2

w2

} . Then

a (nonminimal) kernel representation dP. Since

there exists a polynomial matriki, such thatky; = K7, D.
IV. PROOFS OF THEMAIN RESULTS Sincel/ is unimodulark is also represented minimally by

In this section, we will give proofs of Theorems 4-6. We state |:K:/LlD 0 } [wl } i -

and prove a few lemmas first. The following lemma is used to
- - " Ky Ka| |wn
prove Theorem 4. It gives a necessary and sufficient condition

for a givenk_ to be regularly implementable by full interconnece will now prove thatk, is, in fact, unimodular. Sinck€ c

tion (see also [10]). P, there exist$F; Fy] € R***[¢] such that
Lemma7: LetP c LY. LetP .y beits controllable part. Let
K € £¥. Then, the following two statements are equivalent: (F B {K{ID 0 } —[D 0]
1) Kisregularly implementable w.r® by full interconnec- Ko Koo
tion;

Equating, we get that>,K>>; = 0, whenceF, = 0. Con-
2) K+ Poont =P sequently,F1 K1, D = D. BecauseD is nonsingular, we get
Proof: It is easily proven that, for any unimodularp g7 — 1 soK/, is leftinvertible. Further, since (5) is a min-
U € RPV[], K € £¥ is regularly implementable W.rt. jma| representatiorf’, has full-row rank, and hence it is uni-

P € £¥ if and only if U(d/dt)K is regularly implementable modular. This implies thak is also represented minimally by
w.rt. U(d/dt)P. Also, K + Peons = P if and only if D 0 wy i W
U(d/d)K + (U(d/dt)Pheon, = U(d/dt)P. Hence, without | Ky, Koy | | wy | = O NOW define the controlle€ € £

loss of generality we can assume thlatis represented by by K»;w; + Kssws = 0. SinceK», has full-row rank, the in-

R(d/dt)w = 0, with R in Smith form: R = [D 0] with terconnection is indeed regular. O
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It follows from this lemma that if? is controllable, then every Note thatXC = P N C'. Hence,X is implementable w.r.tP
sub-behaviofC of P is regularly implementable (by full inter- by full interconnection. We claim that this interconnection is
connection), see also [19]. regular, i.e.p(P) + p(C’) = p(K). Indeed, by Lemma 8

For a givenB € £¥ itis important to know how to compute
its input and output cardinalities from the parameters of the rep-

resentation in which itis given. The following lemma solves this Ry B Rz
problem for the case of latent variable representations. p(K) =rank | By 0 | —rank | 0
Lemma 8: Let B € £¥ be represented by the latent variable 0 ¢ | C
representation _ vank(Fay) + rank <|:R6Ll Rg} )
d d _ Ry ]
R<%>w+M<%>£—O (6) —rank([c )
=p(P) +p(C).

with latent variable/. Then, we have

Thus, we have shown thtis regularly implementable w.r®
p(B) =rank([R M]) — rank(M). (7) by full interconnection.

) _ ] [(2)=(2)]: Assume thafC is regularly implementable w.r.t.

Proof: Letl/ be a unimodular polynomial matrix such thatp by full interconnection, and that’ c X C . We shall show
UM = A(/)Il , with M; having full-row rank. Partitioning thatX is implementable w.r.tPg,; by regular interconnection
% throughe. Again, Re;w = 0 is a minimal kernel representation

UR = |:Rl:| compatibly, we get tha,w = 0 is a kernel of P. LetCy € £¥ be a controller that, w.r.2, regularly imple-

2 R M mentsiC by full interconnection, and letyw = 0 be a minimal

1 1

representation of8. Thus we get thatank R 0 — kernel representation @§. Hence
2
rank(Rs) + rank(M; )= p(B) + rank(M). This proves our
claim. U Ri1 Ry
The following lemma establishes an important link in imple- Ry O {w} =0 (8)
mentation issues. We use this lemma in the proofs of the stabi- C, O ¢

lization and the pole placement results.
Lemma 9: Let P € £%1€ be given. Let € £¥ be such is a minimal kernel representation ;. Using thisCy, we
that\' C K C P. Then, the following statements are equivalenghall construct & € £ which implementsC w.r.t. Py by

