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Abstract

The problem of existence of a controlled behavior that is strictly dissipative with respect to a quadratic supply rate
is studied. The relation between strictness and the rank of a suitable coupling condition that combines the dissipativity
properties of the hidden behavior and the orthogonal complement of the plant behavior is analyzed.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction and notation

Recently, in [11] it was shown that, given a plant and a supply rate, the problem of designing a controller
such that the interconnection is a dissipative system is equivalent to the problem of >nding a behavior which
satis>es the following three properties: (1) it is wedged in between the plant’s hidden behavior and manifest
behavior, (2) it is dissipative, and (3) its input cardinality is equal to the positive signature of the supply rate.
In [11] necessary and suBcient conditions for the existence of such behavior were obtained. One of these
conditions is a coupling condition, which requires that a certain quadratic di;erential form (called the coupling
QDF), coupling the dissipativity properties of the hidden behavior and manifest behavior, is non-negative. In
this short paper, we study the open problem of how thecoupling condition should be modi>ed if, instead of
a dissipative system behavior, we want to >nd a strictly dissipative behavior. We will show that in this case
the coupling QDF should, in addition to being non-negative, have rank equal to the sum of the McMillan
degrees of the hidden behavior and the manifest behavior.
The paper is structured as follows. In the rest of this section we introduce notations and review the most

important behavioral de>nitions. The next section, Section 2, contains the key notions concerning quadratic
di;erential forms with an emphasis on their rank. We also prove a theorem about the rank of a QDF. This
prepares the background for the subsequent Section 3 which contains the main result of this paper. Section 4
contains a proof of the main result. In order to give the proof we need to formulate and prove some preliminary
lemmas that are important in their own right. The >nal Section 5 contains conclusions and remarks.
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The notation that is used here is standard in most respects. We use R to denote the set of real numbers
and C to denote the complex plane. Rn and Rn1×n2 are the obvious extensions to vectors and matrices of the
speci>ed dimensions. We use R•×n2 when the context does not call for a speci>cation of the row dimension
(but just the column dimension) of the concerned matrix. We typically use the superscript w (for example, Rw)
when a generic element w has w components. The ring of polynomials in the indeterminate � with coeBcients
in R is denoted by R[�]. R[�; �] is the corresponding ring in two (commutative) indeterminates, and we use
Rw×w[�] and Rw×w[�; �] to denote the sets of matrices with entries from the above rings, etc. The space of
in>nitely often di;erentiable functions with domain R and co-domain Rn is denoted by C∞(R;Rn), and its
subspace of compactly supported elements by D(R;Rn). The operator ‘col’ stacks its arguments into a column
and is used for improving readability of matrix equations within text. We use rowdim(M) to indicate the row
dimension of a matrix M and just dim(M) if M is a vector or a square matrix.
A linear time-invariant di;erential system (or a behavior) is a subset B ⊆ C∞(R;Rw) such that, for some

polynomial matrix R∈R•×w[�], we have B={w ∈C∞(R;Rw) |R(d=dt)w=0}. We use Lw to denote the set of
such behaviors. Here a behavior has been speci>ed as the kernel of a di;erential operator. Hence, we speak
of this as a kernel representation of B. But, more generally, we might encounter a behavior as follows: for
R;M ∈R•×•[�],

B =
{
w ∈C∞(R;Rw) | ∃‘ ∈C∞(R;R‘) such that R

(
d
dt

)
w = M

(
d
dt

)
‘
}

:

It is as a consequence of the elimination theorem that the set de>ned above is indeed a behavior in the sense
we de>ned. A representation like the one above is called a latent variable representation (with ‘ as the latent
variable here). The full behavior Bfull ∈Lw+‘ is the set of all (w; ‘) that satisfy the equation above.
In this paper, we restrict ourselves to controllable behaviors. Roughly speaking, controllable behaviors are

de>ned as behaviors in which for any two of its elements there exists a third element which coincides with
the >rst one on the past and the second one on the future (for details, see [4]). Lw

cont (a subset of Lw) denotes
this set of controllable behaviors. Given a behavior B ∈Lw, it is possible to choose some components of w as
any function in C∞(R;R). The maximal number of such components that can be chosen arbitrarily is called
the input cardinality of B and is denoted as m(B). We also need the notion of state for a behavior. We
refer to [5] for a detailed exposition, with only a brief review here. A latent variable representation of B ∈Lw

is called a state representation if the latent variable (denoted here by x ) has the property of state, i.e.: if
(w1; x1); (w2; x2)∈Bfull are such that x1(0) = x2(0) then (w1; x1) ∧ (w2; x2), the concatenation (at t = 0, here),
belongs to the Lloc

1 -closure of Bfull. We call such an x a state for B. A state map for a B is a di;erential
operator X (d=dt) (induced by X ∈R•×w[�]) such that X (d=dt)w is a state for B. A state map X ∈R•×w[�]
is minimal if every other state map has at least as many rows as those of X , and this minimal number of
state variables (called the McMillan degree) of B is denoted by n(B). The rows of such an X are linearly
independent over R. A minimal state map X (d=dt) has a property called trimness, i.e., for all x0 ∈Rn(B),
there exists a (w; X (d=dt)w)∈Bfull such that (X (d=dt)w)(0)=x0. Issues concerning existence and constructive
algorithms about state maps have been dealt with in [5].

