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Stabilization, Pole Placement, and Regular
Implementability

Madhu N. Belur and H. L. Trentelman, Senior Member, IEEE

Abstract—In this paper, we study control by interconnection of
linear differential systems. We give necessary and sufficient con-
ditions for regular implementability of a given linear differential
system. We formulate the problems of stabilization and pole place-
ment as problems of finding a suitable, regularly implementable
sub-behavior of the manifest plant behavior. The problem formula-
tions and their resolutions are completely representation free, and
specified only in terms of the system dynamics. Control is viewed as
regular interconnection. A controller is a system that constrains the
plant behavior through a distinguished set of variables, namely, the
control variables. The issue of implementation of a controller in the
feedback configuration and its relation to regularity of intercon-
nection is addressed. Freedom of disturbances in a plant and reg-
ular interconnection with a controller also turn out to be inter-re-
lated.

Index Terms—Behaviors, controller implementation, intercon-
nection, pole placement, regular implementability, stabilization.

I. INTRODUCTION AND NOTATION

I N THIS PAPER, we discuss the issue of stabilization of
linear dynamical systems. The problem is studied in the be-

havioral context and control is viewed as interconnection. This
view of treating control problems has been used before in, for
example, [2], [3], [7], [16], and [19], in an control context
in [1], [4], [5], [12]–[14], [17], and [18], for adaptive control in
[9], and for distributed systems in [6]. In contrast to [19] where
the problems of stabilization and pole placement were consid-
ered for the case thatall system variables are available for inter-
connection (the so-called full information case), we work in the
generality that we are allowed to use only some of the system
variables for the purpose of interconnection. These variables are
called the control variables. Restricting oneself to using only
the control variables for interconnection introduces the issue of
implementabilityinto the control problem, see [18] and [9]. In
the context of stabilization, an important role is played by the
notion ofregular implementability. We establish necessary and
sufficient conditions for a given behavior to be regularly imple-
mentable. This result is then applied to solve the problems of
stabilization and pole placement by interconnection.

The paper is structured as follows. We start with the nota-
tion that we use in this paper. A brief review of basic defini-
tions and concepts of the behavioral approach forms the later
part of this section. In Section II, we discuss the problem of
restricting control to just the control variables. The relevant no-
tions are introduced and we give necessary and sufficient condi-
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tions for regular implementability. Section III contains the main
problems of this paper. These problems deal with shaping the
trajectories of the to-be-controlled variables, using the con-
trol variables . We consider the problems of stabilization and
pole placement. The main results of this section are two theo-
rems that solve these problems. The proofs of the theorems are
given in Section IV. As an illustration, in Section V we apply our
main results to the case that the plant to-be-controlled is given
in input–state–output representation. Implementation of a con-
troller in a feedback configuration plays a very prominent role in
control theory. This issue is addressed in Section VI. Finally, in
Section VII, we give a motivation for the fact that in our problem
formulations we restrict ourselves to regular interconnections.

We first discuss some of the notation to be used in this paper,
and review some basic facts from the behavioral approach. We
use the standard notation for the -dimensional real Eu-
clidean space. Often, the notation is used if denotes a typ-
ical element of that vector space, or a typical function taking its
value in that vector space. Vectors are understood to be column
vectors in equations. In text, however, we write them as row vec-
tors.

The ring of (one-variable) polynomials with real coefficients
in the indeterminate is denoted by . denotes
the set of matrices with rows and columns in which each
entry is an element of . We use the notation when
the number of rows is unspecified.

In this paper, we deal with linear time-invariant differential
systems, in short, linear differential systems. A linear differen-
tial system is defined as a dynamical system whose behavior
is equal to the set of solutions of a set of higher order, linear,
constant coefficient differential equations. More precisely,
there exists a polynomial matrix such that

. Here,
denotes the space of locally integrable functions fromto w,
and is understood to hold in the distributional
sense. The set of linear differential systems with manifest
variable taking its value in is denoted by .