2) K is regularly implementable w.r:Ps,, throughc; regular interconnection through
3) K is regularly implementable w.r® by full interconnec-  The hidden behaviok/is represented by the kernel represen-
tion. tation: | £11 | w = 0. This representation does not need to be

. _ i Rop
. Proof: Let Rt w+ Rac _ 0 b? a mlnlmal_ kernel repreSen-minimal. LetGw = 0 be a minimal kernel representation/of
tation of Ppy;. After premultiplication by a suitable unlmodular-l-hen there exists a unimodular matftk, U] € R***[¢], par-

matrix, Pruy is represented by titioned conformably, such that

i ][

Rgl 0 C o Rll _ G
ENECEAIME ©

with R;5 having full-row rank.

((1)=(2)) By the elimination theoremR,;w = 0 is a min- Note thatC = 7 N ¢y, henceN C K implies N C Cy. This
imal kernel representation . SinceX is implementable w.r.t. means that there exists &he R***[¢] such that the kernel rep-
Pra by regular interconnection throughthere exists § € £¢  resentations of’andC are related as in the following equation:
which regularly implement&’. Let Cc = 0 be a minimal kernel

representation af. Hence Ky is represented minimally by R
F [ Rll} = Cp.
Ryt Ryo >t
Ru 0 ||%|=0 , . _
021 o [ c} : Using (9), we getCy = FU,G. Also let the inverse of the uni-
Wi

modular matrix(U; U] be V. and let this be further parti-
2

By definition, K is the behavior obtained frolig, by elimi- . . Ry,
natinge. Now, defineC’ € £¥ by the following latent variable tioned conforming with the block% Ry
representation (here, the latent variable)is

Ry R |w —0 Vi Vie| |Bu| |G
0 C c| 7 Vo Vaz||Raa| | 0]

} as follows:
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We now claim thatC is implemented by regular interconnec-connection. Now using Proposition 1, we obtain tRahust be

tion with respect tdPy,1 by the controlleilC € £€ defined by stabilizable.

FU Vi1 Ri2¢ = 0. Indeed, we have the following equality: (<) We need to show that iis stable andP is stabilizable,
then there exists a stable which is implementable w.r.®g,;
by regular interconnection throughSinceP is stabilizable, by

G ViR Vit Viz 0 Proposition 1 there exists a stailé € £¥ which is regularly
0 Vo1 Ryo = Vou Voo 0 implementable by full interconnection witR. Using Lemma
0 FU V1R FUVI, FUVI, =1 7, it follows thatK' + Peone = P. Now defineX € £¥ by
R, Ry, K = N+ K. Because&X + Peony = P andAN C K, we use
x | Ry 0 |. (10) theorem 4 to infer that thik is regularly implementable w.r.t.
FU,G 0 Pran throughe. SinceX” and A are stablek also is stable. This
concludes the proof of the theorem. O
Note that in this equality, the matrix in the middle is unimod-
ular. Further, the matrix on the right is the same as that in (8). V. AN EXAMPLE: THE STATE SPACE CASE

Hence, the matrix on the left also yields a minimal kernel rep- il . in thi . briefl lain h h
resentation ofC,;;. Consequently, the matrix consisting of the As an illustration, in this section we briefly explain how the

third block row of the matrix on the left has full-row rank. Sincd@in results of this paper can be applied when the full plant be-
the first two block rows of the matrix on the left yield a minimal _aV|or7>fu11 is represented by an input-state—output representa-

kernel representation 6%, while the third block row yields on, 1.,
a minimal kernel representation 6f the interconnection of d
and Py, is regular. This yields the conclusion thdtis imple-  Pp;; = {(a:, u,y) € LY°(R,RMMP) | o = Az + Bu
mentable w.r.tPgy by regular interconnection through O dt