2. Quadratic di�erential forms

This section contains a brief review of bilinear di;erential forms, quadratic di;erential forms and other
necessary notions like the rank of a QDF, etc. A bilinear form (BF) on the vector spaces (V1;V2) is a
mapping ‘ : V1 × V2 → R that is linear in each of its two arguments. Given such an ‘, its rank is the
number of independent linear functionals ‘(·; v2) where v2 ranges over V2, or equivalently the number of
independent linear functionals ‘(v1; ·), where v1 ranges over V1. When V1 = V2 = V, a BF ‘ on (V;V)
is called symmetric if ‘(v1; v2) = ‘(v2; v1). Also, when V1 =V2 =V, we speak of the quadratic form (QF)
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induced by ‘ on V, de>ned by q(v) := ‘(v; v). The rank of a QF is the rank of the symmetric BF that induces
it. A QF q on V can be expressed as q(v) =

∑n+
k=1 |f+

k (v)|2 − ∑n−
k=1 |f−

k (v)|2 with the f+
k ’s and f−

k ’s linear
functionals on V, if (and only if) q has >nite rank. We can choose f+

1 ; f+
2 ; : : : ; f+

n+ ; f
−
1 ; f−

2 ; : : : ; f−
n− linearly

independent over R. In this case n− and n+ are individually minimal over all such decompositions of q as
a sum and di;erence of squares. We call the corresponding pair of integers (n−; n+) the signature of q and
denote it as sign(q) = (�−(q); �+(q)). The rank of q equals �−(q) + �+(q).
The QF on Rn induced by the matrix S = ST ∈Rn×n is de>ned as qS(x) := xTSx. We shall also use |x|2S

to denote it, and when S = I the subscript is often dropped. We denote the signature of S by sign(S) =
(�−(S); �+(S)) where �−(S) and �+(S) are, respectively, the number of negative and positive eigenvalues of
S. Further, sign(S)=sign(qS). We have �−(qS)=0 ⇔ qS(x)¿ 0 for all x ∈Rn. We call such a qS non-negative.
Also, the usual de>nition of positive de>niteness (of matrices) results in �+(qS)=n ⇔ qS(x)¿ 0 for all x 
= 0.

We now move over to the notions of bilinear di;erential forms (BDFs) and quadratic di;erential forms
(QDFs). Let �∈Rw1×w2 [�; �] be written as a >nite sum �(�; �) = �k;‘∈Z+�k‘�k�‘ with �k‘ ∈Rw1×w2—its
coeBcient matrices. Let B1 ∈Lw1 and B2 ∈Lw2 . Then, � induces the map L� : B1 × B2 → C∞(R;R),
de>ned by

L�(w1; w2) :=
∑

k;‘∈Z+

(
dk

dtk
w1

)T

�k‘

(
d‘

dt‘
w2

)

called the BDF on B1 ×B2 induced by � and which is denoted by L�|B1×B2 . When w1=w2=w and B ∈Lw,
� also induces the map Q� :B → C∞(R;R) with Q�(w) := L�(w; w). We call this map the QDF on B
induced by � and denote it by Q�|B. De>ne the ∗ operator as (�∗)(�; �) := (�(�; �))T. When considering
QDFs, it is suBcient to consider �’s that are symmetric, i.e., those that satisfy � = �∗.

We are interested in non-negativity of QDFs on behaviors. For f :A → R; f¿ 0 means f(t)¿ 0 for all
t ∈A. We shall use this general de>nition of non-negativity for QDFs too. Let B ∈Lw and �∈Rw×w[�; �]. We
call the QDF Q� non-negative on B (and denote it by Q�|B¿ 0) if Q�(w)¿ 0 for all w ∈B. Extending
this notion of non-negativity of a QDF to positive de>niteness the usual way, we say Q�|B ¿ 0 if for all
w ∈B:Q�(w)¿ 0 and Q�(w) = 0 implies that w = 0. Here, B is a subset of C∞(R;Rw) and in the special
case B = C∞(R;Rw), the subscript B is skipped. It is noteworthy that if the non-negativity of Q� is given
then, as a function, Q�(w) is non-negative pointwise also. But the same is not true for positive de>niteness
of QDFs (and pointwise positivity). Roughly, this is because Q�(w) usually involves only a >nite number of
derivatives of w, and hence for a non-zero trajectory w, Q�(w)(t) can be zero for some t ∈R. It is in this
context and for the purpose of the problem in this paper that the rank of a QDF plays an important role.
Let B1 ∈Lw1 and B2 ∈Lw2 . There is a one-to-one correspondence between the BDF L� on B1×B2 and the

BF on B1×B2 de>ned by (w1; w2) �→ L�(w1; w2)(0). Given B ∈Lw, there is a similar correspondence between
the QDF Q� on B and the QF on B de>ned by w �→ Q�(w)(0). We de>ne the ranks and signatures of a BDF
or QDF by this correspondence. Although they act on in>nite dimensional spaces, both L�|B1×B2 and Q�|B
have >nite rank. If B ∈Lw and �∈Rw×w[�; �] then � can be expressed as �(�; �)=FT

+(�)F+(�)−FT
−(�)F−(�),

with F = col(F+; F−)∈R•×w[�], such that the rows of F induce (linear) functionals on B that are linearly
independent over R. A factorization of � as the one above is called a canonical factorization on B. Such
a factorization yields the signature and the rank of Q�|B by sign(Q�|B) = (rowdim(F−); rowdim(F+)) and
rank(Q�|B) = rowdim(F), and Q�|B can be expressed canonically as Q�(w) = |F+(d=dt)w|2 − |F−(d=dt)w|2.
A formal exposition on QDFs can be found in [10].
Note the similarity of linear independence over R of the rows of F and of those of a minimal state map.