We make a clear distinction between the behavior as defined
as the space of all solutions of a set of (differential) equations,
and the set of equations itself. A set of equations in terms of
which the behavior is defined, is called arepresentationof the
behavior. Let be a polynomial matrix. If a be-
havior is represented by then we call this a
kernel representation of . Further, a kernel representation is
said to beminimalif every other kernel representation ofhas
at least rows. A given kernel representation, ,
is minimal if and only if the polynomial matrix has full-row
rank. We speak of a system as the behavior, one of whose
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representations is given by or just .
The “ ” is often suppressed to enhance readability. We will
also encounter behaviors with manifest variable , that are
represented by equations of the form ,
in which an auxiliary, latent variable appears. Here, and

are polynomial matrices with the same number of rows.
Through such an equation, we can consider the subspace of all

for which there exists an
such that the equation holds. A technical detail is that, by itself,
this subspace is not an element of, because it is not a closed
subspace (closed in the topology of ). Therefore, we
call a latent variable representation of

if

such that

where the closure is taken in the topology. Then, by the
elimination theorem (see [7, Ch. 6, Th. 6.2.6]), .

In this paper, we avoid the issue of properness of rational rep-
resentations (transfer functions). Hence, we often restrict our-
selves to signals that are infinitely often differentiable func-
tions of time. The space of functions that are infinitely often
differentiable with domain and co-domain , is denoted by

. Let be represented by the kernel rep-
resentation with (which also
means that it is under-determined). Then some components of

are unconstrained by the requirement
. These components are termed asinputsor are said to

be free (in the sense, for the purpose of this paper). The
maximum number of such components is called theinput car-
dinality of (denoted as ). Once free components
are chosen, the remaining components are determined
up to a finite-dimensional affine subspace of .
These are calledoutputs, and the number of outputs is denoted
by . Thus, possibly after a permutation of components,

can be partitioned as , with the com-
ponents of as inputs, and the components of as out-
puts. We say that is an input–output partition of ,
with input and output . The input–output structure of

is reflected in its kernel representations as follows. Sup-
pose is a minimal kernel representation of.
Partition , and accordingly . Then

is an i/o partition (with input and output )
if and only if is square and nonsingular. In general, there exist
many input–output partitions, but the integers and
are invariants associated with a behavior. It can be verified that

is equal to the rank of the polynomial matrix in any (not
necessarily minimal) kernel representation of(for details see
[7]).

A behavior whose input cardinality is equal to 0 is calledau-
tonomous. An autonomous behavior is said to be stable, if
for all , we have as . In the context of
stability, we often need to describe regions of the complex plane

. We denote the closed right-half of the complex plane by
and the open left-half complex plane by . A polynomial ma-
trix is calledHurwitz if for all

. If is represented by then
is stable if and only if is Hurwitz.

For autonomous behaviors, we also speak about poles of the
behavior. Let be autonomous. Then there exists an

such that is represented minimally by
. Obviously, for any nonzero , also yields a kernel

representation of . Hence, we can choosesuch that
is a monic polynomial. This monic polynomial is denoted by
and is calledthe characteristic polynomial of . depends
only on , and not on the polynomial matrix we used to
define it: if , both represent minimally then there exists
a unimodular such that . Hence, if and

are monic then . Thepolesof
are defined as the roots of . Note that if and only if

. A behavior is stable if and only if all its poles are in .
We now discuss the issue of control as interconnection. A

plant behavior (denote it by ) consists of all trajectories sat-
isfying a set of differential equations. One would like to restrict
this space of trajectories to a desired subsystem, . This re-
striction can be effected by increasing the number of equations
that the variables of the plant have to satisfy. These additional
laws themselves define a new system, called the controller (de-
noted by ). The interconnection of the two systems (the plant
and the controller) results in the controlled behavior. After
interconnection, the variables have to satisfy the laws ofboth
and . More precisely, let (the plant) and (the
controller). Then thefull interconnectionof and is defined
as the system with behavior . Note that is again
an element of . A given behavior is calledimple-
mentable with respect to by full interconnectionif there exists
a such that . The full interconnection of
and is calledregular, if

Let and be minimal kernel representations of
and respectively. Then the full interconnection ofand is

regular if and only if is a minimal kernel represen-

tation of . Detailed discussions on control as interconnec-
tion and regular interconnections can be found in [19]. Regular
interconnections have also been of interest in [2] and [3].

