
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. CONTROL OPTIM. c© 2008 Society for Industrial and Applied Mathematics
Vol. 47, No. 6, pp. 2930–2966
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FUNCTIONS, AND LYAPUNOV FUNCTIONS∗
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Abstract. Dissipative systems have played an important role in the analysis and synthesis of
dynamical systems. The commonly used definition of dissipativity often requires an assumption on
the controllability of the system. In this paper we use a definition of dissipativity that is slightly dif-
ferent (and less often used in the literature) to study a linear, time-invariant, possibly uncontrollable
dynamical system. We provide a necessary and sufficient condition for an uncontrollable system to be
strictly dissipative with respect to a supply rate under the assumption that the uncontrollable poles
are not “mixed”; i.e., no pair of uncontrollable poles is symmetric about the imaginary axis. This
condition is known to be related to the solvability of a Lyapunov equation; we link Lyapunov func-
tions for autonomous systems to storage functions of an uncontrollable system. The set of storage
functions for a controllable system has been shown to be a convex bounded polytope in the litera-
ture. We show that for an uncontrollable system the set of storage functions is unbounded, and that
the unboundedness arises precisely due to the set of Lyapunov functions for an autonomous linear
system being unbounded. Further, we show that stabilizability of a system results in this unbounded
set becoming bounded from below. Positivity of storage functions is known to be very important
for stability considerations because the maximum stored energy that can be drawn out is bounded
when the storage function is positive. In this paper we establish the link between stabilizability of
an uncontrollable system and existence of positive definite storage functions. In most of the results
in this paper, we assume that no pair of the uncontrollable poles of the system is symmetric about
the imaginary axis; we explore the extent of necessity of this assumption and also prove some results
for the case of single output systems regarding this necessity.

Key words. dissipativity, uncontrollability, storage functions, behaviors, algebraic Riccati equa-
tion, Hamiltonian matrix, Lyapunov equation
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1. Introduction. Dissipativity of dynamical systems helps in the analysis and
design of control systems. Dissipativity theory allows problems like LQR, circle cri-
terion, Popov criterion, passivity synthesis, H∞ control, and Riccati inequalities to
be analyzed under a common framework. An important assumption in some of these
developments is that of controllability of the dynamical system. In this paper we
study dissipativity of general linear time-invariant systems, possibly uncontrollable.

Uncontrollable systems arise naturally in the process of modeling dynamical sys-
tems. The inability to shape one or more system variables in an arbitrary desired
fashion is frequently encountered in systems. For example, loss of controllability
could happen to otherwise controllable systems when certain system parameters sat-
isfy relevant equations arising in controllability check methods: see a simple electrical
circuit below in section 5.1. Uncontrollability could also arise generically due to struc-
tural inabilities to influence one or more system variables. (See [14, 12] and references
therein about structural controllability studies.)

In the context of synthesis of a dynamical system, one sometimes has to settle for
an uncontrollable realization of a given transfer function: the case of nonminimality of
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2931

the transformerless synthesis of a positive real transfer function is well known. This
issue concerns the synthesis of a positive real transfer matrix using only resistors,
capacitors, and inductors. The currently known methods (the Bott–Duffin method
[3] and its variants) bring us naturally to systems that are dissipative, but are not
controllable. See [6] for a recent overview about this classical problem.

Dissipativity of a system is about the absence of any source of energy within the
system, and hence all interactions with the environment have to satisfy the condition
that the “net energy” is directed inwards. This is made precise below in Definition
3.1. Such a property is intrinsic to the system and therefore should be independent of
the question of controllability. For example, a passive electrical network made out of
passive circuit elements must continue to be dissipative even if it loses controllability.
In this paper we consider a general linear time-invariant system and work on a theory
of dissipativity free from any controllability assumption. Our work is based on the
signature characteristic of a dissipative system to store energy, i.e., existence of a
storage function. An important issue that immediately arises is whether to include
unobservable variables to describe this storage of energy (see [33, 5]). Our main result
sorts out this issue: for the case of strict dissipativity, we show that a storage function
depending only on the manifest variables suffices, and no unobservable variables are
necessary (see Remark 5.1).

The present theory of dissipative systems is well-developed primarily for control-
lable systems because it is possible there to define dissipativity without taking recourse
to the existence of a storage function. This is done using an integral inequality involv-
ing only the compactly supported trajectories allowed by the system. This definition
turns out to be inadequate for a general, possibly uncontrollable, linear behavior. In
order to overcome this inadequacy, there has been prior work of taking existence of
storage functions satisfying a dissipation inequality as a definition of dissipativity;
see [28, 5], for example. In this paper we further develop using this definition, prove
results regarding existence, and relate it to the situation of controllability. The prin-
cipal finding is that a certain condition on the uncontrollable poles, which we call as
the unmixing condition, plays a key role. If no pair of the uncontrollable poles of the
system is symmetric with respect to the imaginary axis, then the noncontrollability
poses no hindrance to strict dissipativity, i.e., the strict dissipativities of the behav-
ior and its controllable part are equivalent (Theorem 3.4). This result is utilized to
show useful identities about positive storage functions and unboundedness of the set
of storage functions for the case of uncontrollability.

The paper is structured as follows. The rest of this section has a few words about
the notation we follow. Section 2 contains some preliminaries we require regarding
behavioral theory. The next section (section 3) has some definitions that we need in
order to state the main result of this paper and for the proofs. In this section we also
present the main result: a necessary and sufficient condition for a general linear time-
invariant system to be strictly dissipative with respect to a supply rate that depends
on the manifest variables, under the assumption that the set of uncontrollable poles
satisfies the unmixing condition. Interestingly, this unmixing condition on the uncon-
trollable poles is reminiscent of the solvability condition of Lyapunov equations: this
is elaborated in sections 3 and 8. This paper utilizes the wealth of existing literature
on Hamiltonian matrices and Riccati equations; section 4 has results about relations
among Riccati equations, the Hamiltonian matrix, and dissipativity. A proof of the
main result follows in section 5, together with some auxiliary results. In section 6 we
present a necessary and sufficient condition for existence of positive storage functions:
here we relate stabilizability to positive storage functions. In section 7 we present
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2932 DEBASATTAM PAL AND MADHU N. BELUR

some insight on the nature, namely, unboundedness and convexity, of the set of all
storage functions of an uncontrollable dissipative behavior. (The set of storage func-
tions is known to be bounded in the case of controllability.) Section 8 explores into
the extent of necessity of the unmixing property that we have assumed throughout
this paper. In this section we show an interesting result about rank one symmetric
matrices and the solvability of the Lyapunov equation. When one or more pairs of
the uncontrollable poles have symmetry about the imaginary axis, it turns out that
the solvabilities of a certain Riccati equation and the corresponding Riccati inequality
differ significantly from the situation in the controllable case. We conclude the paper
in section 9 following which is an appendix containing some proofs and peripheral
results needed for the proofs.

The notation we follow is standard. R and C stand for the fields of real and
complex numbers. The ring of polynomials in ξ with real coefficients is denoted by
R[ξ]. Rp×w[ξ] stands for the set of p×w matrices with entries from R[ξ]. In the context
of quadratic differential forms, we require polynomials in two indeterminates: ζ and
η. The set of such polynomials with real coefficients is denoted by R[ζ, η], and the set
of w× w matrices with entries from R[ζ, η] by Rw×w[ζ, η]. C∞(R, Rw) denotes the space
of all infinitely often differentiable functions from R to Rw, and D(R, Rw) denotes its
subspace of all compactly supported trajectories. We use • when it is unnecessary to
specify a dimension. For example, R ∈ R•×w means R is a real matrix with w columns.
When dealing with many variables, in order to keep track of the dimensions, we use
the same letter as a generic variable w, but in typewriter font w, to denote the number
of components; for example, w ∈ C∞(R, Rw). In the context of stability, we require
certain regions of the complex plane C. The open left and right half complex planes
are denoted by C− and C+, respectively. To improve readability within text, we use
col(·, ·) to stack its arguments into a column, i.e., col(w1, w2) = [wT

1 wT
2 ]T .

2. Behaviors, QDFs, and state representations. A linear differential be-
havior B is defined to be the subspace of C∞(R, Rw) consisting of the solutions to a
set of ordinary linear differential equations with constant coefficients; i.e.,

B :=
{

w ∈ C∞(R, Rw) | R

(
d
dt

)
w = 0

}
,

where R(ξ) is a polynomial matrix having w number of columns: R ∈ R•×w[ξ]. We
shall denote the set of linear differential behaviors with w number of variables by Lw.
The linear differential behavior B ∈ Lw can also be written as B = ker R( d

dt ). That is
why this representation is called a kernel representation of B. We call w the manifest
variable; these are the variables of interest. In this paper, w is the variable through
which the system exchanges energy with the environment. It turns out that we can
assume, without loss of generality, that R(ξ) is of full row rank (see [17]); in this
paper, a kernel representation matrix R(ξ) is assumed to be of full row rank. For a
behavior B = ker R( d

dt ), the row rank of R(ξ) gives the output cardinality (number of
outputs in the system). Though the variables w can often be partitioned into inputs
and outputs in more than one way, the output cardinality remains the same: rankR.
Further, the cardinality does not depend on the R used to define it, but depends
only on B. In this sense, the output cardinality is an integer invariant of B and
we denote it by p(B). The number of inputs to the system, the input cardinality, is
another integer invariant of B. This integer is denoted by m(B) and is calculated using
m(B) = w− p(B), where w is the number of components in the manifest variable w.
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2933

A concept of central importance for this paper is that of controllability. A be-
havior B ∈ Lw is said to be controllable if for every w′, w′′ ∈ B, there exists a w ∈ B
and a τ > 0 such that

w(t) = w′(t) for all t � 0,

= w′′(t) for all t � τ.

We denote the set of all controllable behaviors with w variables as Lw
cont. A behavior

B = ker R( d
dt ) is controllable if and only if R(λ) does not lose rank for any λ ∈ C.

An important characterization of controllable behaviors is that they also admit image
representations. It was shown in [31] that B is controllable if and only if it can be
represented as

B :=
{

w ∈ C∞(R, Rw) | ∃ � ∈ C∞(R, Rm) such that w = M

(
d
dt

)
�

}
,

for some polynomial matrix M ∈ Rw×m[ξ]. This representation of B ∈ Lw
cont is called

an image representation. It turns out that for an image representation, without loss of
generality, one can assume M(ξ) to have the property that M(λ) has full column rank
for every λ ∈ C. We call such an M satisfying this property a right-prime polynomial
matrix. M being right-prime means that we are able to deduce the � trajectory
corresponding to a w trajectory satisfying the equation w = M( d

dt )�. Hence, such an
M is also said to induce an observable image representation.

In the context of uncontrollable systems, we use the key notion of uncontrollable
poles and uncontrollable characteristic polynomial. Suppose B = ker R( d

dt) and sup-
pose B is not controllable. Then there exist one or more complex numbers λ such that
R(λ) loses rank. These complex numbers, together with multiplicities,1 are defined
as uncontrollable poles in the definition below. Uncontrollable poles are the roots of
a monic polynomial called the uncontrollable characteristic polynomial. See [32] for
details.

Definition 2.1. Let R ∈ Rp×w[ξ] have full row rank and suppose R( d
dt )w = 0 is a

kernel representation for B. Consider a factorization of R into R(ξ) = F (ξ)Rcont(ξ)
such that Rcont ∈ Rp×w[ξ], Rcont(λ) has full row rank for every complex number λ,
and det F is a monic polynomial. The uncontrollable characteristic polynomial of B,
denoted by χ

un(B), is defined as det F . The set of uncontrollable poles is defined
as roots ( χ

un), and is denoted by Λun(B).
If the behavior B is clear from the context, we write just χ

un and Λun. Notice
that if B is controllable, then χ

un = 1. When a behavior is not controllable, we often
require the controllable part of B. This is the largest controllable behavior contained
in B; the controllable part of B is denoted by Bcont. Consider the above definition
in which R has been factorized as described to obtain Rcont. A kernel representation
for Bcont is induced by Rcont. For a detailed exposition on behaviors, controllability,
and uncontrollable characteristic polynomial, we refer the reader to [17, 32].

This paper deals with dissipativity and in this context we deal with quadratic
forms in the system variables and a finite number of their derivatives. It turns out to
be very natural to associate two variable polynomial matrices to such quadratic forms.
Consider a two variable polynomial matrix Φ(ζ, η) :=

∑
i,k Φikζiηk ∈ Rw×w[ζ, η],

where Φik ∈ Rw×w. A Quadratic Differential Form (QDF) QΦ induced by Φ(ζ, η) is a

1See Remark 4.2 below.
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2934 DEBASATTAM PAL AND MADHU N. BELUR

map QΦ : C∞(R, Rw) → C∞(R, R) defined by

QΦ(w) :=
∑
i,k

(
diw

dti

)T

Φik

(
dkw

dtk

)
.

When dealing with quadratic forms in w and its derivatives, we can assume without
loss of generality that Φ(ζ, η) = ΦT (η, ζ). We call such Φ(ζ, η) a symmetric two-
variable polynomial matrix, and we denote the set of all such symmetric two-variable
polynomial matrices by Rw×w

s [ζ, η]. A quadratic form induced by a real symmetric
constant matrix S ∈ Rw×w

s is a special QDF and we shall often need this in this paper.
For a given Φ ∈ Rw×w

s [ζ, η], we often require the one variable polynomial matrix
Φ(−ξ, ξ): we shall denote this by ∂Φ(ξ). Due to the symmetry of Φ(ζ, η) the one
variable polynomial matrix ∂Φ(ξ) is para-Hermitian, i.e., ∂Φ(−ξ) = ∂ΦT (ξ). Notice
that this property makes ∂Φ(jω) Hermitian for all ω ∈ R. Throughout this paper,
ample use is made of the well-developed theory of QDFs; only the essential results of
which are reviewed here. See [28] for a thorough and complete treatment on QDFs.