This similarity lies behind the very appealing result of [8]. We need a related property of a minimal state
map which is also satis>ed by other polynomial matrices under suitable assumptions. In this context, we
have the following theorem. The proof of this theorem is fairly straightforward and can be found in [1,
Theorem 5.4.7].
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Theorem 1. Let B ∈Lw
cont, F ∈Rq×w[�] and K = KT ∈Rq×q and de>ne �(�; �) := FT(�)KF(�). Assume for

�∈Rq: �TF(d=dt)B = 0 ⇒ � = 0. Then we have

K ¿ 0 ⇔
(1) Q�|B¿ 0 and

(2) rank(Q�|B) = q:

Remark. A close connection exists with the assumption in the theorem above and the notion of trimness.
A behavior B ∈Lw is called trim if for all a∈Rw, there exists w ∈B such that w(0) = a. It is possible to
show that the property that for �∈Rq: �TF(d=dt)B=0 ⇒ �=0 is equivalent to the trimness of the behavior
F(d=dt)B (here F(d=dt)B is an element of Lq). In Theorem 1 above, F need not be a state map. However,
as mentioned above, if F is a minimal state map of B then the behavior F(d=dt)B is always trim.

3. Synthesis of strictly dissipative systems

The notions of non-negativity, etc. are in a sense ‘local’ properties of a QDF. In this section, we discuss
properties like dissipativity which are ‘global’. Let �= �T ∈Rw×w and B ∈Lw

cont. B is said to be dissipative
with respect to Q� (or brieOy, �-dissipative) if

∫ +∞
−∞ Q�(w) dt¿ 0 for all w ∈B ∩ D. (In this case Q�(w)

equals wT�w.) Further, it is said to be dissipative on R− with respect to Q� (or brieOy, �-dissipative on
R−) if

∫ 0
−∞ Q�(w) dt¿ 0 for all w ∈B ∩ D. We also use the analogous de>nition of dissipativity on R+. A

controllable behavior B is said to be strictly dissipative with respect to Q� (or brieOy, strictly �-dissipative)
if there exists an  ¿ 0 such that B is dissipative with respect to Q�− I . We have the obvious de>nitions for
strict dissipativity on R− and on R+. Equipped with these de>nitions, we state below the problem that we
solve in this short paper.

Strict dissipativity synthesis problem formulation: LetN and P∈Lv
cont, and let �=�T ∈Rv×v be non-singular.

The problem is to >nd K∈Lv
cont such that

1. N ⊆ K ⊆ P,
2. K is strictly �-dissipative on R−,
3. m(K) = �+(Q�).

The constraints that K has to satisfy have important control-theoretic interpretations. We call P the plant
behavior, N the hidden behavior and K the controlled behavior. The condition N ⊆ K ⊆ P is equivalent
to implementability of the controlled behavior through a restricted set of variables called control variables.
The third condition formalizes the requirement that the controlled behavior should be live enough to accept
suBciently many exogenous inputs (which can be interpreted as disturbances). The strict �-dissipativity con-
dition combines various control design speci>cations depending on �, for example, disturbance attenuation.
The dissipativity on R− implies stability. We refer to [11] for details and for additional material on strictly
dissipative systems, see [3].
For a behavior B ∈Lw

cont and a �=�T ∈Rw×w, we say that !=!∗ ∈Rw×w[�; �] induces a storage function
Q! for B with respect to Q� if the dissipation inequality (d=dt)Q!(w)6Q�(w) is satis>ed for all w ∈B.
It has been shown that such a storage function exists if and only if B is �-dissipative. Moreover, B is
�-dissipative on R− if and only if there exists a storage function Q! such that Q!|B¿ 0. Analogously, B is
�-dissipative on R+ if and only if there exists a storage function Q! such that Q!|B6 0. It is also known
(see for instance, [8]) that such a storage function is always a state function, i.e., if X ∈Rn×w[�] induces a
state map for B, then associated with this ! there exists a K ∈Rn×n such that Q!(w) = |X (d=dt)w|2K for all
w ∈B. Thus we often speak of the matrix associated with a storage function (and a state map). A storage
function is not unique. However, there exists a maximal and a minimal one between which every other storage
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function lies. We denote the largest and the smallest storage functions by !+ and !−, and their associated
matrices by K+ and K−, respectively. Further, corresponding to each storage function, we have a dissipation
function which is the QDF Q" de>ned by Q"(w) := Q�(w) − (d=dt)Q!(w) for all w ∈B.
Given a BDF induced by a constant matrix we have a notion of the orthogonal complement of a controllable

behavior with respect to this BDF. Let �∈Rw×w and B1;B2 ∈Lw
cont; B1 and B2 are said to be orthogonal

with respect to L� (brie?y, �-orthogonal) if
∫ +∞

−∞ L�(w1; w2) dt=0 for all w1 ∈B1∩D and w2 ∈B2∩D. This
orthogonality relation between B1 and B2 is denoted by B1 ⊥� B2. For B ∈Lw

cont we de>ne the �-orthogonal
complement B⊥� of B as

B⊥� :=
{
w ∈C∞(R;Rw)

∣∣∣∣
∫ +∞

−∞
L�(w; w′) dt = 0 for all w′ ∈B ∩ D

}
:

When �=I , we use ⊥ instead of ⊥�. The following identities are easily veri>ed: B⊥�=(�B)⊥=((�T)−1)B⊥.
(Here −1 denotes set-theoretic inverse.) Further, if � is non-singular, B=(B⊥�)⊥� . In the context of behaviors
that are �-orthogonal we have the following result.