Finally, we review the concept of controllability in the context
of the behavioral approach. A behavior is controllable
if for all , there exists a and a such
that for and for .
A weaker notion isstabilizability, which is defined as follows.
A behavior is stabilizable if for all , there exists a

such that for , and as
. Thus every trajectory in a stabilizable behaviorcan

be steered to 0, asymptotically.
Often, we encounter behaviors that are neither au-

tonomous nor controllable. Thecontrollable partof a behavior
is defined as the largest controllable sub-behavior of. This

is denoted by . A given can always be decom-
posed as , where is the (unique)
controllable part of , and is a (nonunique) autonomous
sub-behavior of . For details we refer to [7].
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We shall relate the notions of stabilizability to that of inter-
connection. Interconnections and stabilizability in the behav-
ioral context have been issues in many publications, see, for
example, [16] and [3]. Also, [7] contains a detailed exposition.
We need the following proposition from [19] that relates stabi-
lizability and regular, full interconnection.

Proposition 1: Let and let . Assume
that is a kernel representation of. Then the
following statements are equivalent:

1) is stabilizable;
2) for all ;
3) there exists a such that is stable and imple-

mentable w.r.t. by regular, full interconnection.

Furthermore, if the representation is minimal
then any of the above statements is equivalent to

4) there exists a such that is nonsingular

and Hurwitz.

In the aforementioned, is understood to be the rank
of the complex matrix , while is the rank of the
polynomial matrix . We say that the controller sta-
bilizes , if the system obtained by the full interconnection of

and is stable, and the interconnection is regular. Note that
from the above proposition, if is not stabilizable then there
does not exist which stabilizes .

Thus controlling a system means restricting the system be-
havior to a desired sub-behavior. Stability of the sub-behavior
is usually the desired feature. An alternate feature is specifying
the poles of the sub-behavior. For a given behavior, by placing
the poles in a given region, we mean, finding a controller such
that the fully interconnected system is autonomous, the poles
of the corresponding controlled system are in the given region
and the interconnection is regular. It was shown in [19] that if
one does not require the interconnection to be regular, then the
pole placement problem is essentially a triviality. The following
proposition from [19] that relates controllability, regular full in-
terconnection, and pole placement, will help us in solving the
pole placement problem for the general case.

Proposition 2: Let and let . Assume
that is a kernel representation of. Then, the
following statements are equivalent:

1) is controllable;
2) for all ;
3) for all monic , there exists a such that

and is implementable w.r.t. by regular, full
interconnection.

Furthermore, if the representation is minimal
then any of the above statements is equivalent to:

4) for all , there exists a such that

.

We shall also deal with systems in which the signal space
comes as a product space, with the first component viewed as
an observed, and the second as a to-be-deduced variable. We talk
about observability (in such systems). Given with
manifest variable , is said to beobservable
from if , implies . Let

Fig. 1. Plant.

Fig. 2. Controller.

Fig. 3. The plant and controller after interconnection.

be a kernel representation of
. Then observability of from is equivalent to

having full column rank for all . The weaker notion of
detectabilityis defined along similar lines. Given ,

is said to be detectable from if
implies as . In the aforementioned
kernel representation, detectability of from is equivalent
to having full-column rank for all . For details,
see [7].

II. REGULAR IMPLEMENTABILITY

Suppose we have a plant to be controlled, with two types
of variables, see Figs.1, 2, and 3. In the given plant, the vari-
ables whose trajectories we intend to shape (called theto-be-
controlled variables), are denoted by . These to-be-controlled
variables can be controlled through a set ofcontrol variables ,
over which we can “attach” a controller. These are the variables,
that can be measured and/or actuated upon. Often we have some
common components in and . We formulate the problem,
however, for the general case, in which we have access to just
the control variables.

Before the controller acts, there are two behaviors of the plant
that are relevant: (called thefull plant behavior) that for-
malizes the dynamics of the variablesand , and the behavior

(called themanifest plant behavior) that formalizes the dy-
namics of the to-be-controlled variablesonly. Thus

satisfies the plant equations

such that (1)

In this paper, we assume that the plant is a linear differential
system, i.e., . The particular representation by
which it is given, is immaterial to us. The manifest plant be-
havior is obtained byeliminating from , so, by the elim-
ination theorem, .
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A controller restricts the trajectories thatcan assume and is
described by acontroller behavior :

satisfies the controller equations

The full controlled behavior is obtained by the intercon-
nection of and through the variable and is defined as

and (2)

Themanifest controlled behavior is obtained by eliminating
from and is defined as

such that (3)

In that case, we say thatis implemented by, or implements
through . A given is called implementable with

respect to by interconnection through, if there exists a
controller , such that is implemented by . If it is clear
from the context, we often suppress the specifications “w.r.t.