Using the above lemmas we prove Theorem 4. andy = Cx + Du}. (11)

Proof of Theorem 4: (iff)We assume thak is such that )

N C K C PandK + Peom = P. Using Lemma 7, we infer that We takew = « ande = (u,y). Consequently, the hidden be-
the second condition is equivalent to regular implementabilijavior V' is given by N = {x | (d/dt)r = Az andCr =
of X by full interconnection withP. Using Lemma 9 and the 0}. Clearly, NV is stable if and only if A=AL has full-

. o - . ; C
first condition, we infer thatC is regularly implementable w.r.t. ) . Lo . -
P throughe g yimp column rank for allx in C*. This coincides with detectability

(only if) Since K is regularly implementable W.r.tPa of the pair(C, A). Also, A" = 0 if and only if this matrix has

throughe, it follows thatA’ C K C . Now using lemma 9, this full-column rank for allA € C. This coincides with observ-
K is regularly implementable w.r.22 by full interconnection. ability of the pair(C, 4).

: : The manifest behavior is equal to
Hence, using Lemma 7, we have that+ P, = P. This - -
completes the proof. P = {z | 3 uwsuchtha{d/dt)x = Az + DBu}.

Equipped with these lemmas, we prove the pole Iacemé/x show thatP is controllable (stabilizable) if and only if the
theo(;ll(i.lr[r)]pTh(\aAgrem 5 as follows we prov pole p paﬁr (A, B) is controllable (stabilizable). Let’ € R™*™ be a

Proof of Theorem 5:(=) Assume that for every € R[¢], nonsingular matrix such tha@tB = By
there exists a regularly implementallesuch thaty - = . By r
Lemma 9 K is implementable w.r.t? by regular, full intercon- full-row rank. LetF' be partitioned intd?" = Fl depending

nection. Since is arbitrary, from Proposition 2 it follows th@& on the size ofB,. Then P is given by the r?unimal kernel
is controllable. From the controller implementability theore”}epresentation(lFQA — Fy(d/dt))z = .

Proposition 3, we obtai™ ¢ K. By takingr = 1, we get Obviously, for anyA € C we haverank([A — A\ B]) =

K =0, and hence/,\/_: 0 as well. _ . rank(Bp) + rank(F>A — F> ). Hence the paifA4, B) is con-
(<) Assume thaPis controllable, and tha¥/ = 0. SincePis  4|jahle (stabilizable) if and only i is controllable (stabiliz-
controllable, for any monie € R[¢], there exists & € £¥ that able).

is implementable w.r.t> by regular, full interconnection, with - s gives us the conclusion: pole placementis possible if and
X = r (see Proposition 2). Furthek C K, and hence, using o1 if (4, B) is controllable andC, A) is observable. Simi-
Lemma 9, we conclude that is implementable w.r.Prn bY |41y stabilization is possible if and only {tA, B) is stabiliz-
regular interconnection through This proves the pole place- 516 and ¢, A) is detectable. These conclusions coincide with

ment theorem.. o i classical results about state space systems, see, for example, [11,
Finally, we give a proof of the stabilization theorem. This aIsB_ 252], [15, p. 66], and the references therein.

makes use of Theorem 4.

Proof of Theorem 6:(=) Assume thaiC is implementable
w.r.t. Prn by regular interconnection through and that it is
stable. We need to show thafis stable andP is stabilizable.  Inthe classical view of control, a controller is, in general, con-
By Proposition 3N C K, and hence)is stable. sidered to be a feedback processor that generates control inputs

We now show thaP is stabilizable. Using Lemma 9, we firstfor the plant on the basis of measured outputs of the plant. In
deduce thafC is implementable w.r.tP by regular, full inter- our set-up, controller behaviors are obtained directly from the

, with B; having

VI. INPUT-OUTPUT PARTITION
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full plant. It is important to know a priori when such controlled
behavior is implementable byfaedback processoResults on
this have been obtained in [14], [19], and [18]. We extend these
results for the problems considered in this paper.