Proposition 2. Let �∈Rw×w and B1;B2 ∈Lw
cont. There exists a ! ∈Rw×w[�; �] such that (d=dt)L!(w1; w2)=

wT
1�w2 for all (w1; w2)∈B1 × B2 if and only if B1 ⊥� B2. Moreover, ! is essentially unique, i.e., if

!1; !2 ∈Rw×w[�; �] both satisfy the above equality, then L!1 (w1; w2)=L!2 (w1; w2) for all (w1; w2)∈B1×B2.

We call this BDF L! on B1 × B2, the [(B1;B2);�]-adapted bilinear di;erential form. Here also L!

can be written as a function of the states of B1 and B2, i.e., given X1 and X2 that induce minimal
state maps for B1 and for B2, respectively, there exists a matrix L∈Rn(B1)×n(B2) such that L!(w1; w2) =
(X1(d=dt)w1)TLX2(d=dt)w2 for all w1 ∈B1 and w2 ∈B2. For the case of � = I and for behaviors B and
B⊥, L happens to be invertible and we can modify one of the two (minimal) state maps to obtain a
matched pair of state maps. (X; Z) is said to be a matched pair of minimal state maps for (B;B⊥) if
(d=dt)(X (d=dt)w1)TZ(d=dt)w2 = wT

1w2 for all (w1; w2)∈B × B⊥. More on this can be found in [10, Section
10].
We are now ready to state the main result of the paper, which is a solution to the strict dissipativity synthesis

problem described above. Since N ⊆ P, we have that N ⊥� P
⊥� . Let !(N;P⊥� ) ∈Rw×w[�; �] induce the

[(N;P⊥�);�]-adapted BDF. It turns out that the existence of a controlled behavior K as described in our
problem formulation involves, in addition to a non-negativity requirement, a rank condition on the coupling
QDF.

Theorem 3. A controlled behavior K∈Lv
cont as described in the problem formulation exists if and only if

the following conditions are satis>ed:

1. N is strictly �-dissipative,
2. P⊥� is strictly (−�)-dissipative,
3. the coupling QDF Qcpl on N×P⊥� de>ned by

Qcpl(v1; v2) := Q!+
N
(v1) − Q!−

P⊥�
(v2) + 2L!

(N;P⊥� )
(v1; v2) (1)

satis>es the following two properties:
(i) Qcpl|N×P⊥� ¿ 0 and
(ii) rank(Qcpl|N×P⊥� ) = n(N) + n(P):
Here, !+

N induces the largest storage function for N as a �-dissipative system and !−
P⊥�

induces the
smallest storage function for P⊥� as a (−�)-dissipative system.
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We note here the importance of the last statement in the theorem above. Since Qcpl is a sum of three
terms that are themselves functions of the states of the behaviors concerned, it cannot have rank more than
n(N) + n(P). So the existence of a strictly dissipative controlled behavior as in the problem formulation
requires the existence of a non-negative coupling QDF of maximal rank. It is in this way that the strictness
of the dissipativity in the problem formulation a;ects the theorem. But unlike here, the McMillan degrees of
the hidden behavior and the plant behavior played no role in the non-strict synthesis result of [11].

Remark. Conditions 1 and 2 in the above theorem formulation can, in fact, be replaced by

1′. N is strictly �-dissipative on R−,
2′. P⊥� is strictly (−�)-dissipative on R+.

Indeed, 1′ follows from condition 1 in the theorem above together with the non-negativity and the rank
condition on the coupling QDF (condition 3). The non-negativity of this QDF gives the dissipativity on R−
while the strictness of this dissipativity on R− is implied by the rank condition. This auxiliary result is the
subject of Lemma 8 below. Similarly, 2′ can be inferred from condition 2 in the theorem together with the
non-negativity and rank condition on the coupling QDF.

4. Proof of Theorem 3

In order to give a proof of Theorem 3, we need some preliminary results on strictly dissipative systems.
We state and prove these lemmas before we move over to the proof of the main result.

Lemma 4. Let B ∈Lv
cont and let �=�T ∈Rv×v be non-singular. Assume m(B) = �+(�). Then B is strictly

�-dissipative on R− if and only if B⊥� is strictly (−�)-dissipative on R+.

Proof. For the proof of this lemma we need two results from matrix theory. We state them in the following
lemma but skip the straightforward proof.

Lemma 5. Let R = RT ∈Rv×v be non-singular. For  1;  2 ¿ 0 suAciently small, there exist $1; $2 ¿ 0 such
that

1. (R−1 −  1I)−1 − (R + $1R2)¿ 0, and
2. R +  2R2 − (R−1 − $2I)−1¿ 0.