” and “through .” An important issue is the question which
are implementable, i.e., for which there exists

a controller such that (3) holds. A crucial concept to
answer this question is the notion of hidden behavior: thehidden
behavior is the behavior consisting of the plant trajectories
that occur when the control variables are zero

(4)

We have access to only the control variables—hence the notion
of being hidden from the control variables.

The following proposition from [18] settles the question of
implementability for a given . We refer to this proposi-
tion as the controller implementability theorem.

Proposition 3: Let be a given full plant be-
havior, and let be the manifest plant behavior and
hidden behavior, respectively. Then is implementable
w.r.t. by interconnection throughif and only if

In addition to implementability issues, the hidden behavior
plays a role in observability and detectability of . It can be
easily seen that, in , is observable from if and only if

, and is detectable from if and only if is stable.
Roughly speaking, for a given we want to find a con-

troller such that the manifest controlled behaviorhas desired
properties. However, we shall restrict ourselves to’s such that
the interconnection of and is regular. A motivation for
this is provided in Section VII. The interconnection of and

through is regular if

i.e., if the output cardinalities of and add up to that of
.

A given is calledregularly implementableif there
exists a such that is implemented by , and if the
interconnection of and is regular. Similar to plain imple-
mentability, an important question is under what conditions a
given sub-behavior of is regularly implementable. The fol-
lowing theorem is the main result of this section, and provides
necessary and sufficient conditions for this.

Theorem 4: Let . Let be the corre-
sponding manifest plant behavior and hidden behavior respec-
tively. Let be the controllable part of . Let .
Then, is implementable w.r.t. by regular interconnection
through if and only if the following conditions are satisfied:

The previous theorem has two conditions. The first one is
exactly the condition for implementability through(as in the
controller implementability theorem). The second condition for-
malizes the notion that the autonomous part ofis taken care
of by . While the autonomous part of is not unique,
is. This makes verifying the regular implementability of a given

computable. As a consequence of this theorem, note that if
is controllable, then is regularly implementable if and
only if it is implementable, see also the main results of [8].

III. POLE PLACEMENT AND STABILIZATION

In this section, we discuss the problems of pole placement
and stabilization. The problem statements and the theorems in-
volve the behaviors of the plant, etc., which have been defined
Section II.

Pole placement problem:Given , find condi-
tions under which there exists, and compute, for every monic

, a such that

• the interconnection of and is regular;
• the manifest controlled behavioris autonomous and has

characteristic polynomial.

Suppressing the controllerfrom the problem formulation, the
problem can alternatively be stated as:

Given , find conditions under which there exists, and
compute, for every monic a regularly implementable,
autonomous such that .

When the manifest controlled behavioris only required to
be stable, we refer to the problem as that of stabilization.

Stabilization problem: Given , find conditions
for the existence of, and compute such that

• the interconnection of and is regular;
• the manifest controlled behavior is autonomous and

stable.

Again, suppressing the controllerfrom the formulation, the
stabilization problem can be restated as:

Given , find conditions for the existence of, and compute
a behavior that is autonomous, stable and regularly
implementable.

The main results of this section are the following theorems,
which establish necessary and sufficient conditions for pole
placement and stabilization.

Theorem 5: Let . For every monic ,
there exists a regularly implementable, autonomous
such that if and only if and is controllable,
equivalently, if and only if

• in , is observable from;
• is controllable.
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Theorem 6: Let . There exists a regularly im-
plementable, autonomous, stable if and only if is
stable and is stabilizable, equivalently, if and only if

• in , is detectable from;
• is stabilizable.

Note that, neither in the problem formulations nor in the con-
ditions appearing in Theorems 5 and 6, do representations of the
given plant appear. Indeed, our problem formulations and their
resolutions are completelyrepresentation free, and are formu-
lated purely in terms of properties of thebehavior . Thus,
our treatment of the pole placement and stabilization problems
is genuinely behavioral. Of course, theorems 5 and 6 are ap-
plicable to any particular representation of as well. As an
example, in Section V we treat the case that is represented
in input–state–output representation.