Our first result states that i € £¥ is regularly imple-
mentable with respect tB;,;; throughe, and is autonomous (so,
in particular, if it is stable or has prescribed characteristic poly-
nomial), then for any controllef € £ that regularly imple-
mentskC there exists a partition of the control variaklesuch
that the interconnection d%;,;; andC is, in fact, a feedback in-
terconnection:

Theorem 10: Let Pe1 € £¥ 7. LetK € £¥ be autonomous
and regularly implementable throughand leiC € £€ be acon-
troller that regularly implement&’. Then, possibly after per-
muting its components, there exists a partitioncofto ¢ =
(y, w1, uz) such that

i) for (w,y,u1,u2) € P, (u1,uz) is input and(w, y) is
output;

i) for (y,u1,u2) € C, (y,uz) is input andu, is output;

iv) for (w,y, w1, u2) € Kpn, uz is input and(w, y, uy) is

output.

Fig. 4. Feedback interconnectionBfandC.

with the x’s denoting the corresponding blocks B6;. Note
that if K is autonomous, so i%/. SinceGw = 0 is a minimal
kernel representation d¥’, G must be square and nonsingular.
From the construction of the blocks in the above representation,
we can infer that inCp,y, u2 is input and(w, y, u1 ) is output;
in Pran (u1,u2) is input andw, ) is output; and irC (y, us) is
input andu, is output. O
As a special case, whefig,; is autonomous, there are no
o inputs and the matrix in (12) is square and nonsingular. The
Proof: Let Ryw + Ryc = 0 be a minimal kernel rep- partitioning still works, except that we interpres as having
resentation ofPr,y. Let U be a unimodular matrix such thatzerg components. Fig. 4 depicts how the control variables are
UR;, = G , with G full-row rank. Accordingly partition partitioned into inputs and outputs in order to implement the
0 controller behavior in a feedback configuration.
UR, = R21} Then G By | w) _ 0 is a minimal  The above theoremssignsan input—output partition without
Ry | 0 Rpf|c . modifying the controller itself. Often, we are not allowed to
kernel representation @%;,;. LetC € £% regularly implement . - L
choose an input—output partition, because we are giyaori

K. AssumeCc = 0 is a minimal kernel representation 6f ' .
- ) that some variables are sensors, while others are actuators.
Then a minimal kernel representation of the corresponding :
Hence, necessarily, the sensors are plant outputs and should,

Is given by correspondingly, be controller inputs. The actuators, then, are
G Ry inputs to the plant. In the following theorem we show that if
0 Ry {w} —0. (12) our plantP;,; has an a priori given input—.output_structure with
0o C respect to sensors and actuators, ankl it £V is regularly

implementable and autonomous, téran be regularly imple-
[ Ry _ mented by a controllef € £¢ that takes the sensors as input,
The submatrlxi; C has full-row rank, hence (possibly after &, 50y ates part of the plant actuators. Skigg is again not
permutation of its columns, and accordingly, of the componemtecessarily autonomous, some control variables remain free.
of ¢), there exists a partition of this submatrix inhl';l Q1:| These can be interpreted as plant actuators which are not being
> Q2 used for the control of the to-be-controlled variables.