We now continue with proving Lemma 4. Note that for P1; P2 ∈Rv×v such that P1¿P2, if B is P2-
dissipative then B is P1-dissipative as well. The analogous statements are true for dissipativity on R− or on
R+ also.
Only if part: Suppose B is strictly dissipative with respect to � on R−. Then B is dissipative with respect

to � −  I on R− for some  ¿ 0. We use Proposition 12 of Willems and Trentelman [11], which states that
B⊥ is dissipative on R+ with respect to −(� −  I)−1. We use statement 1 of Lemma 5 (with R = �−1) to
infer the existence of a $¿ 0 such that B⊥ is dissipative on R+ with respect to −(�−1 + $�−2) also. By
de>nition of B⊥� , this means that B⊥� is strictly dissipative with respect to −� on R+.
If part: The proof of this part is similar to that of the ‘only if part’ except that we use statement 2 of the

previous lemma now. This completes the proof of Lemma 4.

Lemma 6. Let � = �T ∈Rv×v be non-singular, and let B ∈Lv
cont. Suppose B is strictly �-dissipative. Let

X ∈Rn(B)×v[�] induce a minimal state map for B. Let K+; K− ∈Rn(B)×n(B) be symmetric matrices such
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that |X (d=dt)v|2K+ and |X (d=dt)v|2K− are, respectively, the largest and the smallest storage functions for B
as a �-dissipative system. Then, K+ ¿K−. Moreover,

• if B is strictly dissipative on R−, then K+ ¿ 0, and
• if B is strictly dissipative on R+, then K− ¡ 0.

Proof. The proof of the part that K+ ¿K− is contained in the proof of Theorem 5.7 of [10, p. 1739]. The
part that K+ ¿ 0 follows from Theorem 10.2(iv) of [10], and the part K− ¡ 0 is similar to this proof.

Lemma 7. Let �=�T ∈Rv×v be non-singular, and let B ∈Lv
cont be strictly �-dissipative. Let X ∈Rn(B)×v[�]

induce a minimal state map for B. Let K+; K− ∈Rn(B)×n(B) be such that |X (d=dt)v|2K+ and |X (d=dt)v|2K− are
the largest and the smallest storage functions for B as a �-dissipative system. Further, for  ¿ 0 suAciently
small B is strictly dissipative with respect to (� −  I) also. Let K+

 and K−
 be the corresponding matrices

for the largest and the smallest storage functions for B as a (� −  I)-dissipative system. Then K+
 6K+

for all  ¿ 0 and K+
 ↑ K+ as  ↓ 0. Analogously, K−

 ¿K− for all  ¿ 0 and K−
 ↓ K− as  ↓ 0.

For the proof we need to introduce a few more concepts and we do that here. An image representation of
a behavior B ∈Lw is a latent variable representation of the form: w = M (d=dt)‘ with M ∈Rw×‘[�]. Such a
representation exists if and only if B is controllable. The latent variable ‘ is said to be observable from the
manifest variable w if for any (w; ‘1); (w; ‘2)∈Bfull implies ‘1 =‘2. Hence, we speak of an observable image
representation of a behavior.
We also need the notion of a symmetric factorization of a para-Hermitian (polynomial) matrix. We brieOy

introduce it here. P ∈Rw×w[�] is called para-Hermitian if P(−�)T = P(�). A∈Rw×w[�] is said to induce
a symmetric factorization of P if A(−�)TA(�) = P(�). We call such a factorization anti-Hurwitz if A is
anti-Hurwitz, i.e., it has full rank on the closed left half complex plane. It is called almost anti-Hurwitz if
the above rank condition holds on just the open left half complex plane.

Proof. Since K+
 is associated with the largest storage functions for B as a (� −  I)-dissipative system, we

have (d=dt)|X (d=dt)v|2K+
 
6 vT(� −  I)v6 vT�v. This means that |X (d=dt)v|2K+

 
is a storage function for B as

a �-dissipative system also. By de>nition of K+ we have K+
 6K+ for all  ¿ 0. Using a similar argument

we also have K+
 1 6K+

 2 for  2 ¡ 1. Let K+
0 := lim ↓0 K+

 2 . Then K+
0 6K+. We shall show the equality of K+

0
and K+. Let w=M (d=dt)‘ be an observable image representation of B. For  ¿ 0 we de>ne !+

 ∈R‘×‘[�; �]
by !+

 (�; �) := MT(�)X T(�)K+
 X (�)M (�). We have

(� + �)!+
 (�; �) =MT(�)(� −  I)M (�) − AT

 (�)A (�); (2)

where A ∈R‘×‘[�] induces a symmetric anti-Hurwitz factorization of MT(−�)(� −  I)M (�). Also, de>ne
!+(�; �) := MT(�)X T(�)K+X (�)M (�). Now, in Eq. (2), let  ↓ 0. Since K+

 converges to K+
0 , !+

 (�; �)
converges to MT(�)X T(�)K+

0 X (�)M (�)= : !+
0 (�; �). This implies that AT

 (�)A (�) converges as  ↓ 0. By a
standard argument, there exists a sequence ( n)∞n=1 with  n → 0 (n → ∞), such that A n(�) converges to, say,
A(�). Clearly A∈R‘×‘[�] is almost anti-Hurwitz. For such an A(�) we have

(��)!+
0 (�; �) = MT(�)�M (�) − AT(�)A(�):

By A(�) being almost anti-Hurwitz, this >nally implies that, in fact, !+
0 (�; �)=!+(�; �), which by trimness

of X , implies K+
0 = K+. The proof of K− is treated similarly.