In both the stabilization problem and the pole placement
problem, we have restricted ourselves to regular interconnec-
tions. We give an explanation for this in Section VII. At this
point we note that if in the above problem formulations we
replace “regularly implementable” by merely “implementable,”
then in the stabilization problem a necessary and sufficient
condition for the existence of is that is stable (equivalently:
in , is detectable from). In the pole placement problem,
necessary and sufficient conditions are that (i.e., in

, is observable from) and that is not autonomous.
We close this section with some words on the case that, in-

stead of only the behavior as of the -trajectories, we
also want to modify the behavior of the-trajectories in the con-
trolled behavior. Given a full plant behavior , this leads to
the problem of finding that is stable and regularly
implementable w.r.t. (the full stabilization problem), and
the problem of finding, for every monic polynomial , a

such that and is regularly imple-
mentable w.r.t. (the full pole placement problem). These
problems can be easily tackled by including the-variable in
the to-be-controlled variables, i.e., by introducing a new system
with to-be-controlled variable , and control variable
. The details are left to the reader.

IV. PROOFS OF THEMAIN RESULTS

In this section, we will give proofs of Theorems 4–6. We state
and prove a few lemmas first. The following lemma is used to
prove Theorem 4. It gives a necessary and sufficient condition
for a given to be regularly implementable by full interconnec-
tion (see also [10]).

Lemma 7: Let . Let be its controllable part. Let
. Then, the following two statements are equivalent:

1) is regularly implementable w.r.t. by full interconnec-
tion;

2) .

Proof: It is easily proven that, for any unimodular
, is regularly implementable w.r.t.

if and only if is regularly implementable
w.r.t. . Also, if and only if

. Hence, without
loss of generality we can assume thatis represented by

, with in Smith form: with

a nonsingular, diagonal matrix. Accordingly, partition
. This immediately yields , the controllable

part of

[(1) (2)]: Let be a controller that regularly implements
. Let be a minimal kernel representation

of . Then, since the interconnection is regular,is represented
minimally by

As a result, note that has full-row rank. We need to show
. Let . Let be

such that . Obviously,
. The converse inclusion,

, is immediate.
[(2) (1)]: Let satisfy . Assume is rep-

resented minimally by . Now, note that
if and only if there exists an

such that , with
. Using this, it is immediate that

is a latent variable representation of, with latent variable .
To eliminate , premultiply by a unimodular matrix

, such that with full-row rank.

Correspondingly, let . Then

is a (nonminimal) kernel representation of . Since

is also a kernel representation of,

there exists a polynomial matrix such that .
Since is unimodular, is also represented minimally by

(5)

We will now prove that is, in fact, unimodular. Since
, there exists such that

Equating, we get that , whence . Con-
sequently, . Because is nonsingular, we get

, so is left invertible. Further, since (5) is a min-
imal representation, has full-row rank, and hence it is uni-
modular. This implies that is also represented minimally by

Now define the controller

by . Since has full-row rank, the in-
terconnection is indeed regular.
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It follows from this lemma that if is controllable, then every
sub-behavior of is regularly implementable (by full inter-
connection), see also [19].

For a given it is important to know how to compute
its input and output cardinalities from the parameters of the rep-
resentation in which it is given. The following lemma solves this
problem for the case of latent variable representations.

Lemma 8: Let be represented by the latent variable
representation

(6)

with latent variable . Then, we have

(7)

Proof: Let be a unimodular polynomial matrix such that

, with having full-row rank. Partitioning

compatibly, we get that is a kernel

representation of . Thus we get that

. This proves our
claim.

The following lemma establishes an important link in imple-
mentation issues. We use this lemma in the proofs of the stabi-
lization and the pole placement results.

Lemma 9: Let be given. Let be such
that . Then, the following statements are equivalent:

2) is regularly implementable w.r.t. through ;
3) is regularly implementable w.r.t. by full interconnec-

tion.

Proof: Let be a minimal kernel represen-
tation of . After premultiplication by a suitable unimodular
matrix, is represented by

with having full-row rank.
((1) (2)) By the elimination theorem, is a min-

imal kernel representation of. Since is implementable w.r.t.
by regular interconnection through, there exists a

which regularly implements . Let be a minimal kernel
representation of. Hence, is represented minimally by

By definition, is the behavior obtained from by elimi-
nating . Now, define by the following latent variable
representation (here, the latent variable is):

Note that . Hence, is implementable w.r.t.
by full interconnection. We claim that this interconnection is
regular, i.e., . Indeed, by Lemma 8

Thus, we have shown that is regularly implementable w.r.t.
by full interconnection.