: WYL i -be-
such that[Pll is square and nonsingular. Due to the nonsingu-Theorem 11:Let Pran € L¥HVF with to-be-controlled

) b ] ) variablew and control variable = (y,«). Assume, inPg,;,
larity, again after possibly permuting the columns, we can pag-s input and(w, ) is output. Then, for every regularly imple-
titlon mentable, autonomous € £¥, there exist a controlle? € £¢

Pl [Py P that implementdC throughe, and a partitions = (w1, u2) such
P| | Pn Px that

* inC, (y,up) is input andu; is output;
with P11 andP»» square and nonsingular. Such a partition exists « in K, u2 is input and(w, ¥, u, ) is output.
because of Lagrange’s formula which expresses the determinant proof: The proof of this theorem closely mimics the proof
as a sum of the products of the determinants of its minors gfthe previous theorem. L&, be represented by the minimal

Suitable dimensions. kerne' representation
Summarizing, partitioning: = (y, w1, u2), we have now
found the following minimal representation &f.: G R R w
21y 21u -0
0 Ry Raoy
G % * * y
0 Pu P2 @ Uy =0 with G square and nonsingular (again becaugeis au-

0 P P Qo Uo tonomous). LetCyy + C,u = 0 be a minimal kernel
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representation of a controll€¥ € £ that regularly imple-  Consider the full plant behavid?;,;; € £¥+€. An extension
mentsk throughc. Hence, we hav&,; given by the following of Ppy is a behaviorPg, € gw+c+d (with d an arbitrary
minimal kernel representation positive integer), with variable@w, ¢, d), such that

2) dis free in P,

P N B 3) Prun = {(w, ) | such thatw, c,0) € P5i}.
0 ‘C%Qy 52'“ vr=u Thus,PE being an extension &%y, formalizes thafPfuu has
Y “ “ exactly those signalay, ¢) that are compatible with the distur-
R R banced = 0 in Pg5;. Of course, a given full behavid?:,y; has
The submatri 'C%Qy CQ’QU has full-row rank. Furthei,>, many extensions.
y w . H xt H [
is square and nonsingular becagsey) is output inPg,y. This | FOr @ given extensioR,; and a given controllef € £, we
o Roo, define the extended controlled behavior by
implies that C ¥ | has full-column rank. Hence, it is possible
Yy ext __ Xt
to partition (possibly after a permutation)into v = (g, us) Kiai = {(w, e,d) | (w, ¢, d) € Prij ande € C} .
such thatCy,, is represented as follows: A controllerC shall be acceptable only if the disturbante
w remains free inCS%;, for any possible extensioR;. It turns
G Rayy Rovuy, Rorw, out that this is guaranteed exactly, by the regularity of the inter-

0 Ry Razu, Rosu, 5 =0 (13) connection ofPy,; andC!
0 C, Cu, Cu, ul Theorem 12:The following two conditions are equivalent:
2 2) the interconnection dP;,; andC is regular;

[ Rog, Roo , _ 3) for any extensiofPgy; of Pfuu, dis free inKgy;.

with CyJ * | square and nonsingular. This lets us Proof: ((1)=(2)) Suppose&>sy; is represented minimally
chooseu, as mput toKru1 and the rest of the variables asy R;w+ Rac+ Rad = 0. ThenPfuu is represented b, w +
output. In order to havey as output of the controller, we R,¢c = 0.

require thatC,, be nonsingular. Frong’, we shall construct  We first claim that{?; R,] also has full-row rank. Indeed,
aC € £° to obtain the necessary nonsingularity. We havgssume this matrix did not have full-row rank. Then after pre-

that Rozu, has full column rank. Hence there exists 5nult|pllcat|on by a unimodular matri?s; is represented min-

Cu, imally by
T € R***[¢] such thatdet(C,, + TR32,,) # 0. Once such
aT is found, we define&® € £€ by the kernel representation R R R w
= L2 2l lel=0 (14)
(Cy +TR22y)y+(Cu,l +TR22'11,1 )ul +(Cu,2 +TR22'11,2 )U/Q - 07 0 0 Rg d ?

with output »; and input(y, us). This C implementsXCen

regularly. This completes the proof. O with RY # 0. Equation (14) ha&d = 0, and this means thalt