The notion of state is central to this paper due to the claim that, for uncontrollable
systems, also the storage of energy is possible due to memory elements in the system.
The state variable x is an auxiliary variable that relates to the memory of the system.
Consider a behavior B ∈ Lw with manifest variables w. A variable x of the system
is called a state variable if it satisfies the system equations together with w, and has
the concatenation property. More precisely, if (w′, x′) and (w′′, x′′) are two smooth
trajectories allowed by the system, and x′(0) = x′′(0), then the new trajectory (w, x)
formed by concatenating (w′, x′) and (w′′, x′′) at t = 0, i.e.,

(w, x)(t) = (w′, x′)(t) for all t � 0
= (w′′, x′′)(t) for all t > 0,

also satisfies the system equations in a distributional sense. A formal treatment on
this is contained in [19], where it was proved that a variable x is a state variable for
B if and only if the behavior satisfies

B =
{

w ∈ C∞(R, Rw) | ∃ x ∈ C∞ such that E
d
dt

x + Fx + Gw = 0
}

for suitable real constant matrices E, F and G. The above first order representation is
called a state representation. Such a representation is said to be minimal if it has the
least number of state variables among all state representations describing the behavior.
The dimension of the state space for a minimal state representation is defined to be
the McMillan degree of the behavior, and is denoted by n(B). It was shown in [19]
that a set of state variables can be obtained through the manifest variables by a state
map, X ∈ R•×w[ξ], which gives the state variables by x = X( d

dt )w. Among all state
maps, if X has the minimum number of rows, then it is called a minimal state map;
in this case, the number of rows equals n(B). If B ∈ Lw has an input/output partition
w = col(w1, w2) where w1 is input and w2 is output such that the transfer function
from w1 to w2 is proper, then B admits a minimal state representation that is more
special and well known: an input/state/output (i/s/o) representation

d
dt

x = Ax + Bw1, w2 = Cx + Dw1,

with (C, A) observable. Controllability of the behavior B and that of the pair (A, B)
are related as shown in the following well-known result. We write Λ(A,B)

un for the set of
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2935

uncontrollable eigenvalues of the (A, B) pair (counted with multiplicities). Proposition
2.2 shows when a behavior allows a state map that gives rise to an i/s/o representation
with observability properties (see [31, 19]). We state this as a proposition for easy
reference later in this paper.

Proposition 2.2. Let behavior B ∈ Lw be given by B = ker R( d
dt), where

R(ξ) has full row rank. Let (w1, w2) be an input/output partition of w such that the
resulting transfer function matrix is proper. Suppose n is the McMillan degree of B
and X ∈ Rn×w[ξ] gives a minimal state map. Then there exist A ∈ Rn×n, B ∈ Rn×m,
C ∈ Rp×n, and D ∈ Rp×m, such that d

dtx = Ax + Bw1, w2 = Cx + Dw1 with (C, A)
observable, and x = X( d

dt)w. Moreover, B is controllable if and only if the above
i/s/o representation is state-controllable. If B is uncontrollable, then Λun(B), the set
of uncontrollable poles of B, is equal to Λ(A,B)

un the set of uncontrollable eigenvalues
of A (counted with multiplicities).

3. Dissipative systems: Definition and main result. Dissipative systems
are those that have no source of energy within, and hence any energy stored within
the system has to have been supplied from its environment. This intuitive physical
concept was made concrete in [30, 28] using the dissipation inequality: the rate of
increase of stored energy is at most the power supplied to the system. In this paper,
the power supplied and the stored energy are both QDFs in the manifest variables w
of the system. (See Remark 5.1 below regarding storage function’s dependence on just
the manifest variables.) In this paper we use the following definition of dissipativity;
its relation to other definitions is discussed below.

Definition 3.1. A linear differential behavior B ∈ Lw is said to be dissipative
with respect to supply rate S ∈ Rw×w

s if there exists a quadratic differential form QΨ(w)
such that

(3.1)
d
dt

QΨ(w) � QS(w) for all w ∈ B.

The quadratic differential form QΨ is called a storage function for B with respect to
the supply rate S.

The inequality (3.1) above is called the dissipation inequality. In some control
problems like in LQR and the suboptimal H∞ control, a stricter notion of dissipativity
plays a key role. In this paper we shall deal primarily with strict dissipativity, although
many of our results are valid for just dissipativity also (see Remark 5.7 below). We
define strict dissipativity as follows.

Definition 3.2. A linear differential behavior B ∈ Lw is said to be strictly
dissipative with respect to S ∈ Rw×w

s if there exists an ε > 0 and a storage function
QΨ(w) such that

d
dt

QΨ(w) � QS(w) − ε|w|2 for all w ∈ B.

Because the above definitions require the existence of a hitherto unknown storage
function, it has been common to use an equivalent statement for the definition of
(strict) dissipativity when dealing with controllable systems. The following result
from [28] shows the equivalence.

Proposition 3.3. Let B ∈ Lw
cont and S ∈ Rw×w

s be nonsingular. Then the
following statements are equivalent.

1. There exists a storage function QΨ(w) such that d
dtQΨ(w) � QS(w) − ε|w|2

for all w ∈ B.
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2936 DEBASATTAM PAL AND MADHU N. BELUR

2. For all w ∈ B∩D the integral inequality
∫

R
QS(w)dt � ε

∫
R
|w|2dt is satisfied.

The above proposition shows that the existence of a storage function satisfying
the dissipation inequality is equivalent to saying that the total energy transferred into
the system is strictly positive whenever we start the system from rest and bring the
system back to rest. Statement 2 was used as the definition of strict dissipativity in
[28]. With ε = 0, we get the definition of nonstrict dissipativity given in [28, 29]. It
is important to note here that the second statement above holds over only compactly
supported trajectories in B, while the first holds for all w ∈ B. Controllability of B is
crucial for the compactly supported trajectories in B to be representative enough of
the whole behavior for the above equivalence to hold (see [16]). Definitions using an
integral over a finite interval (which means energy supplied for a finite period of time)
ends up having initial and final storage function values in the defining inequality.
Use of compactly supported trajectories makes the integrals over the whole of R
well-defined and also makes the defining integral inequality free from the initial and
final storage function values. However, for an uncontrollable behavior, Statement 2
of Proposition 3.3 puts no restrictions on the trajectories in the behavior which are
outside the controllable part (see [16]), and hence this cannot be used as a definition
of dissipativity.

We define signature of a real symmetric nonsingular matrix S, denoted by σ(S) as
the pair of integers σ(S) = (σ−(S), σ+(S)), where σ−(S) and σ+(S) are the number
of negative and positive eigenvalues of S, respectively. In this paper we shall deal
only with the case when the positive signature σ+(S) equals the input cardinality
m(B) of the behavior B. Dissipativity with respect to this matrix is required for the
H∞ norm of a corresponding transfer matrix to be at most one. Further, as shown
in [29, Proposition 2, Part I], σ+(S) = m(B) means that the behavior has as high an
input cardinality as S-dissipativity allows; we call this condition the maximum input
cardinality condition.

We are now ready to state one of the main results of this paper. The following
theorem tells that if a certain unmixing condition is satisfied for the uncontrollable
poles, then the controllable part of a behavior being strictly dissipative is equivalent
to the existence of a storage function for the whole behavior’s strict dissipativity.
Recall from Definition 2.1 that the uncontrollable characteristic polynomial χ

un of B
is the monic polynomial whose roots (with suitable multiplicities) are those complex
numbers where R(ξ) loses rank. Theorem 3.4 below states that if the uncontrollable
poles are such that no pair of the uncontrollable poles is symmetric with respect to the
imaginary axis, then noncontrollability of B poses no hindrance to strict dissipativity
of B; i.e., strict dissipativities of B and Bcont are equivalent.

Theorem 3.4. Consider a linear differential behavior B ∈ Lw and a nonsingular
S ∈ Rw×w

s with the input cardinality of B equal to the positive signature of S: m(B) =
σ+(S). Assume that the uncontrollable characteristic polynomial of B, χ

un, is such
that χ

un(ξ) and χ
un(−ξ) are coprime. Then, B is strictly S-dissipative if and only

if its controllable part Bcont is strictly S-dissipative.
We call the condition of coprimeness of χ

un(ξ) and χ
un(−ξ) the unmixing

condition. In the context of autonomous systems, it is well known (see [34], for
example) that the unmixing condition is a necessary and sufficient condition for the
existence of a unique solution to the Lyapunov equation. In section 8 we explore
the extent of necessity of this condition. For some autonomous behaviors (and hence
some uncontrollable behaviors), we show that the unmixing condition is not necessary
(section 8).
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2937

Throughout this paper, we shall assume S has the following form:

(3.2) Σ :=
[
Im 0
0 −Ip

]
.

Lemma 3.5 below shows that, for dissipativity considerations, taking Σ as in (3.2)
is without any loss of generality. Dissipativity with respect to a different constant
matrix S can be easily treated by modifying the behavior suitably, as shown in the
following lemma.

Lemma 3.5. Consider B ∈ Lw and a real symmetric nonsingular matrix S ∈
Rw×w

s . Let S = T T ΣT, with T ∈ Rw×w nonsingular, be a symmetric factorization of S.
Define B̃ := TB. Then B is S-dissipative if and only if B̃ is Σ-dissipative.

Before we continue with other preliminaries, results, and proofs, we list the as-
sumptions we make in the rest of this paper that are without loss of any generality.
While we do write these standing assumptions explicitly in some results, they are
sometimes skipped for brevity. For a kernel representation, the polynomial matrix
R(ξ) is assumed to be full row rank, and the matrix M(ξ) in an image representation
is assumed to be right-prime. Further, when we start with an i/s/o representation of
a behavior, we assume this to be minimal. In the context of dissipativity, Σ is used
for the supply rate. We assume Σ to be symmetric and nonsingular.

4. Dissipativity, Riccati equation, and Hamiltonian matrix. In this sec-
tion we first briefly review existing literature about how the dissipation inequality
gives us a well-studied Linear Matrix Inequality (LMI). We bring out the connection
between a certain para-Hermitian polynomial matrix related to the behavior and an
associated Hamiltonian matrix. See [8, 13, 25] for related results.

For the case that the input cardinality of the behavior is equal to the positive
signature of Σ, a necessary condition for dissipativity of B ∈ Lw

cont is that a partition
of w = (w1, w2) corresponding to the matrix Σ (see (3.2)) results in an input/output
partition for B such that w1 is input and w2 is output (see [28, Remark 5.11]).
Note that the above partition means QΣ(w) = |w1|2 − |w2|2. Further, due to the
dissipativity, the transfer function from w1 to w2 turns out to be proper. This implies
that B allows an i/s/o representation as

d
dt

x = Ax + Bw1, w2 = Cx + Dw1,(4.1)

with (C, A) observable (see Proposition 2.2). The link among dissipativity of a con-
trollable behavior, storage functions, and LMIs is the subject of [30, 21, 4]; we state
this result below for easy reference.

Proposition 4.1. B ∈ Lw
cont is Σ-dissipative if and only if there exists a solution

K = KT ∈ Rn×n for the following LMI[(
CT C + AT K + KA

) (
KB + CT D

)(
BT K + DT C

) − (Im − DT D
)] � 0,(4.2)

where d
dtx = Ax+Bw1 and w2 = Cx+Dw1 is a state-controllable and state-observable

i/s/o representation of B with the input/output partition induced by the block matrix
Σ.

In the above proposition, the memoryless state function xT Kx acts as a stor-
age function for the controllable behavior B. See Corollary 5.6 below for our result
regarding uncontrollable behaviors. The above LMI is the well-known bounded-real
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2938 DEBASATTAM PAL AND MADHU N. BELUR

LMI. Assume (Im − DT D) > 0 (some implications of this assumption will be clarified
in the next section). The Schur complement of (Im − DT D) in inequality (4.2) gives
the Algebraic Riccati Inequality (ARI)2(

A + B
(
Im − DT D

)−1
DT C

)T

K + K
(
A + B

(
Im − DT D

)−1
DT C

)
+ CT

(
Ip − DDT

)−1
C + KB

(
Im − DT D

)−1
BT K � 0.(4.3)

Note that K satisfies the ARI if and only if K satisfies the above LMI.
The corresponding equation is the Algebraic Riccati Equation (ARE), and we

use properties of this equation for various results in this paper. Interestingly, the
solution to the ARE can be found from certain n-dimensional invariant subspaces
of a 2n × 2n matrix known as the Hamiltonian matrix. This paper uses properties
of the Hamiltonian matrix to relate to dissipativity. The procedure of constructing
a solution to the ARE from an n-dimensional eigenspace of the Hamiltonian matrix
comes in several texts, for example, [7, 10]. For easy reference we present this result as
Proposition 4.4 below. We first define Lambda-sets of the roots of an even polynomial
p(ξ) having no roots on the imaginary axis, for it will be of importance in the sequel.

Remark 4.2. As a convention in this paper, a set of roots of a polynomial (or
that of eigenvalues of a real constant matrix) has every element appearing as many
number of times as its multiplicity (algebraic multiplicity in case of eigenvalues), and
therefore equality of such sets means equality with the multiplicities counted. This
helps avoid writing certain polynomials are equal after ensuring monicity.

The definition of a Lambda-set plays an important role in the partition of a set
of complex numbers which are symmetric with respect to the imaginary axis. This
notion is similar to that of an S-set [20]. Λ̄ below denotes the set of complex conjugates
of the elements in Λ.