The above lemma is used in the proof of Theorem 3. In addition to that, the above lemma is useful for
proving the following lemma which relates strict dissipativity and dissipativity on R−.
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Lemma 8. Let �∈Rw×w and let B ∈Lw be �-dissipative on R−. Let X ∈Rn×w[�] induce a minimal state
map for B. Let K+ ∈Rn×n be such that |X (d=dt)w|2K+ is the largest storage function for B as a �-dissipative
system. Then,

K+ ¿ 0

B is strictly dissipative (on R)

}
⇒ B is strictly dissipative on R−:

Proof. Since B is strictly dissipative on R, there exists a storage function for B as a (�− I)-dissipative sys-
tem for some  ¿ 0 suBciently small. Let K+

 be the matrix associated with the largest such
storage function. By Lemma 7 we have that K+

 ↑ K+ as  → 0. Hence for  suBciently small, K+
 ¿ 0.

This yields that B is (� −  I)-dissipative on, in fact, R−. Hence B is strictly dissipative on R−, as
required.

An analogous statement relating negative de>niteness and strict dissipativity on R+ is also true. We now
continue with the proof of Theorem 3.

Proof of Theorem 3. The proof of the theorem follows the lines of the proof of the theorem about the existence
of a non-strictly dissipative K [11, Theorem 5]. Hence, we skip the obvious similarities and emphasize on the
role strictness plays in the proof. Let (XN; ZN) be a matched pair of minimal state maps for (N;N⊥). Also
let (XK; ZK) and (XP; ZP) be matched pairs of minimal state maps for (K;K⊥) and (P;P⊥), respectively.
Let L∈Rn(N)×n(P) be associated with the adapted BLDF L!

(N;P⊥� )
corresponding to the state maps XN of

N and ZP of P⊥.
Only if part: Since N ⊆ K we have that N is also strictly �-dissipative on R−. By Lemma 4, K being

strictly � dissipative on R− and m(K)=�+(�), together imply that K⊥� is strictly (−�)-dissipative on R+.
Also, K ⊆ P ensures that P⊥� ⊆ K⊥� and hence P⊥� is also strictly (−�)-dissipative on R+. Further, we
have that L!

(N;P⊥� )
(v1; v2)= (XK(d=dt)v1)TZK(d=dt)�v2 for (v1; v2)∈N×P⊥� . We now show the existence

of a suitable coupling QDF on N×P⊥� .
We consider the largest and the smallest storage functions of K as a �-dissipative system. Let K+;

K− ∈Rn(K)×n(K) be matrices such that these extremum storage functions are expressed as |XK(d=dt)v|2K+

and |XK(d=dt)v|2K− , respectively. Further, since K is strictly dissipative, by Lemma 6, K+ ¿K−. By [11,
Proposition 12, statement 5], K− also satis>es K− ¿ 0. Thus we have K+ ¿K− ¿ 0 which is equivalent

to K− being non-singular and
[

K+
I

I
K−1

−

]
¿ 0. Further, by the same proposition, (statement 3) we have that

−|ZK(d=dt)�v|K−1
−

is a storage function for K⊥� as a (−�)-dissipative system. Consequently, the QDF Qcpl0

on K×K⊥� de>ned by

Qcpl0(v1; v2) =




XK

(
d
dt

)
v1

ZK

(
d
dt

)
�v2



T [

K+ I

I K−1
−

] 


XK

(
d
dt

)
v1

ZK

(
d
dt

)
�v2


 (3)

is non-negative for all (v1; v2)∈K×K⊥� .
The QDF Qcpl0(v1; 0) with v1 ∈N is a storage function for N as a �-dissipative system and the QDF

−Qcpl0(0; v2) with v2 ∈P⊥� is a storage function for P⊥� as a (−�)-dissipative system. Because
Qcpl0|N×P⊥� ¿ 0 all the conditions in the theorem are satis>ed by these storage functions except the rank
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condition. We shall modify these storage functions suitably to meet the rank condition as well. We >rst note
that (

XN

(
d
dt

)
v1

)T

LZP

(
d
dt

)
�v2 =

(
XK

(
d
dt

)
v1

)T

ZK

(
d
dt

)
�v2

for (v1; v2)∈N×P⊥� .
Let K+

N ∈Rn(N)×n(N) and K−
P⊥�

∈Rn(P)×n(P) be such that |XN(d=dt)v1|2K+
N

and |ZP(d=dt)�v2|2K−
P⊥�

are the

largest and the smallest storage functions for N as a �-dissipative system and for P⊥� as a (−�)-dissipative
system, respectively. Then we have that Qcpl0(v1; 0)6 |XN(d=dt)v1|2K+

N
for all v1 ∈N and Qcpl0(0; v2)6 −

|ZP(d=dt)�v2|2K−
P⊥�

for all v2 ∈P⊥� .