[(2) (1)]: Assume that is regularly implementable w.r.t.
by full interconnection, and that . We shall show

that is implementable w.r.t. by regular interconnection
through . Again, is a minimal kernel representation
of . Let be a controller that, w.r.t. , regularly imple-
ments by full interconnection, and let be a minimal
kernel representation of . Hence

(8)

is a minimal kernel representation of . Using this , we
shall construct a which implements w.r.t. by
regular interconnection through.

The hidden behavior is represented by the kernel represen-

tation: . This representation does not need to be

minimal. Let be a minimal kernel representation of.
Then there exists a unimodular matrix , par-
titioned conformably, such that

(9)

Note that , hence implies . This
means that there exists an such that the kernel rep-
resentations of and are related as in the following equation:

Using (9), we get . Also let the inverse of the uni-

modular matrix be and let this be further parti-

tioned conforming with the blocks as follows:
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We now claim that is implemented by regular interconnec-
tion with respect to by the controller defined by

. Indeed, we have the following equality:

(10)

Note that in this equality, the matrix in the middle is unimod-
ular. Further, the matrix on the right is the same as that in (8).
Hence, the matrix on the left also yields a minimal kernel rep-
resentation of . Consequently, the matrix consisting of the
third block row of the matrix on the left has full-row rank. Since
the first two block rows of the matrix on the left yield a minimal
kernel representation of , while the third block row yields
a minimal kernel representation of, the interconnection of
and is regular. This yields the conclusion thatis imple-
mentable w.r.t. by regular interconnection through.

Using the above lemmas we prove Theorem 4.
Proof of Theorem 4: (if)We assume that is such that

and . Using Lemma 7, we infer that
the second condition is equivalent to regular implementability
of by full interconnection with . Using Lemma 9 and the
first condition, we infer that is regularly implementable w.r.t.

through .
(only if) Since is regularly implementable w.r.t.

through , it follows that . Now using lemma 9, this
is regularly implementable w.r.t. by full interconnection.

Hence, using Lemma 7, we have that . This
completes the proof.

Equipped with these lemmas, we prove the pole placement
theorem, Theorem 5, as follows.

Proof of Theorem 5:( ) Assume that for every ,
there exists a regularly implementablesuch that . By
Lemma 9, is implementable w.r.t. by regular, full intercon-
nection. Since is arbitrary, from Proposition 2 it follows that
is controllable. From the controller implementability theorem,
Proposition 3, we obtain . By taking , we get

, and hence, as well.
( ) Assume that is controllable, and that . Since is

controllable, for any monic , there exists a that
is implementable w.r.t. by regular, full interconnection, with

(see Proposition 2). Further, , and hence, using
Lemma 9, we conclude that is implementable w.r.t. by
regular interconnection through. This proves the pole place-
ment theorem.

Finally, we give a proof of the stabilization theorem. This also
makes use of Theorem 4.

Proof of Theorem 6:( ) Assume that is implementable
w.r.t. by regular interconnection through, and that it is
stable. We need to show that is stable and is stabilizable.
By Proposition 3, , and hence, is stable.

We now show that is stabilizable. Using Lemma 9, we first
deduce that is implementable w.r.t. by regular, full inter-

connection. Now using Proposition 1, we obtain thatmust be
stabilizable.

( ) We need to show that if is stable and is stabilizable,
then there exists a stablewhich is implementable w.r.t.
by regular interconnection through. Since is stabilizable, by
Proposition 1 there exists a stable which is regularly
implementable by full interconnection with. Using Lemma
7, it follows that . Now define by

. Because and , we use
theorem 4 to infer that this is regularly implementable w.r.t.

through . Since and are stable, also is stable. This
concludes the proof of the theorem.

V. AN EXAMPLE: THE STATE SPACE CASE

As an illustration, in this section we briefly explain how the
main results of this paper can be applied when the full plant be-
havior is represented by an input–state–output representa-
tion, i.e.,

and (11)

We take and . Consequently, the hidden be-
havior is given by and

. Clearly, is stable if and only if has full-

column rank for all in . This coincides with detectability
of the pair . Also, if and only if this matrix has
full-column rank for all . This coincides with observ-
ability of the pair .

The manifest behavior is equal to
such that .