Definition 4.3. Let p(ξ) be a nonzero even polynomial in ξ with no roots on the
imaginary axis. A set of complex numbers Λ ⊂ roots (p(ξ)) is said to be a Lambda-set
of roots (p(ξ)) if it satisfies the following properties:

1. Λ = Λ̄,
2. Λ ∩ (−Λ) = φ, and
3. Λ ∪ (−Λ) = roots (p(ξ)) (counted with multiplicity).

The disjointness condition (condition 2) requires that p has no roots on the imag-
inary axis. We called this the unmixing condition in the remark following Theorem
3.4. Proposition 4.4 below is well known; it relates ARE solutions to the Hamiltonian
matrix H , defined below.

Proposition 4.4. Consider the ARE: AT K + KA + CT C + KBBT K = 0 in
the unknown real symmetric matrix K = KT ∈ Rn×n. Corresponding to this ARE,
construct the Hamiltonian matrix, H :=

[
A BBT

−CT C −AT

]
. Assume H does not have

eigenvalues on the imaginary axis and let Λ be a Lambda-set of spec(H). Suppose the
n-dimensional H-invariant subspace corresponding to Λ is given by

(4.4) XΛ(H) := im
[
X1

X2

]
,

where X1, X2 ∈ Rn×n. A real symmetric solution K to the ARE satisfying spec(A +
BBT K) = Λ exists if and only if X1 is nonsingular.

2We used the fact that positive definiteness of Im − DT D and Ip − DDT are equivalent.
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2939

If X1 as defined above is nonsingular, then K := X2X
−1
1 is a solution to the ARE.

Thus the solvability of the ARE through suitable n-dimensional invariant subspaces
of the Hamiltonian matrix gives a condition for the existence of a storage function
(state function) that satisfies the dissipation inequality. Note that the above result is
independent of any controllability assumption. For controllable behaviors that have
an i/s/o representation given by (4.1) such that (A, B) is controllable and (C, A) is
observable, it turns out that the eigenvalues of the Hamiltonian matrix are exactly
equal to the roots of the determinant of the corresponding para-Hermitian matrix
∂Φ(ξ) coming from the image representation matrix of the behavior and Σ. We state
this result as a lemma below. The result is quite expected, and we prove it (in
Appendix A) for the sake of completeness, and since we shall extend it to the case of
uncontrollability in Theorem 5.4.

Lemma 4.5. Let B ∈ Lw
cont have an i/s/o representation, d

dtx = Ax + Bw1,
w2 = Cx + Dw1 with (A, B) controllable and (C, A) observable and Σ :=

[
Im 0
0 −Ip

]
.

Assume (Im − DT D) > 0. Define the real 2n× 2n Hamiltonian matrix

H :=

⎡⎣A + B
(
Im − DT D

)−1
DT C B

(
Im − DT D

)−1
BT

−CT
(
Ip − DDT

)−1
C −

(
A + B

(
Im − DT D

)−1
DT C

)T

⎤⎦ .

Suppose w = M( d
dt)�; � ∈ C∞(R, Rm) is an observable image representation of B

and consider ∂Φ(ξ) := MT (−ξ)ΣM(ξ). Then, the Hamiltonian matrix eigenval-
ues are same as the zeros of ∂Φ(ξ), counted with multiplicities, i.e., spec(H) =
roots (det ∂Φ(ξ)).

Proof. See Appendix A.
The para-Hermitian matrix ∂Φ(ξ) comes from the image representation of the be-

havior and Σ, whereas the Hamiltonian matrix is formed from the i/s/o representation
with the i/o partition induced by Σ. Lemma 4.5 above nicely brings out a relation
between these two matrices and helps in establishing a system theoretic meaning to
the Hamiltonian matrix (see [15]). We shall make use of this lemma in proving our
main result: Theorem 3.4.

For the special case that (A, B) is controllable, the result in Proposition 4.4 can
be further extended. It has been shown in [7, 10] that if (A, B) is controllable and if
H has no eigenvalues on the imaginary axis, then H gives a solution to the ARE. We
state this result as a proposition below. We shall make use of this result within some
proofs in the sequel to infer about the existence of a solution to an ARE coming from
a strict dissipation inequality

Proposition 4.6. Consider the Hamiltonian matrix given by H :=
[

A BBT

−CT C −AT

]
.

If (A, B) is controllable and H has no roots on the imaginary axis, then there exists
a real symmetric solution to the ARE: AT K + KA + CT C + KBBT K = 0.

5. Dissipativity of uncontrollable behaviors. In this section we prove The-
orem 3.4 using the results presented in the last section and some more presented here.
We first consider an example of a simple electrical circuit as shown in Figure 5.1. Un-
der the condition R1C �= L/R2, the port variables (manifest variables) (v, i) satisfy
the following differential equation:[(

LC
d2

dt2
+ (R1 + R2)C

d
dt

+ 1
)
−
(

R1LC
d2

dt2
+ (R1R2C + L)

d
dt

+ R2

)][
v
i

]
= 0.
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2940 DEBASATTAM PAL AND MADHU N. BELUR

Fig. 5.1. An LCR circuit.

For the case that R1C = L/R2, and R1 = R2, the system becomes uncontrollable.
The corresponding kernel representation is[(

R2C
d
dt

+ 1
)
−
(

L
d
dt

+ R2

)][
v
i

]
= 0.

If the voltage across the capacitor vC and current through the inductor iL are consid-
ered as internal system variables, then we can write the following dissipation inequal-
ity:

d
dt

(
Cv2

C + Li2L
)

�
[
v i

] [0 1
1 0

] [
v
i

]
.

However, it turns out that the latent variables (vC, iL) are not observable from (v, i),
and so the storage function in the left-hand side of above inequality cannot be written
in terms of a QDF in just the manifest variables (see Remark 5.1 below). We ask the
question: is it possible to find a storage function in terms of the manifest variables, or
do we have to have, for some cases, storage functions in terms of “hidden” variables
only (variables that are unobservable from the manifest variables are also said to
be hidden)? Our main result Theorem 3.4 addresses this issue under the unmixing
assumption, and gives a necessary and sufficient condition for the existence of a storage
function in terms of manifest variables. Thus Theorem 3.4 rules out the necessity of
hidden variables to construct storage functions.

For the case of the above example, as derived in [33], q(v −R1i)2 with any q > 0
is a storage function, i.e.,

d
dt

q(v − R1i)2 � vi,

which is a dissipation inequality in just the manifest variables. The fact that this
storage function has no apparent interpretation as physical energy is discussed in
Remark 5.1 below. Further, q > 0 makes the set of storage functions unbounded for
this case: in section 7 we shall prove the unboundedness for general uncontrollable
behaviors.

Remark 5.1. The question of whether to allow unobservable variables into the
storage function has been an issue in [33, 5]. We call a storage function observable if it
can be expressed as a function of the manifest variables w and its derivatives. In this
paper a storage function is observable by definition. In certain physical systems, like
the electrical circuit above, one is able to construct a storage function from the con-
figuration of the individual elements within the system. However, as noted in above
references, the situation that the internal system variables may not be observable from
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2941

the manifest variables (for example, in the above circuit, (v, i), through which energy
is exchanged with the environment) raises the issue of whether to allow a storage func-
tion to depend on unobservable system variables also. An important contribution of
this paper is that we have resolved this issue at least for the case of strict dissipativity.
Under the unmixing and the maximum input cardinality conditions, we have obtained
an observable storage function for strictly dissipative behaviors. However, it may turn
out for some cases, like in the circuit above, that the observable storage function we
obtain has no physical energy interpretation. In general for a network consisting of an
interconnection of passive elements, which are either lossless elements with memory
and strictly dissipative elements without memory (see [30, p. 336]), the sum of ener-
gies stored in the individual passive elements gives a natural storage function. The
fact that this property is not presently captured in the definition is perhaps causing
the lack of physical energy interpretation of the observable storage function.

The following example shows that we have improved one of the main results
(Theorem 2) in [5] regarding observable storage functions. Consider the uncontrollable
behavior, B ∈ L2, given by the kernel representation R( d

dt)w = 0, where R(ξ) =
[2(ξ2 + 3ξ + 2) − (2ξ2 + 3ξ + 1)]. The QDF induced by XT (ζ)KX(η) with

X(ξ) :=
[
(2ξ + 6) −(2ξ + 3)

1 −1

]
and K :=

1
4

[
0.118 −0.014
−0.014 0.472

]
serves as an observable storage function with respect to the supply rate S =

[
0 1
1 0

]
.

Before the proof of Theorem 3.4 we state and prove the following theorem, which
is an important result in its own right and will also be of importance for proving
Theorem 3.4. We show that for a controllable behavior, though the definition of
strict dissipativity is existential in ε, it is equivalent to a pair of conditions that are
verifiable without ε. The second condition ensures that ∂Φ(ξ) has no zeros on the
imaginary axis while the first condition, loosely speaking, rules out the existence of
zeros of ∂Φ(ξ) at infinity.

Theorem 5.2. Consider B ∈ Lw
cont that has an observable image representation

B = im M( d
dt). Define ∂Φ(ξ) = MT (−ξ)ΣM(ξ). Let n be the McMillan degree of

B. Then B is strictly dissipative with respect to Σ if and only if the following are
satisfied:

1. deg (det ∂Φ(ξ)) = 2n,
2. ∂Φ(jω) > 0 for all ω ∈ R.

In order to prove the above theorem, we use the following lemma, whose proof
is in the appendix. Notice that in both, the theorem above and the lemma below,
condition 2 does not imply condition 1. Strictness of the dissipativity (i.e., existence
of an ε > 0) plays a role in this implication.

Lemma 5.3. Let a controllable behavior B = im M( d
dt ) have i/s/o representation

d
dtx = Ax + Bw1 and w2 = Cx + Dw1. Suppose n is the McMillan degree of B.
Define ∂Φ(ξ) = MT (−ξ)ΣM(ξ). Then (Im − DT D) > 0 if the following conditions
are satisfied:

1. deg (det ∂Φ(ξ)) = 2n,
2. ∂Φ(jω) > 0 for all ω ∈ R.

Proof. See Appendix A.
Proof of Theorem 5.2. (If) Assuming both conditions 1 and 2 are true, we shall

show that the behavior is strictly Σ-dissipative. It follows from [28, Proposition 5.2]
that the second condition, ∂Φ(jω) > 0 for all real ω, implies that B is guaranteed to
be dissipative with respect to Σ. Therefore, it follows from Proposition 4.1 that B
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2942 DEBASATTAM PAL AND MADHU N. BELUR

allows an i/s/o representation (4.1) and there exists K = KT ∈ Rn×n such that the
following LMI is satisfied:[

(CT C + AT K + KA) (KB + CT D)
(BT K + DT C) −(Im − DT D)

]
� 0.

Using Lemma 5.3, it follows that conditions 1 and 2 of Theorem 5.2 imply (Im −
DT D) > 0. Therefore, the LMI has rank-minimizing solutions coming from the
following ARE:(

A + B
(
Im − DT D

)−1
DT C

)T

K + K
(
A + B

(
Im − DT D

)−1
DT C

)
+ CT

(
Ip − DDT

)−1
C + KB

(
Im − DT D

)−1
BT K = 0.

So from Proposition 4.4 there exists a Hamiltonian matrix H given below corre-
sponding to the above ARE such that its solutions come from the n-dimensional
(generalized) eigenspaces of

H :=

⎡⎣A + B
(
Im − DT D

)−1
DT C B

(
Im − DT D

)−1
BT

−CT
(
Ip − DDT

)−1
C −

(
A + B

(
Im − DT D

)−1
DT C

)T

⎤⎦ .

It follows from Lemma 4.5 that spec(H) = roots (det ∂Φ(ξ)). Since ∂Φ(jω) > 0 for
all ω ∈ R roots (det ∂Φ(ξ))∩ jR = φ. Therefore, due to Lemma 4.5, H does not have
any purely imaginary eigenvalues. So from the continuity of eigenvalues (see [11])
there exists ε ∈ R small enough such that the following matrix

Hε = H − ε

[
0 0

CT C 0

]
also has no eigenvalues on the imaginary axis. Note that from Proposition A.1 in
the appendix, (A, B) controllable implies so is [(A + B(Im − DT D)−1DT C), B(Im −
DT D)−

1
2 ].

Hence it follows from Proposition 4.6 that Hε gives a solution K to the corre-
sponding ARE(

A + B
(
Im − DT D

)−1
DT C

)T

K + K
(
A + B

(
Im − DT D

)−1
DT C

)
+ CT

(
Ip − DDT

)−1
C + εCT C + KB

(
Im − DT D

)−1
BT K = 0,

which implies, from Proposition 4.1, that B is dissipative with respect to
[
Im 0
0 −(1 + ε)Ip

]
for some ε > 0.

Utilizing the Lemma A.2 in the appendix, we conclude that B being dissipative
with respect to

[
Im 0
0 −(1 + ε)Ip

]
implies B is strictly Σ-dissipative, and this completes

the “if” part of Theorem 5.2.
(Only if) First we show that B being strictly Σ-dissipative implies condition 2

holds. Then we shall further show that assuming condition 2 holds, B being strictly
Σ-dissipative implies that condition 1 holds. Assume that B is strictly Σ-dissipative.
Definition 3.2 implies there exists ε > 0 such that B is dissipative with respect to
Σ − εIm. It then follows from Proposition 3.3 and [28, Proposition 5.2] that

∂Φ(jω) � εMT (−jω)M(jω).(5.1)
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Note that MT (−jω)M(jω) � 0 for all real ω. Since M(ξ) is right-prime, it follows
from Lemma A.5 that MT (−jω)M(jω) > 0 for all ω ∈ R. This implies, from inequal-
ity (5.1) that ∂Φ(jω) > 0 for all ω ∈ R. This shows that if B is strictly Σ-dissipative,
then condition 2 holds.