Now consider the QDF Qcpl on N×P⊥� de>ned in the theorem (Eq. (1)). It can be expressed as in the
equation:

Qcpl(v1; v2) =




XN

(
d
dt

)
v1

ZP

(
d
dt

)
�v2



T [

K+
N L

LT −K−
P⊥�

] 


XN

(
d
dt

)
v1

ZP

(
d
dt

)
�v2


 : (4)

We have 06Qcpl06Qcpl on N×P⊥� . Further, since XN and ZP are minimal and hence trim, we already

obtain that [K
+
N

LT
L

−K−
P⊥�

] is non-negative. Also, because of the strictness of the dissipativity of N and of

P⊥� , using Lemma 6, we get that K+
N and (−K−

P⊥�
) are both positive de>nite. We now show [K

+
N

LT
L

−K−
P⊥�

]

is non-singular. Let[
K+
N L

LT −K−
P⊥�

] [
a

b

]
= 0: (5)

Because of the trimness of XN and ZP, there exist Rv1 ∈N and Rv2 ∈P⊥� such that XN(d=dt) Rv1(0) = a and
ZP(d=dt)� Rv2(0)=b. For this Rv1 and Rv2 let XK(d=dt) Rv1(0)=p and ZK(d=dt)� Rv2(0)=q. Now, Qcpl( Rv1; Rv2)(0)=0
implies Qcpl0( Rv1; Rv2)(0) = 0 which in turn implies p = 0 and q = 0 (because of positive de>niteness of the
matrix in Eq. (3)). This results in 0 = pTq = aTLb. This and Eq. (5) (where we have that Lb = −K+

Na)
together with the positive de>niteness of K+

N yields a=0. Using negative de>niteness of K−
P⊥�

and from Eq.
(5) we have b = 0 too. This implies that the matrix in Eq. (4) is non-singular. In order to apply Theorem
1, one needs to check whether the behavior col(XN(d=dt)N; ZP(d=dt)�P⊥�) is trim. Since both XN and
ZP are minimal state maps for N and P⊥� , respectively, the behaviors XN(d=dt)N and ZP(d=dt)�P⊥� are
trim and hence their Cartesian product is trim too. We use Theorem 1 to obtain the desired rank condition
on Qcpl. This completes the ‘only if’ part of the proof.
If part: Each term in the given coupling QDF Qcpl of Eq. (1) can be expressed as a function of the state

of N and P⊥� . Let K+
N, K−

P⊥�
be the matrices associated with the storage functions Q!+

N
and Q!−

P⊥�
, i.e.,

Q!+
N
(v1) = |XN(d=dt)v1|2K+

N
and Q!−

P⊥�
(v2) = |ZP(d=dt)�v2|2K−

P⊥�

. Hence the given coupling condition can be

expressed as

06Qcpl(v1; v2) =




XN

(
d
dt

)
v1

ZP

(
d
dt

)
�v2



T [

K+
N L

LT −K−
P⊥�

] 


XN

(
d
dt

)
v1

ZP

(
d
dt

)
�v2


 :
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Theorem 1 together with the rank condition on the above QDF implies that the matrix in the above equation is
positive de>nite. In particular, K+

N is positive and hence, as mentioned in the remark following this theorem,
N is strictly dissipative on, in fact, R−. Hence there exists an  ¿ 0 such that N is dissipative on R−
with respect to � −  I . Let K+

N;  be the matrix associated with the largest storage function for N as a
(� −  I)-dissipative system. Using Lemma 7, we have that K+

N;  → K+
N as  → 0, where K+

N is associated
with the largest storage function of N as a �-dissipative system. Similarly, P⊥� is dissipative with respect
to (−� −  I) for  ¿ 0 suBciently small. If K−

P⊥� ; and K−
P⊥�

are the matrices associated with the smallest

storage functions for P⊥� as (−� −  I) and (−�)-dissipative systems, respectively, then K−
P⊥� ; → K−

P⊥�
as

 → 0. Hence for  suBciently small, the following holds:

0¡

[
K+
N L

LT −K−
P⊥�

]
⇒ 0¡

[
K+
N;  L

LT −K−
P⊥� ; 

]
= : K (say):

Let Q"N;  be the dissipation rate associated with the storage function |XN(d=dt)v1|2K+
N;  

for N as a (� −
 I)-dissipative system, i.e.,

d
dt

∣∣∣∣XN
(

d
dt

)
v1

∣∣∣∣
2

K+
N;  

= |v1|2� −  |v1|2 − Q"N;  (v1) and Q"N;  |N¿ 0:

Analogously, we denote the dissipation rate for P⊥� by Q"
P⊥� ; 

, i.e.,

d
dt

|ZP
(

d
dt

)
�v2|2K−

P⊥� ; 

= −|v2|2� −  |v2|2 − Q"
P⊥� ; 

(v2) and Q"
P⊥� ; 

|P⊥� ¿ 0:

We de>ne the QDF’s Q" on N×P⊥� and Q! on P ∩N⊥� . Let

Q" (v1; v2)

:= |v1 + v2|2� − d
dt

∣∣∣∣col
(
XN

(
d
dt

)
v1; ZP

(
d
dt

)
�v2

)∣∣∣∣
2

K 

=|v1|2� − d
dt

∣∣∣∣XN
(

d
dt

)
v1

∣∣∣∣
2

K+
N;  

+ |v2|2� +
d
dt

∣∣∣∣Z�

(
d
dt

)
�v2

∣∣∣∣
2

K−
P⊥� ; 

=Q"N;  (v1) +  |v1|2 − Q"
P⊥� ; 

(v2) −  |v2|2

for (v1; v2)∈N×P⊥� . De>ne

Q! (v3) := |v3|2�− I − d
dt

∣∣∣∣col
(
ZN

(
d
dt

)
�v3; XP

(
d
dt

)
v3

)∣∣∣∣
2

K−1
 

for v3 ∈P ∩N⊥� . We factor Q! canonically on P ∩N⊥� as Q! (v3) = |F+
 (d=dt)v3|2 − |F−