We show that is controllable (stabilizable) if and only if the
pair is controllable (stabilizable). Let be a

nonsingular matrix such that with having

full-row rank. Let be partitioned into depending

on the size of . Then is given by the minimal kernel
representation

Obviously, for any we have
. Hence the pair is con-

trollable (stabilizable) if and only if is controllable (stabiliz-
able).

This gives us the conclusion: pole placement is possible if and
only if is controllable and is observable. Simi-
larly, stabilization is possible if and only if is stabiliz-
able, and is detectable. These conclusions coincide with
classical results about state space systems, see, for example, [11,
p. 252], [15, p. 66], and the references therein.

VI. I NPUT–OUTPUT PARTITION

In the classical view of control, a controller is, in general, con-
sidered to be a feedback processor that generates control inputs
for the plant on the basis of measured outputs of the plant. In
our set-up, controller behaviors are obtained directly from the
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full plant. It is important to know a priori when such controlled
behavior is implementable by afeedback processor. Results on
this have been obtained in [14], [19], and [18]. We extend these
results for the problems considered in this paper.

Our first result states that if is regularly imple-
mentable with respect to through , and is autonomous (so,
in particular, if it is stable or has prescribed characteristic poly-
nomial), then for any controller that regularly imple-
ments there exists a partition of the control variablesuch
that the interconnection of and is, in fact, a feedback in-
terconnection:

Theorem 10:Let . Let be autonomous
and regularly implementable through, and let be a con-
troller that regularly implements . Then, possibly after per-
muting its components, there exists a partition ofinto

such that

ii) for , is input and is
output;

iii) for , is input and is output;
iv) for , is input and is

output.
Proof: Let be a minimal kernel rep-

resentation of . Let be a unimodular matrix such that

, with full-row rank. Accordingly partition

. Then is a minimal

kernel representation of . Let regularly implement
. Assume is a minimal kernel representation of.

Then a minimal kernel representation of the corresponding
is given by

(12)

The submatrix has full-row rank, hence (possibly after a

permutation of its columns, and accordingly, of the components

of ), there exists a partition of this submatrix into

such that is square and nonsingular. Due to the nonsingu-

larity, again after possibly permuting the columns, we can par-
tition

with and square and nonsingular. Such a partition exists
because of Lagrange’s formula which expresses the determinant
as a sum of the products of the determinants of its minors of
suitable dimensions.

Summarizing, partitioning , we have now
found the following minimal representation of :

Fig. 4. Feedback interconnection ofP andC.

with the ’s denoting the corresponding blocks of . Note
that if is autonomous, so is . Since is a minimal
kernel representation of , must be square and nonsingular.
From the construction of the blocks in the above representation,
we can infer that in , is input and is output;
in is input and is output; and in is
input and is output.

As a special case, when is autonomous, there are no
inputs and the matrix in (12) is square and nonsingular. The
partitioning still works, except that we interpret as having
zero components. Fig. 4 depicts how the control variables are
partitioned into inputs and outputs in order to implement the
controller behavior in a feedback configuration.

The above theoremassignsan input–output partition without
modifying the controller itself. Often, we are not allowed to
choose an input–output partition, because we are givena priori
that some variables are sensors, while others are actuators.
Hence, necessarily, the sensors are plant outputs and should,
correspondingly, be controller inputs. The actuators, then, are
inputs to the plant. In the following theorem we show that if
our plant has an a priori given input–output structure with
respect to sensors and actuators, and if is regularly
implementable and autonomous, thencan be regularly imple-
mented by a controller that takes the sensors as input,
and actuates part of the plant actuators. Since is again not
necessarily autonomous, some control variables remain free.
These can be interpreted as plant actuators which are not being
used for the control of the to-be-controlled variables.

Theorem 11:Let with to-be-controlled
variable and control variable . Assume, in ,

is input and is output. Then, for every regularly imple-
mentable, autonomous , there exist a controller
that implements through , and a partition such
that

• in , is input and is output;
• in , is input and is output.

Proof: The proof of this theorem closely mimics the proof
of the previous theorem. Let be represented by the minimal
kernel representation

with square and nonsingular (again becauseis au-
tonomous). Let be a minimal kernel
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representation of a controller that regularly imple-
ments through . Hence, we have given by the following
minimal kernel representation

The submatrix has full-row rank. Further,

is square and nonsingular because is output in . This

implies that has full-column rank. Hence, it is possible

to partition (possibly after a permutation)into
such that is represented as follows:

(13)

with square and nonsingular. This lets us

choose as input to and the rest of the variables as
output. In order to have as output of the controller, we
require that be nonsingular. From , we shall construct
a to obtain the necessary nonsingularity. We have

that has full column rank. Hence there exists a

such that . Once such
a is found, we define by the kernel representation

with output and input . This implements
regularly. This completes the proof.