Now we show that B being strictly Σ-dissipative together with ∂Φ(jω) > 0 for
all ω ∈ R implies that deg (det ∂Φ(ξ)) = 2n. Consider a spectral factorization of
∂Φ(ξ) = NT (−ξ)N(ξ) (existence of N ∈ Rm×m[ξ] is guaranteed due to the inequality
∂Φ(jω) > 0; see [18]). Again, since M(ξ) is right-prime, MT (−jω)M(jω) > 0 for all
ω ∈ R (Lemma A.5). So MT (−ξ)M(ξ) also allows a spectral factorization

MT (−ξ)M(ξ) = DT (−ξ)D(ξ); D ∈ Rm×m(ξ).

By Lemma A.5 in the appendix, M(ξ) being a right-prime polynomial matrix implies
that deg (det (MT (−ξ)M(ξ))) = 2n. Therefore deg (det D(ξ)) = n. Since B is
strictly Σ-dissipative, inequality (5.1) holds, which we can now rewrite in terms of the
spectral factors of ∂Φ(ξ) and MT (−ξ)M(ξ) as

NT (−jω)N(jω) � εDT (−jω)D(jω) ∀ω ∈ R

⇒ [
N(−jω)D−1(−jω)

]T [
N(jω)D−1(jω)

]
� εIm ∀ω ∈ R.(5.2)

The above inequality (5.2) implies that there exists a real ε > 0 such that the minimum
singular value of the rational function matrix N(jω)D−1(jω) is at least ε for all real
ω. This further implies that det (N(ξ)D−1(ξ)) is a biproper rational function, which
means deg (det N(ξ)) = n and hence deg (det ∂Φ(ξ)) = 2n.

The following result will be important in order to prove the main result: Theorem
3.4. It is an extension of Lemma 4.5, where we saw that for a controllable behavior
B the set of eigenvalues of the Hamiltonian matrix is equal to the set of roots of the
determinant of the para-Hermitian matrix ∂Φ(ξ). For the case of uncontrollability we
show that every uncontrollable pole λ of B, together with −λ, is an eigenvalue of H ,
in addition to those coming from the controllable part of B like in Lemma 4.5.

Theorem 5.4. Let B ∈ Lw and let χ
un be its uncontrollable characteristic

polynomial. Assume B has an observable i/s/o representation d
dtx = Ax + Bw1,

w2 = Cx + Dw1, and suppose Im −DT D is invertible. Let Bcont = im M( d
dt). Define

∂Φ(ξ) = MT (−ξ)ΣM(ξ). Construct the Hamiltonian matrix

H :=

⎡⎣A + B
(
Im − DT D

)−1
DT C B

(
Im − DT D

)−1
BT

−CT
(
Ip − DDT

)−1
C −

(
A + B

(
Im − DT D

)−1
DT C

)T

⎤⎦ ,

Then, the Hamiltonian matrix eigenvalues, the zeros of ∂Φ(ξ), and the uncontrollable
poles of B are related by: spec(H) = roots [det ∂Φ(ξ) χ

un(ξ) χ
un(−ξ)], counted with

multiplicities.
Proof. See Appendix A.
The next result is one of the main results of this paper and it is pivotal for

proving Theorem 3.4. It brings out an important property about certain n-dimensional
invariant subspaces of the Hamiltonian matrix. We already know from Proposition
4.4 that statement 2 in the theorem below is equivalent to existence of a solution to
the ARE. In this sense, Theorem 5.5 below is an important extension to Proposition
4.6. The theorem shows that a given Lambda set results in a solution to the ARE if
and only if this Lambda set contains the uncontrollable poles of the system. The proof
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2944 DEBASATTAM PAL AND MADHU N. BELUR

comes following a line of argument similar to the one used in proving [10, Theorem
7.2].

Theorem 5.5. Consider the Hamiltonian matrix, H =
[

A BBT

−CT C −AT

]
. Define

Λ(A,B)
un to be the set of uncontrollable eigenvalues of (A, B) pair and let Λ be a Lambda-

set of spec(H). Then the following are equivalent.
1. Λ ⊇ Λ(A,B)

un .
2. The n-dimensional invariant subspace of H corresponding to Λ is complemen-

tary to im
[
0n
In

]
.

Proof. (1 ⇒ 2) Denote by XΛ(H) the invariant subspace of H corresponding to
a Lambda-set Λ of spec(H). Since Λ is a Lambda-set of spec(H) Λ ∩ (−Λ) = φ and
Λ ∪ (−Λ) = spec(H), and therefore dim(XΛ(H)) = n. Let XΛ(H) be given by

XΛ(H) = im
[
X1

X2

]
,(5.3)

where X1, X2 ∈ Rn×n. Since XΛ(H) is an invariant subspace corresponding to Λ, we
have the following equality

H

[
X1

X2

]
=
[
X1

X2

]
HΛ,(5.4)

where HΛ ∈ Rn×n is such that spec(HΛ) = Λ.
In order to prove that XΛ(H) is complementary to im

[
0n
In

]
, we have to show that

ker X1 = {0}. Assume to the contrary that ker X1 is nontrivial; we shall show that
this will lead to a contradiction to Λ ⊇ Λ(A,B)

un .
We may assume without loss of generality thatXΛ(H) is a generalized (right)

eigenspace of H with respect to Λ. Using Lemma A.4 from the appendix we get,
im

[
X2
−X1

]
is a generalized left-eigenspace of H corresponding to −Λ. Since Λ is a

Lambda-set, Λ∩ (−Λ) = φ, so the two generalized eigenspaces are orthogonal to each
other, i.e., [

XT
2 −XT

1

] [X1

X2

]
= 0.

Because XΛ(H) is H-invariant, the last equation leads to[
XT

2 −XT
1

] [ A BBT

−CT C −AT

] [
X1

X2

]
= 0

⇒ XT
2 AX1 + XT

1 AT X2 + XT
1 CT CX1 + XT

2 BBT X2 = 0.(5.5)

Let x ∈ kerX1. Pre- and postmultiplying (5.5) by xT and x, respectively, we get
xT XT

2 BBT X2x = 0, which implies that BT X2x = 0. Consider (5.4), which gives
AX1 + BBT X2 = X1HΛ. After postmultiplying by x we get

AX1x + BBT X2x = X1HΛx

⇒ X1HΛx = 0 ⇒ HΛx ∈ kerX1.

This implies kerX1 is HΛ-invariant. Therefore, there exists v �= 0 an eigenvector of HΛ

such that X1v = 0. Let the eigenvalue corresponding to v be λ. Since spec(HΛ) = Λ,
λ ∈ Λ. Now, from (5.4) we can write

−CT CX1 − AT X2 = X2HΛ.(5.6)
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2945

Postmultiplying (5.6) by v we get

−CT CX1v − AT X2v = X2HΛv

⇒ −AT X2v = λX2v.

But this means X2v is a left eigenvector of A with eigenvalue −λ. Moreover −λ /∈ Λ
(because Λ ∩ (−Λ) = φ) and BT X2v = 0. This together means that −λ is an
uncontrollable eigenvalue of A, which is a contradiction to Λ ⊇ Λ(A,B)

un . Thus ker X1

cannot be nontrivial, and therefore XΛ is complementary to im
[
0n
In

]
.

(2 ⇒ 1) We assume that XΛ(H), the generalized eigenspace of H corresponding
to Λ (a Lambda-set of spec(H)), is complementary to im

[
0n
In

]
, and we show that

Λ ⊇ Λ(A,B)
un . Suppose Λ �⊇ Λ(A,B)

un . Then there exists λ ∈ Λ(A,B)
un but λ /∈ Λ. Since Λ is

a Lambda-set of spec(H), Λ∪ (−Λ) = spec(H). Also Λ(A,B)
un ⊂ spec(H) (see Theorem

5.4). These two facts together imply that −λ ∈ Λ. Now λ ∈ Λ(A,B)
un implies that there

exists a nonzero vector v ∈ Cn such that vT A = λvT and vT B = 0. Therefore the
2n vector constructed as w = col(0n, v) satisfies Hw = −λw; i.e., w is an eigenvector
of H with eigenvalue −λ. Since −λ ∈ Λ, the last w being an eigenvector of H with
eigenvalue −λ means XΛ is not complementary to im

[
0n
In

]
because w has the upper n

entries zero. Thus Λ �⊇ Λ(A,B)
un leads to a contradiction to statement 2. This proves

“2 ⇒ 1.”
With the above results we are now in a position to prove our main result, Theorem

3.4. The “if” part requires construction of a storage function for the uncontrollable
behavior B to show strict dissipativity. We use the Hamiltonian matrix properties
proved above, combined with some perturbation arguments, to show the Riccati equal-
ity and inequality have solutions, and then construct a storage function for proving
the strict dissipativity. The unmixing property plays a key role in this construction.

Proof of Theorem 3.4. (Only if) We assume that B ∈ Lw is strictly Σ-dissipative,
and we show that this implies Bcont is strictly Σ-dissipative. Since B is strictly Σ-
dissipative, according to Definition 3.2 there exists Ψ(ζ, η) ∈ Rw×w

s [ζ, η] and a real
number ε > 0 such that

d
dt

QΨ(w) � QΣ(w) − ε|w|2 for all w ∈ B.

Integrating both sides of the above inequality, considering only those trajectories in
B ∩ D we get ∫ ∞

−∞
QΣ(w)dt � ε

∫ ∞

−∞
|w|2dt for all w ∈ B ∩ D.

Since B∩D = Bcont ∩D (see [16]), the above inequality implies that Bcont is strictly
Σ-dissipative.

(If) We assume that the controllable part Bcont is strictly Σ-dissipative and that
the unmixing condition on the uncontrollable poles holds. We show that B too is
strictly Σ-dissipative. A necessary condition for Bcont to be strictly Σ-dissipative is
that the transfer function for Bcont with the i/o partition induced by Σ is proper.
Therefore, from Proposition 2.2 above, B has a state map X(ξ) and an i/s/o repre-
sentation with x = X( d

dt)w such that d
dtx = Ãx + B̃w1, w2 = C̃x + D̃w1 with (C̃, Ã)

pair observable and (Ã, B̃) pair uncontrollable with Λ(Ã,B̃)
un = Λun(B), counting mul-
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tiplicities. Let Bcont have an image representation

Bcont = im

[
W1

(
d
dt

)
W2

(
d
dt

)] ; W1 ∈ Rm×m[ξ], W2 ∈ Rp×m[ξ].

Since Bcont is strictly Σ-dissipative, from Theorem 5.2,

deg
(
det
[
WT

1 (−ξ)W1(ξ) − WT
2 (−ξ)W2(ξ)

])
= 2 × n(Bcont) and

WT
1 (−jω)W1(jω) − WT

2 (−jω)W2(jω) > 0 ∀ω ∈ R.

Again, from Lemma 5.3, these two facts together imply that Im − D̃T D̃ > 0. This
implies that there exists a Hamiltonian matrix given by

H =

⎡⎢⎣Ã + B̃
(
Im − D̃T D̃

)−1

D̃T C̃ B̃
(
Im − D̃T D̃

)−1

B̃T

−C̃T
(
Ip − D̃D̃T

)−1

C̃ −
(

Ã + B̃
(
Im − D̃T D̃

)−1

D̃T C̃

)T

⎤⎥⎦ .

Define A := Ã + B̃(Im − D̃T D̃)−1D̃T C̃, B := B̃(Im − D̃T D̃)−
1
2 , and C := (Ip −

D̃D̃T )−
1
2 C̃. Using Theorem 5.4 we get spec(H) = roots [det ∂Φ(ξ) χ

un(ξ) χ
un(−ξ)],

where ∂Φ(ξ) := WT
1 (−ξ)W1(ξ)−WT

2 (−ξ)W2(ξ). Since Bcont is strictly Σ-dissipative,
Theorem 5.2 implies that roots (det ∂Φ(ξ)) ∩ jR = φ. By assumption χ

un(ξ) and
χ

un(−ξ) are coprime, i.e., Λun ∩ (−Λun) = φ. Thus H has no eigenvalues on the
imaginary axis and so spec(H) allows a Lambda-set Λ. Moreover, we can construct
Λ in such a way that Λun ⊆ Λ. From Proposition 2.2 it follows that the set of uncon-
trollable eigenvalues of (A, B) pair is exactly equal to Λun. Hence from Theorem 5.5 a
generalized eigenspace of H corresponding to Λ, XΛ := im

[
X1
X2

]
, with X1, X2 ∈ Rn×n,

is complementary to im
[
0n
In

]
, which implies X1 is nonsingular allowing us to define

K = X2X
−1
1 ∈ Rn×n. Again since Λ ∩ (−Λ) = φ, applying Lemma A.4 we get

[
XT

2 −XT
1

] [X1

X2

]
= 0, which implies that

(
X2X

−1
1

)T
= X2X

−1
1 .

Thus K = KT is a symmetric solution to the ARE: AT K+KA+CTC+KBBT K = 0.
In order to complete the proof we have to show that there exists a storage function

for the strict dissipation inequality of Definition 3.2. For this we make use of Lemma
A.2 of Appendix A to infer that the strict dissipation inequality is equivalent to the
following LMI⎡⎣−(C̃T C̃ + ÃT K + KÃ

)
−
(
KB̃ + C̃T D̃

)
−
(
B̃T K + D̃T C̃

)
sIm − D̃T D̃

⎤⎦− ε

[
C̃T C̃ 0

0 0

]
� 0,(5.7)

for some ε > 0. The corresponding Hamiltonian matrix turns out to be

Hε :=

[
Ã + B̃(Im − D̃T D̃)−1D̃T C̃ B̃(Im − D̃T D̃)−1B̃T

−C̃T (Ip − D̃D̃T )−1C̃ −(Ã + B̃(Im − D̃T D̃)−1D̃T C̃)T

]
− ε

[
0 0

C̃T C̃ 0

]
= H − ε

[
0 0

C̃T C̃ 0

]
.
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Observe that the kind of perturbation that takes H to Hε is such that spec(Hε) ⊃ Λun.
Further, since the perturbation is analytic, according to [11], there exists an ε1 > 0
small enough such that the following property of H holds for Hε1 also:

spec(Hε1) ∩ jR = φ.