In general, the controller transfer functions obtained in the - . free (against our assumption). THi&is R.] has full-row
above two theorems, are nonproper. In [19], it has been argqgﬂk as claimed. ' 2

that many applications of control do not require this proper- AssumeCc = 0 is a minimal kernel representation of the

ness condition on the controller transfer functions, but that t@g troller C. Since P and C are interconnected regularly,
properness condition is, nevertheless, a very important spe 9{' R, full '

case. c also has full-row rank.
Con5|der the following minimal kernel representation of the

VII. DISTURBANCES ANDREGULAR INTERCONNECTION extended controlled behaviafys)

In Section IlI, we have formulated the problems of stabiliza- w
tion and pole placement for a given plai, with to-be-con- {Rl Ry 33} e | =0 or
trolled variablew and control variable. In most system models, 0 ¢ 0 d ’
an unknown external disturbance variaklgealso occurs. The R R R
stabilization problem is then to find a controller actingcsuch [ 01 02} [ c} = [ 0 3} d (15)
that whenevet(t) = 0 (¢ > 0), we havew(t) — 0 (t — o).
Typically, the disturbancé is assumed to be free, in the sense . R, )
thateveryC™ functiond is compatible with the equations of Because of the full-row rank condition an ; Jﬁ;by the
the model. As an example, think of a model of a car suspensitieorem on input—output partition (see [7, Th. 3.3.22]} free

system given byR;(d/dt)w + Ro(d/dt)c + Rs(d/dt)d = 0, inthe C™ sense, i, also.

whered is the road profile as a function of time. In the stabi- ((2)=(1)) Let Ryw + Rsc = 0 be a minimal representation
lization problem, one putd = 0 and solves the stabilization of P;,;. One of thePg, that yieldsPry, is represented by
problem for the full plantPs represented byR; (d/dt)w + Riw + Rec+ d = 0. Let C be given by the minimal kernel
Ry(d/dt)c = 0. In doing this, one should make sure that theepresentatiod’c = 0. Then, we have that is free in
stabilizing controlleiC: C(d/d¢)c = 0, when connected to the

actual modeldoes not put restrictions ol The notion of reg- Ryw + Ryc+ d =0,

ular interconnection captures this, explained as follows. Cc =0. (16)
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R, R,
0 C
not have full-row rank. Then, there

p2] # [0 0], such
[0 0]. Now we claim that

We now show that has full-row rank. Sup-

pose this matrix di
exists a polynomial row vectofp;

R, R
that [pl pg] |: 01 C,Q

p1 # 0. For, otherwise, we get.C = 0, and this means
p2 = 0 too, sinceC has full-row rank. Hence, as claimed, [10]
p1 # 0. From (16), we get that for allw, ¢, d) in K&, we

R, R, I1|"
have [pl pg] |: 01 C,Q 0:|
d

p1d = 0 which would mean tha# is not free inry. Hence

0. This results in

(11]

(12]

p1 p2] # [0 0] leads to a contradiction. This means that
}31 }22 has full-row rank and we have shown that the[13]

interconnection ofPg,; andC is indeed regular. 141
14

VIIl. CONCLUSION
. : . N
In this paper, we have studied control by interconnection in a

behavioral framework. In particular, for linear differential sys- [16]
tems with two types of variables, to-be-controlled variables and
control variables, we have established necessary and sufficient)
conditions for regular implementability of a given sub-behavior
of the manifest plant behavior. We have formulated the pokf18
placement problem and the stabilization problem as problems
of finding suitable, regularly implementable sub-behaviors.
These formulations were completely representation—free[.lg]
Using our characterization of regular implementability, we
have obtained necessary and sufficient conditions for pole
placement and stabilization. Again, these conditions were
expressed in terms of properties of the plant behavior itse
and not as properties of a particular representation of it. As
illustration, we have studied the case that the plant is given

an input—state—output representation. We have proven that
controlled behaviors obtained in the pole placement proble
and the stabilization problem can, in fact, be implemented |
means of (singular) feedback. In fact, if for the plant to b
controlled an actuator—sensor structure is specified in advance,
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