In general, the controller transfer functions obtained in the
above two theorems, are nonproper. In [19], it has been argued
that many applications of control do not require this proper-
ness condition on the controller transfer functions, but that the
properness condition is, nevertheless, a very important special
case.

VII. D ISTURBANCES ANDREGULAR INTERCONNECTION

In Section III, we have formulated the problems of stabiliza-
tion and pole placement for a given plant with to-be-con-
trolled variable and control variable. In most system models,
an unknown external disturbance variable,, also occurs. The
stabilization problem is then to find a controller acting onsuch
that whenever , we have .
Typically, the disturbance is assumed to be free, in the sense
that every function is compatible with the equations of
the model. As an example, think of a model of a car suspension
system given by ,
where is the road profile as a function of time. In the stabi-
lization problem, one puts and solves the stabilization
problem for the full plant represented by

. In doing this, one should make sure that the
stabilizing controller : , when connected to the
actual model,does not put restrictions on. The notion of reg-
ular interconnection captures this, explained as follows.

Consider the full plant behavior . An extension
of is a behavior (with an arbitrary
positive integer), with variables , such that

2) is free in ;
3) such that .

Thus, being an extension of formalizes that has
exactly those signals that are compatible with the distur-
bance in . Of course, a given full behavior has
many extensions.

For a given extension and a given controller , we
define the extended controlled behavior by

and

A controller shall be acceptable only if the disturbance
remains free in , for any possible extension . It turns
out that this is guaranteed exactly, by the regularity of the inter-
connection of and !

Theorem 12:The following two conditions are equivalent:

2) the interconnection of and is regular;
3) for any extension of , is free in .

Proof: ((1) (2)) Suppose is represented minimally
by . Then is represented by

.
We first claim that also has full-row rank. Indeed,

assume this matrix did not have full-row rank. Then after pre-
multiplication by a unimodular matrix, is represented min-
imally by

(14)

with . Equation (14) has , and this means that
is not free (against our assumption). Thus has full-row
rank, as claimed.

Assume is a minimal kernel representation of the
controller . Since and are interconnected regularly,

also has full-row rank.

Consider the following minimal kernel representation of the
extended controlled behavior :

or

(15)

Because of the full-row rank condition on , by the

theorem on input–output partition (see [7, Th. 3.3.22]),is free
in the sense, in also.

((2) (1)) Let be a minimal representation
of . One of the that yields , is represented by

Let be given by the minimal kernel
representation . Then, we have that is free in

(16)
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We now show that has full-row rank. Sup-

pose this matrix did not have full-row rank. Then, there
exists a polynomial row vector , such

that Now we claim that

. For, otherwise, we get , and this means
too, since has full-row rank. Hence, as claimed,

. From (16), we get that for all in , we

have This results in

which would mean that is not free in . Hence
leads to a contradiction. This means that

has full-row rank and we have shown that the

interconnection of and is indeed regular.

VIII. C ONCLUSION

In this paper, we have studied control by interconnection in a
behavioral framework. In particular, for linear differential sys-
tems with two types of variables, to-be-controlled variables and
control variables, we have established necessary and sufficient
conditions for regular implementability of a given sub-behavior
of the manifest plant behavior. We have formulated the pole
placement problem and the stabilization problem as problems
of finding suitable, regularly implementable sub-behaviors.
These formulations were completely representation-free.
Using our characterization of regular implementability, we
have obtained necessary and sufficient conditions for pole
placement and stabilization. Again, these conditions were
expressed in terms of properties of the plant behavior itself,
and not as properties of a particular representation of it. As an
illustration, we have studied the case that the plant is given in
an input–state–output representation. We have proven that the
controlled behaviors obtained in the pole placement problem
and the stabilization problem can, in fact, be implemented by
means of (singular) feedback. In fact, if for the plant to be
controlled an actuator–sensor structure is specified in advance,
then a feedback controller can be found that respects this
actuator–sensor structure. Finally, we have established the
connection between freedom of disturbances in the controlled
system, and regularity of interconnections.
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