Therefore, spec(Hε1) also allows a Lambda-set Λε1 such that Λε1 ⊇ Λun. It follows
from Theorem 5.5 that there exists Kε1 = KT

ε1 ∈ Rn×n, which is a rank-minimizing
solution to the LMI (5.7) with ε = ε1.

The observable i/s/o representation is obtained from the manifest variables through
a state map as x = X( d

dt)w. Thus, X(ξ) and Kε1 give Ψ(ζ, η) := XT (ζ)Kε1X(η) that
satisfies

d
dt

QΨ(w) =
d
dt

[(
X

(
d
dt

)
w

)T

Kε1X

(
d
dt

)
w

]
� QΣ(w) − ε1|w|2 ∀w ∈ B,

which from Definition 3.2 means that B is strictly Σ-dissipative.
It is evident from the above proof that the storage function we construct to show

strict dissipativity is, in fact, a memoryless quadratic function of the state of the
system. More concretely, under the assumption that the uncontrollable poles are
unmixed, such a storage function, which is a memoryless state function, exists if the
behavior is strictly dissipative. We state this important consequence as a corollary
below.

Corollary 5.6. Suppose B ∈ Lw has uncontrollable poles satisfying Λun ∩
(−Λun) = φ, and let X ∈ Rn×w[ξ] give a minimal state map for B. Consider a
nonsingular Σ ∈ Rw×w

s with m(B) = σ+(Σ). Then, the following are equivalent.
1. B is strictly Σ-dissipative.
2. There exists a K ∈ Rn×n and ε > 0 such that d

dt [(X( d
dt )w)T KX( d

dt)w] �
wT (Σ − εI)w for all w ∈ B.

The above important and intuitive result that storage of energy requires memory
elements, namely states, was proved formally for the controllable case in [27]. Note
that for the special case that the behavior is controllable we have provided a new and
alternative proof of the main result of [27], by showing that for a strictly dissipative
behavior there exists a storage function which is a state function.

Remark 5.7. In this paper we have worked with strict dissipativity as defined
in Definition 3.2. One of the main reasons to invoke strictness is that it guarantees
nonsingularity of Im−DT D and hence the existence of the Hamiltonian matrix and the
Riccati equation. It also rules out the possibility of the Hamiltonian matrix having
purely imaginary eigenvalues, and thus enables us to use Lambda-set arguments.
It remains to explore which of the above results are true for the case of nonstrict
dissipativity.

Remark 5.8. The question of solvability of the positive-real LMI without im-
posing system theoretic assumptions like controllability or observability has been
dealt with in [9]. However, a very restrictive assumption made there is that the
whole set of eigenvalues of the system matrix A satisfies the unmixing property, i.e.,
spec(A)∩ (spec(−A)) = φ. According to our main result (Theorem 3.4) this assump-
tion is not necessary. It is sufficient that only the uncontrollable poles satisfy the
unmixing property. We shall see later in section 8 the extent of necessity of this un-
mixing property. The following example shows how the positive-real LMI is solvable
when some elements of spec(A) have symmetry with respect to the imaginary axis
and the system is uncontrollable.
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Example 5.9. Consider an i/s/o system with the following A, B, C, D matrices:

A =
[
0 1
1 0

]
, B =

[−1
−1

]
, C =

[
0 1

]
, D = 1.

Observe that spec(A) = {1,−1}, which is symmetric with respect to the imaginary
axis. Here Λun = {−1}, and the other eigenvalue (= 1) is controllable. An equivalent
kernel representation of the manifest behavior is given by[(

d2

dt2
− d

dt
− 2
)

−
(

d2

dt2
− 1
)][

w1

w2

]
= 0.

We ask the question: is this i/s/o system S :=
[
0 1
1 0

]
dissipative or equivalently, is

there a real symmetric solution K = KT ∈ R2×2 for the following LMI[−AT K − KA CT − KB
C − BT K D + DT

]
� 0?

Obviously, Λun = {−1} satisfies the unmixing property, and one can check that the
controllable part Bcont = ker

[
d
dt − 2 d

dt + 1
]

is strictly S-dissipative, which from
Theorem 3.4 implies that B is strictly S-dissipative. This can be verified by checking
that the following real symmetric matrix induces a storage function that satisfies the
dissipation inequality

K =
[−0.957 −1.457
−1.457 −1.957

]
,

and therefore solves the LMI.

6. Positive storage functions and stabilizability. In this section we estab-
lish an important link between stabilizability of systems and positive definiteness of
storage functions of strictly dissipative systems. The importance of this link lies in
the fact that the energy stored in physical systems is a nonnegative quantity and
dissipative physical systems satisfy an additional property that, if the system was ini-
tially discharged, then the net energy supplied into the system upto any time instant
is nonnegative; this is called half-line dissipativity. We review these concepts (from
[28]) below and prove similar results for uncontrollable systems in this section.

For this paper, we need half-line dissipativity for only the negative half of the
real line: R−. A controllable behavior B ∈ Lw

cont is said to be Σ-dissipative on R−
if
∫ 0

−∞ QΣ(w)dt � 0 for all w ∈ B ∩ D. (Due to time invariance of B, it is enough
to integrate up to 0.) Half-line dissipativity is related to (semi-)definiteness of the
storage function. A storage function QΨ is called nonnegative if QΨ(w)(t) � 0 for
all t ∈ R and w ∈ B. For controllable behaviors, it was shown in [28] that existence
of a nonnegative storage function is equivalent to dissipativity of B on R−. The
importance of nonnegative storage functions is due to such functions being bounded
from below (namely, by zero), because of which we expect that when the supply
of energy is stopped, then the trajectories cannot become unbounded. This link to
stability was made precise and proved in [29, Proposition 1, Part I].

We saw in Corollary 5.6 that, for a dissipative behavior B with a minimal state
map X ∈ Rn×w[ξ], a storage function QΨ is associated to a symmetric matrix K ∈
Rn×n such that QΨ(w) = (X( d

dt )w)T KX( d
dt )w. Hence QΨ is nonnegative if and only
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if K � 0 (see [28]). In the context of strict dissipativity, we define a positive definite
storage function. A storage function QΨ is called positive definite if K > 0.

The following result is one of the main results of this paper. It relates existence
of positive definite storage functions to stability of the autonomous part of the uncon-
trollable dissipative behavior. A behavior with a stable autonomous part is nothing
but a stabilizable behavior. A behavior B ∈ Lw is called stabilizable if for every
w ∈ B, there exists a w′ ∈ B such that w(t) = w′(t) for t � 0 and w′(t) → 0 as
t → ∞. A behavior is stabilizable if and only if Λun ⊂ C− (see [32]).

Theorem 6.1. Let a linear differential behavior B ∈ Lw be strictly Σ-dissipative
with m(B) = σ+(Σ). Then there exists a positive definite storage function if and only
if the following are satisfied:

1. there exists ε > 0 such that
∫

R−
QΣ(w)dt �

∫
R−

ε|w|2dt for all w ∈ B ∩ D

and
2. Λun ⊂ C−.

The first condition is clearly a necessary condition for existence of a positive
definite storage function; namely, the controllable part has to be strictly dissipative
on R−. The second condition is also necessary because of the notion that the storage
function behaves like a Lyapunov function for an autonomous system, and as is well
known, a positive Lyapunov function exists if and only if the autonomous system is
asymptotically stable. The fact that these two conditions are together sufficient for
the existence of a positive definite storage function for the whole behavior is one of
the main contributions of this paper. Also notice that Λun ⊂ C− is a very special
case of the unmixing condition. Thus the uncontrollability of the stabilizable behavior
poses no hindrance to existence of a storage function for strict dissipativity as long
as the controllable/autonomous parts allow storage/Lyapunov functions individually.
As noted above, this is the principal finding of this paper.

Proof. (If) In this part of the proof we show that the existence of ε > 0 such that∫
R−

QΣ(w)dt �
∫

R−
ε|w|2dt for all w ∈ B ∩ D and Λun ⊂ C− together imply that B

has a positive definite storage function. First, let the controllable part be given by an
observable image representation[

w1

w2

]
=
[
W1( d

dt )
W2( d

dt )

]
�; � ∈ C∞(R, Rm),

where W1 ∈ Rm×m[ξ] and W2 ∈ Rp×m[ξ]. Since B∩D = Bcont∩D,
∫

R−
QΣ(w)dt � 0 for

all w ∈ B ∩ D implies that the QDF induced by the two-variable polynomial matrix
Φ(ζ, η) := [WT

1 (ζ) WT
2 (ζ)]Σ[WT

1 (η) WT
2 (η)]T is strictly half-line positive, that is∫

R−
QΦ(�)dt > 0 for all nonzero � ∈ D(R, Rm). This, according to Theorem 6.4 of [28],

implies that W1(ξ) is Hurwitz. Since B is strictly Σ-dissipative the transfer function
from w1 to w2 is proper, and so from Proposition A.3, B has a state observable i/s/o
representation in Kalman decomposed form as

A =
[
Ac Acp

0 Au

]
, B =

[
Bc

0

]
, C =

[
Cc Cu

]
,

where d
dtxc = Acxc + Bcw1, w2 = Ccx + Dw1 gives a state controllable and state

observable i/s/o representation of the controllable part Bcont. This implies that
roots (det W1(ξ)) = spec(Ac), and, therefore, W1(ξ) being Hurwitz implies that so is
Ac. Once again, from Proposition A.3, the set of uncontrollable poles Λun = spec(Au).
So Λun ⊂ C− implies Au is also Hurwitz. Hence A is Hurwitz. Because B is strictly
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Σ-dissipative, the following ARI has a solution

AT K + KA + CT C +
(
DT C + BT K

)T (
Im − DT D

)−1 (
DT C + BT K

)
� 0.(6.1)

Since (DT C + BT K)T (Im − DT D)−1(DT C + BT K) � 0, (C, A) being observable
implies that [CT C+(DT C+BT K)T (Im−DT D)−1(DT C+BT K), A] too is observable
(see [34]). Hence the above inequality (6.1), when treated as a Lyapunov equation
AT K+KA+Q � 0, where Q := [CT C+(DT C+BT K)T (Im−DT D)−1(DT C+BT K)],
has (Q, A) observable and A Hurwitz, which means that all the solutions K are
positive definite (see [34]). Thus a positive definite solution to (6.1) induces a positive
definite storage function and this completes the proof of the “if” part.

(Only if) First we shall show that B being strictly dissipative with respect to
Σ with a positive definite storage function implies that there exists ε > 0 such that∫

R−
QΣ(w)dt �

∫
R−

ε|w|2dt for all w ∈ B ∩ D. Let QΨ be a positive definite storage
function that satisfies the strict dissipation inequality

d
dt

(QΨ(w)) � QΣ(w) − ε|w|2, for all w ∈ B.(6.2)

Considering only those trajectories in B ∩ D and integrating over R− we get∫
R−

QΣ(w)dt −
∫

R−
ε|w|2dt � QΨ(w)(0) ⇒

∫
R−

QΣ(w)dt �
∫

R−
ε|w|2dt,

where the last implication uses QΨ(w) � 0.
Next we show that B being strictly dissipative with a positive storage function

implies that Λun ⊂ C−. Observe that B being strictly Σ-dissipative implies that
the partition w = (w1, w2) induced by Σ results in Bcont having a proper transfer
function from w1 to w2. Hence it follows from Proposition 2.2 that B allows an i/s/o
representation d

dtx = Ax+Bw1, w2 = Cx+Dw1, where (A, B) is state uncontrollable
and (C, A) is state observable. In order to show that Λun ⊂ C−, we shall show, in fact,
that A is Hurwitz. We show this implication by contradiction, i.e., if λ �∈ C− is an
eigenvalue of A, then there does not exist any nonnegative definite storage functions.
Let λ ∈ spec(A) and x0 �= 0, the corresponding eigenvector of A. The following w is
an element of B [

w1

w2

]
=
[

0
Cx0e

λt

]
.(6.3)

The behavior B being strictly Σ-dissipative implies that there exists a storage function
QΨ(w) that satisfies the following strict dissipation inequality:

d
dt

(QΨ(w)) � |w1|2 − |w2|2 − ε|w|2 for all w ∈ B.(6.4)

Putting w as in (6.3) we get, by direct differentiation of the left hand-side,

2�(λ)QΨ(w) � −xT
0 CT Cx0e

2�(λ)t − ε|w|2.(6.5)

Consider the case when λ ∈ C+. The right-hand side of the above inequality is
negative definite, which implies that QΨ(w)�0 for this w ∈ B. This proves the
contradiction for the case �(λ) > 0. Next we consider the case when λ ∈ jR. In that
case �(λ) = 0, which makes inequality (6.5) impossible. Thus we have shown that
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λ �∈ C− eliminates nonnegativity of any storage function. Hence in order to have a
positive definite storage function it is necessary that Λun ⊂ C−. This completes the
proof that existence of a nonnegative storage function implies Λun ⊂ C−.

Within the above proof, we have, in fact, shown that every storage function for
the behavior is positive definite. This has been shown for the controllable case in [28,
Theorem 6.4]. Intuitively, storage functions being positive is closer to their interpre-
tation as energy-like functions. Also, the meaning of dissipativity that there is no
source of energy in the system appeals to both positive definite storage functions and
the stabilizability of the system. In the following section we explore other properties
of the set of storage functions, like (un)boundedness of this set.