 (d=dt)v3|2.
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The following equality is crucial to the proof:

d
dt

∣∣∣∣∣∣∣∣∣




XN

(
d
dt

)
v1

ZP

(
d
dt

)
�v2


 + K−1

 




ZN

(
d
dt

)
�v3

XP

(
d
dt

)
v3




∣∣∣∣∣∣∣∣∣

2

K 

=|v1 + v2 + v3|2� −  |v3|2 − Q" (v1; v2) − Q! (v3)

=|v1 + v2 + v3|2� − Q"N;  (v1) + Q"
P⊥� ; 

(v2) −
∣∣∣∣F+

 

(
d
dt

)
v3

∣∣∣∣
2

+|F−
 

(
d
dt

)
v3|2 −  |v1|2 +  |v2|2 −  |v3|2: (6)

We de>ne the controlled behavior K :=N+F−
 with F−

 the controllable part of the behavior {v∈P∩
N⊥� |F−

 (d=dt)v = 0}. For v1 ∈N; v2 = 0 and v3 ∈F−
 , Eq. (6) yields

d
dt

∣∣∣∣∣∣∣∣∣


 XN

(
d
dt

)
v1

0


 + K−1

 




ZN

(
d
dt

)
�v3

XP

(
d
dt

)
v3




∣∣∣∣∣∣∣∣∣

2

K 

=|v1 + v3|2� − Q"N;  (v1) −
∣∣∣∣F+

 

(
d
dt

)
v3

∣∣∣∣
2

−  |v1|2 −  |v3|2

6 |v1 + v3|2� −  
2

|v1 + v3|2:

Here, in addition to the non-negativity of Q"N;  on N, we used the inequality |v1|2 + |v3|2¿ 1
2 |v1 + v3|2 .

By the de>nition of K, we have N ⊆ K ⊆ P . Also, every v∈N+F−
 can be decomposed into v1 + v3

with v1 ∈N and v3 ∈F−
 , and for every such v with compact support we have

∫ 0
∞ |v1 + v3|2(�− I =2) dt¿ 0

(because of the positive de>niteness of K ). From this we infer that K is indeed strictly dissipative on R−
with respect to �. It only remains to show that m(K) = �+(�) for  ¿ 0 suBciently small.

Consider the following subspaces L" and L! of Rv+2(n(N)+n(P)):

L" =
{
a | ∃v1 ∈N and v2 ∈P⊥� such that

a =
(
col

(
v1 + v2; XN

(
d
dt

)
v1; ZP

(
d
dt

)
�v2;

d
dt

XN

(
d
dt

)
v1;

d
dt

ZP

(
d
dt

)
�v2

))
(0)

}
;

L! =
{
b | ∃v3 ∈P ∩N⊥� such that

b =
(
col

(
�v3;− d

dt
ZN

(
d
dt

)
�v3;− d

dt
XP

(
d
dt

)
v3;−ZN

(
d
dt

)
�v3;−XP

(
d
dt

)
v3

))
(0)

}
:
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Observe that L! ⊆ L⊥
" . Consider the matrices Q and (with a slight abuse of notation) Q0, both constant

matrices that induce a QF on Rv+2(n(N)+n(P)), de>ned as follows:

Q :=




�2(� −  I)−1 0 0

0 0 −K 

0 −K 0


 and Q0 :=




� 0 0

0 0 −K 

0 −K 0


 :

For  ¿ 0 suBciently small, note that because �; � −  I and K are invertible, so are Q and Q0. Further, by
de>nition of Q" and Q! we have sign(Q" |N×P⊥� ) = sign(Q0|L") and sign(Q! |P∩N⊥� ) = sign(Q−1

 |L!).
For  suBciently small, we have sign(Q ) = sign(�) + (rank(K ); rank(K )), and rank(K ) = n(N) + n(P).

This is utilized in obtaining a sharp estimate of the row dimension of F−
 by using an argument exactly like

the one in the proof of the non-strict case in [11]. We skip a repetition of the argument and conclude that
m(K) = �+(�).

5. Conclusions and remarks

As expected, the solution to the strictly dissipative synthesis problem di;ers from that of the non-strict
synthesis result of [11]. We have shown that it is the coupling QDF (which was just non-negative in the
non-strict case) that has to be suitably strict, namely, it should have maximal rank. In this context, the
McMillan degrees of the hidden behavior and the plant behavior also come into picture. We remark that both
the problem formulation and the main theorem are formulated in a representation-free manner. This makes it
possible to apply Theorem 3 when the to-be-controlled plant is given by any particular representation. If, for
example, N and P are the hidden behavior and plant behavior associated with the plant Pfull given by the
ubiquitous state space representation (d=dt)x=Ax+Bu+Ed; y=C1x+D1d; f=C2x+D2u, with to-be-controlled
variable w=(d; f) and control variable c=(u; y), then our problem of >nding a suitable behavior K, strictly

dissipative on R− w.r.t. � =
[

Id
0

0
−If

]
, amounts to >nding an internally stabilizing controller that makes the

closed loop transfer matrix strictly contracting. Analogously as in [9, Section 5], by applying Theorem 3
to this case we can re-obtain the well-known conditions in terms of two Riccati equations and a coupling
condition that >rst appeared in [2], and was studied later in various forms in, for example, [6,7].
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