7. Set of all storage functions for an uncontrollable system. Another
important topic of interest is the set of all storage functions of a dissipative behav-
ior. For LQR/LQG theory and H∞ control, certain extremum storage functions give
stabilizing controllers. In this section we show that the set of storage functions is
unbounded for uncontrollable dissipative systems and that for stabilizable systems,
this set is bounded from below.

We have seen before how the solutions to an ARI give storage functions as state
functions. Thus to further explore the set of all storage functions we shall look into
the set of solutions of a related ARI. It has been shown (in [27, 28], for example) that
with respect to a given state space representation i.e., with respect to a given state
map x = X( d

dt )w, there is a one to one correspondence between storage functions and
solutions to the ARI. Moreover, it is known that the set of storage functions for a
controllable dissipative behavior is a bounded convex polytope with its vertices given
by the storage functions coming from so-called spectral factorizations of ∂Φ(ξ). These
storage functions correspond to the algebraic Riccati equality solutions. However,
this set of solutions to the ARI turns out to lose the boundedness property when the
behavior loses controllability. This constitutes the theorem below, one of the main
results of this paper.

Theorem 7.1. Let B ∈ Lw be uncontrollable, and suppose the set of its uncon-
trollable poles Λun satisfies the unmixing property, i.e., Λun ∩ (−Λun) = φ. Further,
let B be strictly Σ-dissipative. Then the set of all storage functions is an unbounded
convex set.

Proof. By Proposition 2.2, B allows an i/s/o representation as d
dtx = Ãx + B̃w1,

w2 = C̃x+ D̃w1. Since B is strictly Σ-dissipative, (Im− D̃T D̃) > 0 and all the storage
functions come from real symmetric solutions of the following ARI

AT K + KA + CT C + KBBT K � 0,

where A := Ã + B̃(Im − D̃T D̃)−1D̃T C̃, B := B̃(Im − D̃T D̃)−
1
2 , and C := (Ip −

D̃D̃T )−
1
2 C̃. That the set of solutions to this ARI is convex is well known (see [4], for

example). In order to show the unboundedness of the solution set, we once again make
use of the Kalman decomposition result (Proposition A.3): there exists a similarity
transformation that results in A, B, C matrices in the following forms: A =

[
Ac Acp
0 Au

]
,

B =
[
Bc
0

]
, and C =

[
Cc Cu

]
. In order to show that the set of ARI solutions is

unbounded, we shall show that there exists a nonzero P ∈ Rn×n
s such that if K ∈ Rn×n

s

is a solution to the ARI, then for all λ > 0, the new real symmetric matrix defined
by K̃ := K + λP is also a solution of the ARI. Define P

P :=
[
0 0
0 P1

]
,
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2952 DEBASATTAM PAL AND MADHU N. BELUR

where P1 ∈ Rnu×nu
s satisfies the following Lyapunov inequality

(7.1) AT
u P1 + P1Au � 0.

Since the set of uncontrollable poles satisfy the unmixing property, that is, Λun ∩
(−Λun) = φ, the Lyapunov inequality is guaranteed to have a nonzero solution. Con-
sider the following expression in K̃:

AT K̃ + K̃A + CT C + K̃BBT K̃

= AT K + KA + CT C + KBBT K + λ
(
AT P + PA

)
+ λ2PBBT P

+ λ
(
KBBT P + PBBT K

)
.

Using the Kalman decomposed form of A, B, and C above and the structure of P ,
the above expression simplifies to

(
AT K + KA + CT C + KBBT K

)
+ λ

[
0 0
0 AT

u P1 + P1Au

]
.

From the fact that K is a solution to the ARI, and that P1 satisfies the Lyapunov
inequality (7.1) the above expression is negative semidefinite for all λ > 0. Thus
AT K̃ + K̃A+CT C + K̃BBT K̃ � 0, and K̃ is also a solution of the ARI for all λ > 0.
This proves that the set of solutions to the ARI is unbounded.

Notice that within the above proof we used that, if a solution K to the Riccati
inequality exists, then a solution P1 to the Lyapunov inequality (7.1) can be added
to K giving solutions K̃ of the ARI. Though we have demonstrated the existence
of solutions to the ARI primarily under the unmixing condition on the uncontrol-
lable poles, this method shows that whenever the Riccati inequality admits solutions,
uncontrollability forces the set of storage functions to be unbounded.

The following simple example shows a pictorial representation of the set of all
storage functions for a controllable behavior.

Example 7.2. Consider behavior B having an i/s/o representation with A =[
0 −2
1 −3

]
, B =

[
10
1

]
, C =

[
0 1

]
and supply rate S =

[
100 0
0 −1

]
. Let all the symmetric

solutions to the corresponding ARI be of the form K =
[
k1 k2
k2 k3

]
. The figure below

shows the set of all ARI solutions. Clearly, the set is a bounded convex polytope.
Remark 7.3. Figure 7.1 corresponds to a controllable behavior, and hence the set

is bounded. As the behavior becomes uncontrollable, all Lambda-sets no longer admit
Riccati equation solutions (see Theorem 5.5). However, the set of storage functions
is now unbounded along certain directions specified by the Lyapunov equation cor-
responding to the autonomous part of the behavior (as shown in Theorem 7.1). For
some specific examples, the transition to uncontrollability causes the Riccati equation
solutions corresponding to inadmissible Lambda-sets to move to infinity along the di-
rection of the Lyapunov equation solution. Further, loosely speaking, when restricted
to the controllable part, the storage functions corresponding to the Riccati equation
solutions are unaffected by translation along this direction. It remains to formulate
these observations concretely and prove them.

A very interesting fact about this unbounded set of all storage functions comes
up for the case when the behavior is uncontrollable but stabilizable; i.e., the set of
uncontrollable poles Λun is contained in the open left half of the complex plane (see
the previous section for the definition and related results about stabilizability). We
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DISSIPATIVITY OF UNCONTROLLABLE SYSTEMS 2953

Fig. 7.1. The set of all storage functions.

show below that for stabilizability, the set of storage functions, though an unbounded
set, is bounded from below. In other words, there exists a storage function QΨ− such
that every storage function QΨ satisfies QΨ(w) − QΨ−(w) � 0 for all w ∈ B. We
state this result as a theorem below.

Theorem 7.4. Let B ∈ Lw be an uncontrollable, strictly Σ-dissipative behavior.
Also assume that the set of uncontrollable poles Λun ⊂ C−. Then the set of all storage
functions is bounded from below; i.e., there exists a storage function QΨ−(w) for B
such that for each storage function QΨ(w) for B, QΨ−(w) � QΨ(w) for all w ∈ B.

Note the analogy of this result with that for controllable behaviors, where the set
of storage functions is bounded and has a maximum and a minimum element (see [28,
Theorem 5.7]). While we have shown unboundedness for the case of uncontrollability,
stabilizability ensures the existence of the minimum element in this unbounded set.

Proof. To prove the above result, we use Corollary 5.6 and look into the solutions
to the corresponding ARI. Let the behavior B have an i/s/o representation: d

dtx =
Ãx + B̃w1, w2 = C̃x + D̃w1. Then the set of all storage functions comes from the
solution set of the following ARI

AT K + KA + CT C + KBBT K � 0,

where A := Ã + B̃(Im − D̃T D̃)−1D̃T C̃, B := B̃(Im − D̃T D̃)−
1
2 , and C := (Ip −

D̃D̃T )−
1
2 C̃. Construct the corresponding Hamiltonian matrix

H :=
[

A BBT

−CT C −AT

]
.

By assumption, B is strictly Σ-dissipative, which implies spec(H)∩jR = φ. Also from
Theorem 5.4, spec(H) ⊃ Λun and by assumption Λun ⊂ C−. These facts together
imply that there exists a Lambda-set (say Λ) of spec(H) such that Λ ⊃ Λun and
Λ ⊂ C−. By Theorem 5.5, since Λ ⊇ Λun, there exists a real symmetric solution, K−
to the ARE such that spec(A + BBT K−) = Λ. We shall show that this particular
solution to the ARE serves as a “minimum” storage function. To show this consider
any real symmetric solution K to the ARI

(7.2) AT K + KA + CT C + KBBT K � 0.
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Also rewrite the ARE in K− as follows

(7.3)
(
A + BBT K−

)T
K− + K−

(
A + BBT K−

)
+ CT C − K−BBT K− = 0.

Subtracting (7.3) from (7.2), and further adding and subtracting the terms K−BBT K
and KBBT K− we get

(7.4)(
A + BBT K−

)T
(K−K−)+(K−K−)

(
A + BBT K−

)
+(K−K−)BBT (K−K−) � 0.

Observe that the above inequality closely resembles the Lyapunov inequality. In
order to conclude that (K−K−) � 0, it is enough to notice that spec(A+BBT K−) =
Λ ⊂ C−, and the constant-like term (K − K−)BBT (K − K−) is nonnegative. This
proves our claim that the set of all storage functions is bounded from below.

We saw in the previous section that, for a strictly dissipative and stabilizable
behavior B, dissipativity on R− of Bcont assures the existence of positive definite
storage functions. Combining this result with the one above, we infer that the lower
bound of the set of storage functions is, in fact, positive (see discussions following
Theorem 6.1). This formalizes the intuition that such a system is devoid of any
energy sources within it, and hence the maximum extractable energy3 from any given
state is bounded.

Using a very similar argument as in the above proof, one can show that if the
behavior is antistabilizable, meaning all the uncontrollable poles are unstable, i.e.,
Λun ⊂ C+, then the set of storage functions is bounded from above.

8. Necessity of the unmixing of uncontrollable poles. As seen in Theo-
rem 3.4, the unmixing property of the uncontrollable poles makes strict dissipativity
of the controllable part equivalent to that of the whole behavior. In this section we
shall see to what extent the unmixing property is necessary. As mentioned in the in-
troduction, the unmixing property serves as a sufficient condition for solvability of a
Lyapunov equation and the corresponding Lyapunov operator becomes singular when
this condition is not satisfied. We show in this section that the Lyapunov operator is
onto if and only if there exists an observable rank one symmetric matrix in its image.
This interesting result is utilized for exploring the extent of the unmixing condition
for strict dissipativity. Theorem 8.3 below shows that for a system with single out-
put, unmixing is necessary for existence of nonzero lossless trajectories satisfying a
dissipation equality (see Remark 8.4 below).

When the Lyapunov operator is singular, then nonsymmetric solutions can exist
even when the constant term is symmetric. This general solvability condition can be
obtained from a certain eigenspace of a Hamiltonian matrix. The fact that a Lyapunov
equation is a special case of an ARE with the quadratic term being zero motivates
the following result. We state this as a lemma below since it will be needed later in
this section. Related results on Lyapunov equation solvability can be found in [24].

Lemma 8.1. K ∈ Rn×n is a solution (not necessarily symmetric) to the following
Lyapunov equation AT K +KA+CT C = 0 if and only if im

[
In
K

]
is an invariant space

of the Hamiltonian matrix defined as

H =
[

A 0
−CT C −AT

]
.

3This has been called available storage in [28].
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Proof. (If) We first assume that XA := im
[
In
K

]
is an n-dimensional invariant

subspace of H . We shall show that this implies K satisfies the Lyapunov equation
AT K + KA + CT C = 0. Clearly [

K −In
] [In

K

]
= 0. Since XA is H-invariant the last

equation can be written as
[
K −In

] [ A 0

−CT C −AT

] [
In
K

]
= 0. Hence AT K + KA +

CT C = 0.
(Only if) In this part we shall show that K being a solution to the Lyapunov

equation AT K + KA + CT C = 0 implies that im
[
In
K

]
is an n-dimensional invari-

ant subspace of H . Assuming K satisfies the Lyapunov equation, we can write the
following equality: [

A 0
−CT C −AT

] [
In
K

]
=
[
In
K

]
A.

This implies that im
[
In
K

]
is an eigenspace of H corresponding to spec(A).

It follows from the lemma above that there is only one set of eigenvalues of the
Hamiltonian matrix, which gives a solution to the Lyapunov equation: namely, the
eigenvalues of A. Unlike the ARE, for the Lyapunov equation there is no choice
for the set of eigenvalues of the Hamiltonian matrix. Another important fact that
follows is that the set of eigenvalues, i.e., spec(A) is no longer a Lambda-set when
there is mixing, i.e., spec(A) ∩ spec(−A) �= φ. Owing to this particular fact, the
eigenspace of the Hamiltonian matrix which gives a solution is no longer guaranteed
to be perpendicular to the left-eigenspace corresponding to the rest of the eigenvalues
of H . However, from Lemma A.4 if im

[
X1
X2

]
is a (generalized) right-eigenspace of

dimension n corresponding spec(A), then im
[

X2
−X1

]
is an n-dimensional (generalized)

left-eigenspace corresponding to spec(−A). Since the right and left eigenspaces are
no longer guaranteed to be perpendicular, we do not necessarily have X2X

−1
1 =

X−T
1 XT

2 . This implies that when the unmixing condition is not satisfied there can
be nonsymmetric and nonunique solutions to the Lyapunov equation. However, the
existence of a nonsymmetric solution guarantees existence of a symmetric solution. If
K is a solution to the Lyapunov equation, then so are KT and (K +KT )/2. With this
simple observation we now give a necessary and sufficient condition for the existence
of solution to a Lyapunov equation for the special case that the constant term is of
rank one. Interestingly for this case when the constant term is rank 1 the unmixing
condition becomes necessary!

Theorem 8.2. Consider the Lyapunov equation AT K + KA + CT C = 0 with
(C, A) pair observable. Assume rank(CT C) = 1. Then there exists a solution K to
the Lyapunov equation if and only if spec(A) ∩ spec(−A) = φ.

Proof. (If) This implication is well known (see [26], for example). In fact,
uniqueness and symmetry are guaranteed.

(Only if) Suppose A has a mixed spectrum, that is, spec(A)∩spec(−A) �= φ. We
shall show that this implies that the Lyapunov equation AT K+KA+CT C = 0 has no
solution K. In Theorem 8.1 it has been shown that the eigenspace of the Hamiltonian
matrix corresponding to only spec(A) can give a solution to the Lyapunov equation.
Hence to prove that there does not exist any solution K, it is sufficient to show that
any eigenvector of the Hamiltonian matrix

H :=
[

A 0
−CT C −AT

]
,
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2956 DEBASATTAM PAL AND MADHU N. BELUR

corresponding to an eigenvalue λ ∈ spec(A)∩spec(−A) shall have all upper n elements
zero. For that, let v := col(v1, v2) ∈ C2n, v �= 0 be an eigenvector of H corresponding
to λ ∈ spec(A) ∩ spec(−AT ). It then follows that[

A 0
−CT C −AT

] [
v1

v2

]
= λ

[
v1

v2

]
,

which means Av1 = λv1 and [λIn − (−AT )]v2 = −CT Cv1. Suppose v1 �= 0, then the
above implies v1 is an eigenvector of A. Since (C, A) is observable Cv1 �= 0. Further,
rank(CT C) = 1, Cv1 �= 0 together imply [λIn − (−AT )]v2 = −CT Cv1 implies4

im CT ⊆ im
[
λIn −

(−AT
)]

.(8.1)

This gives ker C ⊇ ker [λIn − (−A)]. Since λ ∈ spec(A) ∩ spec(−A), −λ ∈ spec(A).
But the inclusion ker C ⊇ ker [λIn− (−A)] implies

[−λIn − A
C

]
loses rank, which means

−λ is unobservable. This contradicts the observability of (C, A). Hence v1 = 0, and
therefore, the eigenspace of H corresponding to spec(A) cannot have the form im

[
In
K

]
.

Thus, using Lemma 8.2, the Lyapunov equation is not solvable.
It is well known that the unmixing condition is equivalent to existence and unique-

ness of solution to the Lyapunov equation. In other words, the unmixing condition is
equivalent to the image of the Lyapunov operator containing all symmetric matrices.
The above theorem shows that unmixing is necessary and sufficient for the image to
contain a symmetric matrix of rank one (satisfying observability conditions). How-
ever, the corresponding Lyapunov inequality can have solutions when the equation is
not solvable; see Remark 8.4 below.

We have seen in the previous sections how dissipativity is related to the solvability
of certain ARE/ARI. For an uncontrollable system the corresponding ARE behaves
like a Lyapunov equation on certain subspaces of the state space. Following this
observation we shall now utilize Theorem 8.2 to show how the unmixing becomes
necessary for the solvability of the ARE. We shall make use of the fact that CT C
being rank one means that the system has only one output.

Theorem 8.3. Consider B ∈ Lw having a single output, i.e., p(B) = 1. Suppose
R ∈ R1×w[ξ], with R �= 0, gives a kernel representation for B. Define Λun = {λ ∈
C | R(λ) = 0} and let (A, B, C, D) give a minimal i/s/o representation for B, with
(C, A) observable. Then, the following are equivalent.

1. Im − DT D > 0 and there exists K satisfying

AT K + KA + CT C + (KB + CT D)(Im − DT D)−1(BT K + DT C) = 0,(8.2)

with spec(A + B(Im − DT D)−1(BT K + DT C)) ∩ jR = φ.
2. Λun ∩ (−Λun) = φ and Bcont is strictly Σ-dissipative.

Proof. (2 ⇒ 1) From Lemma 5.3 strict dissipativity of Bcont implies Im−DT D >
0, so the following Hamiltonian matrix exists

(8.3) H :=

⎡⎣A + B
(
Im − DT D

)−1
DT C B

(
Im − DT D

)−1
BT

−CT
(
Ip − DDT

)−1
C −

(
A + B

(
Im − DT D

)−1
DT C

)T

⎤⎦ .

4Existence of a solution v2 for just one v1 �= 0 implies the inclusion (8.1) because of the rank
condition.
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Let the observable image representation of Bcont induce the para-Hermitian matrix
∂Φ(ξ). Then by Theorem 5.4 we get spec(H) = roots [det ∂Φ(ξ) χ

un(ξ) χ
un(−ξ)].

Once again strict Σ-dissipativity of Bcont implies ∂Φ(jω) > 0 for all ω ∈ R (see
Theorem 5.2) meaning roots (det ∂Φ(ξ)) has no roots on the imaginary axis. This
together with the assumption Λun ∩ (−Λun) = φ implies that spec(H) ∩ jR = φ
and so it allows a Lambda-set Λ ⊇ Λun. It then follows from Theorem 5.5 that
there exists K ∈ Rn×n such that im

[
In
K

]
is the n-dimensional invariant subspace of H

corresponding to Λ. This shows that K solves the ARE. Also this solution K has the
property spec(A + B(Im − DT D)−1(BT K + DT C)) = Λ (see Proposition 4.4) which
means spec(A + B(Im − DT D)−1(BT K + DT C)) ∩ jR = φ because Λ ⊂ spec(H) and
spec(H) ∩ jR = φ.

(1 ⇒ 2) We shall first show that statement 1 implies that Bcont is strictly
Σ-dissipative. Im − DT D is assumed to be positive definite, and therefore the Hamil-
tonian matrix of equation (8.3) exists. Again, Theorem 5.4 implies spec(H) =
roots [det ∂Φ(ξ) χ

un(ξ) χ
un(−ξ)]. Counting multiplicities both sides we get

deg (det ∂Φ(ξ)) = 2n(Bcont). We claim that H has no eigenvalues on the imagi-
nary axis, because otherwise any solution to the ARE, if it exists, would result in
spec(A + B(Im − DT D)−1(BT K + DT C)) ∩ jR �= φ which contradicts statement 1.
Thus ∂Φ(ξ) also has no zeros on the imaginary axis, which implies ∂Φ(jω) > 0 for all
ω ∈ R. This positive definiteness together with deg (det ∂Φ(ξ)) = 2nc implies that
Bcont is strictly Σ-dissipative (see Theorem 5.2).

In order to complete the proof it remains to show that the ARE (8.2) having a
solution implies that Λun is unmixed. Since (C, A) is observable K is nonsingular (see
[7, Lemma 3]). We have assumed that B is uncontrollable; therefore, (A, B) pair is
also uncontrollable and the set of uncontrollable poles Λun is exactly equal to the set
of uncontrollable eigenvalues of A (this follows from Proposition 2.2). So if Λun has
cardinality nu (counting multiplicities), then there exists a full column rank matrix
Tu ∈ Rn×nu obtained from the generalized eigenvectors of AT such that AT Tu = TuAu

and T T
u B = 0, where Au ∈ Rnu×nu is in Jordan form with spec(Au) = Λun. Also, since

K is nonsingular, there exists T ∈ Rn×nu full column rank, such that KT = Tu. Then
pre- and postmultiplying the ARE (8.2) by T T and T , respectively, and making use
of the fact that AT Tu = TuAu and T T

u B = 0 we get

T T KTAu + AT
u T T KT + T T CT

(
Ip − DDT

)−1
CT = 0.

Define Ku := T T KT ∈ Rnu×nu
s and Cu := (Ip − DDT )−

1
2 CT . The above Lyapunov

equation can be rewritten as AT
u Ku + KuAu + CT

u Cu = 0.
Now we show that the new positive semidefinite matrix CT

u Cu is also rank one.
In order to prove this we shall use a contradiction argument. Since T is full column
rank, rank CT

u Cu � 1. Assume rank CT
u Cu = 0. This implies CT = 0 because B

being strictly Σ-dissipative implies (Ip − DDT )−1 > 0 (see footnote 2 in section 4).
Postmultiplying the ARE (8.2) by T and utilizing the fact that BT KT = 0 we get
AT KT +KAT +CT (Ip −DDT )−1CT = 0. Since CT = 0 and AT Tu = TuAu the last
equation gives

KTAu + KAT = 0.(8.4)

Equation (8.4) along with the fact that K is nonsingular implies that im T is A-
invariant. This means im T is a nontrivial A-invariant subspace contained in ker C,
which is not possible due to observability of (C, A). Hence CT �= 0 and so
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2958 DEBASATTAM PAL AND MADHU N. BELUR

rank (CT
u Cu) = 1. Therefore, from Theorem 8.2 it follows that spec(Au) = Λun

satisfies the unmixing property.
Remark 8.4. Statement 1 above would have been equivalent to strict dissipativity

of B if B were controllable, but this is not the case in general. More precisely, under
controllability assumptions on (A, B), the ARE not having a solution implies that
the ARI also does not have a solution (see [22, 23]). However, this turns out to
be untrue for an uncontrollable behavior. For example, consider the special case
of an autonomous system with A = diag([1 − 1]) and C = [1 1]. For this case
the Lyapunov equation is not solvable, though the corresponding inequality admits a
solution. More generally the ARE having a solution means that there exist nonzero
lossless trajectories in the behavior (see [1]). For a controllable dissipative behavior,
there are always nonzero lossless trajectories. The last theorem makes it clear that
for an uncontrollable system with a single output, unmixing of uncontrollable poles is
necessary for the existence of nontrivial lossless trajectories. We do not digress more
into the notion of losslessness because it is not central to the subject of this paper.
A thorough understanding of the necessity of the unmixing condition requires further
investigation.

That the unmixing is not necessary in general for more than one output is quite
expected. The following example gives one such simple instance.

Example 8.5. Consider the autonomous system with i/s/o representation d
dtx =

Ax, y = Cx, where

A =
[−1 0

0 1

]
, C =

[
2 0
0 2

]
.

Observe that A has “mixed” eigenvalues, i.e., Λun ∩ (−Λun) �= φ. Σ-dissipativity of
such an autonomous system together with σ+(Σ) = m(B) is equivalent to existence of a
real symmetric solution to the following Lyapunov inequality: AT K+KA+CTC � 0.
Notice that K =

[
2 + b a

a −2 − c

]
with a, b, c ∈ R and b, c � 0 gives a solution to

the above Lyapunov inequality. This example shows that the unmixing condition of
uncontrollable poles is not necessary for the system to be dissipative.

9. Concluding remarks. In this paper we studied dissipativity for a general,
possibly uncontrollable, LTI system. Our starting point was a more appropriate,
though less often used, definition of dissipativity in terms of a differential inequality
called the dissipation inequality. With this definition we brought out an equivalence
between the dissipativities of a behavior and its controllable part, under the impor-
tant unmixing condition (Theorem 3.4). For the case of strict dissipativity, Theorem
3.4 also settles the issue of whether to allow unobservable variables in the defining
dissipation inequality: the theorem rules out the requirement of unobservable vari-
ables. The important intuitive idea that storage of energy should take place through
the state variables comes as a natural consequence of Theorem 3.4. We stated this
result as a corollary.

Next we looked into the set of all storage functions for a strictly Σ-dissipative
system. It is well known that this set is a bounded convex polyhedron for a controllable
system. We showed that for an uncontrollable system the set loses its boundedness
property. Further, this set becomes bounded from below if the system is stabilizable.
If in addition the controllable part is strictly Σ-dissipative on R−, then we showed that
this lower bound on the set is positive. We used this result to formalize the physical
notion of stored energy being finite in a dissipative system that has no source of energy
within: it is not possible to extract an indefinite amount of energy from a stabilizable
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system whose controllable part is strictly dissipative on R−. In this paper, though we
utilized results about Hamiltonian matrices and Riccati equations, our main results
pertain to the system directly, without an apriori input/output partition of the system
variables. This is an important feature and advantage of the behavioral approach.

The unmixing condition plays a crucial role in most of the main results of this
paper. In order to address the necessity of the unmixing condition we made use of the
important observation that for an uncontrollable behavior a storage function acts like
a Lyapunov function over certain trajectories, and we showed that unmixing is not
necessary in general for existence of a Lyapunov function and therefore for dissipativ-
ity. However, an interesting situation arises when the system has only one output. In
Theorem 8.2 we showed that under suitable observability conditions a singular Lya-
punov operator cannot have a rank one symmetric matrix in its image. This helped
us to bring out the fact that the unmixing is necessary for an uncontrollable behavior
to have nonzero lossless trajectories in it. The extent of unmixing condition for a
more general situation remains to be investigated.

In this paper we have dealt only with the maximum input cardinality case, i.e.,
the case when the number of inputs is equal to the positive signature of the supply
rate function Σ. A study of the general case can also be utilized for dissipativity
synthesis problems for uncontrollable systems.

Appendix A. Auxiliary results and proofs.
The following standard result from state space theory [34] is needed in the proof

of Lemma 4.5; we state it for easy reference.
Proposition A.1. Consider the following state space representation of a dy-

namical system. d
dtx = Ax + Bw1, w2 = Cx + Dw1. Let Fc ∈ Rm×n, Fo ∈ Rn×p and

Gc ∈ Rm×m, Go ∈ Rp×p with Gc, Go nonsingular. Then,
• (A + BFc, BGc) is controllable if and only if (A, B) is controllable,
• (GoC, A + FoC) is observable if and only if (C, A) is observable.

Proof of Lemma 4.5. As seen earlier, the supply function matrix Σ induces an
input/output partition w = (w1, w2) where w1 is input and w2 is output. To prove
this theorem we shall consider two cases, first the case when B has a strictly proper
transfer function from w1 to w2 and secondly the case when B has a proper transfer
function (not necessarily strictly proper) with the same input/output partition. For
the second case we shall show that there exists a simple transformation that changes
it to the first case and thus the proof is complete.

Case 1 (B has strictly proper transfer function from w1 to w2) : B
allows an i/s/o representation with D = 0 as follows

d
dt

x = Ax + Bw1, w2 = Cx.(A.1)

Σ is given as
[
Im 0
0 −Ip

]
, so the corresponding Hamiltonian matrix is H =

[
A BBT

−CT C −AT

]
.

Consider the observable image representation of B: w = M( d
dt)�, and partition M

corresponding to w = (w1, w2) to get

(A.2)
[
w1

w2

]
=
[
W1( d

dt )
W2( d

dt )

]
�.

Without loss of generality we can assume that det (W1(ξ)) is a monic polynomial.
Now, the transfer function for B is given by G(ξ) := W2(ξ)W−1

1 (ξ) = C(ξIn−A)−1B.
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The characteristic polynomial of H is given by χ(H) = det (ξI2n − H). Using Schur
complement this can be written as

χ(H) = det (ξIn − A)det
[(

ξIn + AT
)

+ CT C(ξIn − A)−1BBT
]

= det (ξIn − A)det
(
ξIn + AT

)
det

[
In +

(
ξIn + AT

)−1
CT C(ξIn − A)−1BBT

]
.

Now using the identity, det (I + PQ) = det (I + QP ) we get

χ(H) = det (ξIn − A)det
(
ξIn + AT

)
det

[
Im + BT

(
ξIn + AT

)−1
CT C(ξIn − A)−1B

]
= det (ξIn − A)det

(
ξIn + AT

)
det

[
Im − GT (−ξ)G(ξ)

]
= det (ξIn − A)det

(
ξIn + AT

)
det
[
W−T

1 (−ξ)(WT
1 (−ξ)W1(ξ)

−WT
2 (−ξ)W2(ξ))W−1

1 (ξ)
]

=

(
det (ξIn − A)det

(
ξIn + AT

)
det WT

1 (−ξ)det W1(ξ)

)
det

[
WT

1 (−ξ)W1(ξ) − WT
2 (−ξ)W2(ξ)

]
.

Since (A, B) is controllable and (C, A) is observable, and due to observability of the
image representation (A.2), det W1(ξ) = det (ξIn −A); therefore, the above equation
simplifies to

χ(H) = −det
[
WT

1 (−ξ)W1(ξ) − WT
2 (−ξ)W2(ξ)

]
= −det ∂Φ(ξ)

This proves spec(H) = roots (det ∂Φ(ξ)) and hence the lemma for the strictly proper
transfer matrix case.

Case 2 (B has proper transfer function from w1 to w2): B allows the
following i/s/o representation, d

dtx = Ax+Bw1, w2 = Cx+Dw1 with (A, B) control-
lable and (C, A) observable. Since (Im − DT D) > 0, the corresponding Hamiltonian
matrix is given by

H :=

⎡⎣A + B
(
Im − DT D

)−1
DT C B

(
Im − DT D

)−1
BT

−CT
(
Ip − DDT

)−1
C −

(
A + B

(
Im − DT D

)−1
DT C

)T

⎤⎦ .

Because D is nonzero, the arguments in case 1 do not hold. As mentioned earlier, we
show that there exists a transformation on the manifest variables that changes this
situation to that in case 1. Consider the quadratic form QΣ(w)

QΣ(w) = |w1|2 − |w2|2 = wT
1 w1 − xT CT Cx − xT CT Dw1 − wT

1 DT Cx − wT
1 DT Dw1

=
[
w1

x

]T

Σ1

[
w1

x

]
,

where Σ1 is defined as Σ1 :=
[
Im − DT D −DT C

−CT D −CT C

]
. Notice that Σ1 can be factorized as

(A.3)[(
Im − DT D

) 1
2 − (Im − DT D

)− 1
2 DT C

0 In

]T

Σ̃

[(
Im − DT D

) 1
2 − (Im − DT D

)− 1
2 DT C

0 In

]
,
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where Σ̃ :=
[
Im 0

0 −CT (Ip − DDT )−1C

]
. Define T :=

[
(Im − DT D)

1
2 −(Im − DT D)−

1
2 DT C

0 In

]
.

Further define
[
w̃1
x̃

]
:= T

[
w1
x

]
. Then from (A.3) we have

QΣ(w) =
[
w̃1

x̃

]T

Σ̃
[
w̃1

x̃

]
.(A.4)

Now, since (w1, x) satisfies the state equation, (w̃1, x̃) must satisfy the following:

[−B d
dtIn − A

]
T−1

[
w̃1

x̃

]
= 0

⇒ [−B d
dtIn − A

] [(Im − DT D
)− 1

2
(
Im − DT D

)−1
DT C

0 In

][
w̃1

x̃

]
= 0

⇒
[
−B

(
Im − DT D

)− 1
2 d

dtIn − A − B
(
Im − DT D

)−1
DT C

] [w̃1

x̃

]
= 0.

Therefore, (w̃1, x̃) satisfies the state equation, d
dt x̃ = Ãx̃+B̃w̃1, where Ã := A+B(Im−

DT D)−1DT C, B̃ := B(Im − DT D)−
1
2 . By denoting C̃ := (Ip − DDT )−

1
2 C, we can

define a new behavior B̃ that has an i/s/o representation given by d
dt x̃ = Ãx̃ + B̃w̃1,

w̃2 = C̃x̃. Now, from (A.4) we have w̃ := col(w̃1, w̃2) satisfies

QΣ(w̃) = QΣ(w).(A.5)

In order to infer about the controllability of the new behavior B̃, we make use
of Proposition A.1 above; since (A, B) is controllable, so is (Ã, B̃), and similarly,
since (C, A) is observable, so is (C̃, Ã). Therefore, B̃ allows an observable image
representation

B̃ = im

[
W̃1( d

dt )
W̃2( d

dt )

]
.

From (A.5) we have

∂Φ̃(ξ) := W̃1

T
(−ξ)W̃1(ξ) − W̃2

T
(−ξ)W̃2(ξ) = ∂Φ(ξ).

Also, B̃ gives the Hamiltonian matrix, H̃ =
[

Ã B̃B̃T

−C̃T C̃ −ÃT

]
= H . Thus for every

B ∈ Lw
cont with an input/output partition such that the transfer function is proper,

there exists B̃ ∈ Lw
cont with a corresponding i/o partition that gives a strictly proper

transfer function, such that ∂Φ(ξ) matrices coming from B and B̃ are the same and
so are the corresponding Hamiltonian matrices. Therefore, from case 1 it follows that

spec
(
H̃
)

= roots
(
det ∂Φ̃(ξ)

)
⇒ spec(H) = roots (det ∂Φ(ξ)) .

This completes the proof of Lemma 4.5.
Proof of Lemma 5.3. Let the image representation matrix have a partition as

M(ξ) =
[
W1(ξ)
W2(ξ)

]
; W1 ∈ Rm×m[ξ], W2 ∈ Rp×m[ξ].
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Since the image representation is observable, W1(ξ) and W2(ξ) are relatively right-
prime. So the transfer function from w1 to w2 is given by G(ξ) = W2(ξ)W−1

1 (ξ).
Also, since this i/o partition allows an i/s/o representation with state dimension n,
G(ξ) is proper and deg (det W1(ξ)) = n. From the i/s/o representation we have the
transfer function as G(ξ) = C(ξIn − A)−1B + D. Now the second condition can be
written as

∂Φ(jω) > 0 ∀ω ∈ R

⇒ WT
1 (−jω)W1(jω) − WT

2 (−jω)W2(jω) > 0 ∀ω ∈ R.

Since deg (det ∂Φ(ξ)) = 2n and deg (det W1(ξ)) = n, we infer the biproperness of the
rational function det [W−T

1 (−jω)[W T
1 (−jω)W1(jω)−W T

2 (−jω)W2(jω)]W−1
1 (jω)]. Using

the biproperness, we can see that

lim
ω→∞

(
det

[
W−T

1 (−jω)
[
WT

1 (−jω)W1(jω) − WT
2 (−jω)W2(jω)

]
W−1

1 (jω)
]) �= 0.

This fact together with WT
1 (−jω)W1(jω)−WT

2 (−jω)W2(jω) > 0 for all ω ∈ R implies
that

lim
ω→∞W−T

1 (−jω)
[
WT

1 (−jω)W1(jω) − WT
2 (−jω)W2(jω)

]
W−1

1 (jω) > 0.

The expression within the above limit is nothing but Im−GT (−jω)G(jω), the limit of
which is Im −DT D. This proves (Im −DT D) > 0, and completes the proof of Lemma
5.3.

The following lemma related to the strict dissipation inequality was used in the
proof of Theorem 5.2 above. The proof is straightforward and so omitted (see [2]).

Lemma A.2. Let B ∈ Lw
cont. Then B is strict Σ-dissipative if and only if B is

dissipative with respect to Σ1 :=
[
Im 0
0 −(1 + ε1)Ip

]
for some ε1 > 0.

The following proposition is regarding the standard Kalman decomposition (see
[34]); we require it in the proof of Theorem 5.4, which follows after this proposition.

Proposition A.3. Let B be uncontrollable with an i/s/o representation d
dtx =

Ax + Bw1, w2 = Cx + Dw1, where w = (w1, w2). Then there exists a nonsingular
matrix T ∈ Rn×n such that T−1AT =

[
Ac Acp
0 Au

]
, TB =

[
Bc
0

]
, and CT−1 = [

Cc Cu
].

Further,

d
dt

xc = Acxc + Bcw1, w2 = Ccxc + Dw1(A.6)

gives an i/s/o representation for Bcont.
Proof of Theorem 5.4. The last proposition enables us to consider the following

i/s/o representation without loss of generality:

d
dt

[
xc

xu

]
=

[
Ãc Ãcp

0 Ãu

][
xc

xu

]
+
[
B̃c

0

]
w1

w2 =
[
C̃c C̃u

] [
xc

xu

]
+ D̃w1.

Then the corresponding Hamiltonian matrix gets the following form

H =

⎡⎢⎢⎣
Ac Acp BcB

T
c 0

0 Au 0 0
−CT

c Cc −CT
c Cu −AT

c 0
−CT

u Cc −CT
u Cu −AT

cp −AT
u

⎤⎥⎥⎦ ,
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where

Ac = Ãc + B̃c

(
Im − D̃T D̃T

)−1

D̃T C̃c, Bc = B̃c

(
Im − D̃T D̃

)− 1
2

,

Acp = Ãcp + B̃c

(
Im − D̃T D̃T

)−1

D̃T C̃u, Cc =
(
Ip − D̃D̃T

)− 1
2

C̃c,

Au = Ãu, Cu =
(
Ip − D̃D̃T

)− 1
2

C̃u.

Once again from Proposition A.3, d
dtxc = Ãcxc + B̃cw1, w2 = C̃cxc + D̃w1 is an

i/s/o representation of Bcont. So the corresponding Hamiltonian matrix for Bcont

is given by Hc :=
[

Ac BcB
T
c

−CT
c Cc −AT

c

]
. Now from Proposition 2.2 we can assume the

i/s/o representation for B to be state observable, which implies that the controllable
part is state observable; i.e., the (C̃c, Ãc) pair is observable. Again, since (C̃c, Ãc) is
observable and Bcont is controllable, the i/s/o representation of Bcont is also state
controllable; that is, the (Ãc, B̃c) pair is controllable. Therefore from Lemma 4.5,
we get spec(Hc) = roots (det ∂Φ(ξ)). Again, from the Kalman-decomposed i/s/o
representation of B, we get

Λun = spec
(
Ãu

)
= spec(Au).

Thus to prove Theorem 5.4, all we need to show is det (ξI2n − H) = det (ξI −
Hc) det (ξI − Au) det (ξI + Au).

To show the above equality we shall find the determinant of the polynomial matrix
(ξI2n−H) applying some elementary transformations on it as shown below. Let nc be
the number of controllable eigenvalues and nu be that of uncontrollable eigenvalues.

det (ξI2n − H) = det

⎛⎜⎜⎝
⎡⎢⎢⎣
Inc 0 0 0
0 0 Inc 0
0 Inu 0 0
0 0 0 Inu

⎤⎥⎥⎦ (ξI2n − H)

⎡⎢⎢⎣
Inc 0 0 0
0 0 Inu 0
0 Inc 0 0
0 0 0 Inu

⎤⎥⎥⎦
⎞⎟⎟⎠

= det

⎡⎢⎢⎣
ξInc − Ac −BcB

T
c −Acp 0

CT
c Cc ξInc + AT

c CT
c Cu 0

0 0 ξInu − Au 0
CT

u Cc AT
cp CT

u Cu ξInu + AT
u

⎤⎥⎥⎦ .

Now, exploiting the block structure of the above matrix, we can find out its determi-
nant as

det

⎡⎢⎢⎣
ξInc − Ac −BcB

T
c −Acp 0

CT
c Cc ξInc + AT

c CT
c Cu 0

0 0 ξInu − Au 0
CT

u Cc AT
cp CT

u Cu ξInu + AT
u

⎤⎥⎥⎦
= det

(
ξInu + AT

u

)
det (ξInu − Au)det

[
ξInc − Ac −BcB

T
c

CT
c Cc ξInc + AT

c

]
= det

(
ξInu + AT

u

)
det (ξInu − Au)det (ξInc − Hc)

⇒ spec(H) = roots [ χ
un(−ξ) χ

un(ξ)∂Φ(ξ)],(A.7)

where the last equality follows from Lemma 4.5.
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The following well-known result about left and right eigenspaces of the Hamil-
tonian matrix was used in the proof of Theorem 5.5. This lemma can be proved by
straightforward verification.

Lemma A.4. Let Λ be a set of eigenvalues of the Hamiltonian matrix H. If
im

[
X1
X2

]
is the generalized right eigenspace of H corresponding to Λ with X1, X2 ∈

Rn×•, then im
[

X2
−X1

]
is the generalized left eigenspace of H corresponding to −Λ.

The following lemma is used in the proof of 5.2. The result says that right-
primeness is equivalent to the absence of any zeros in the complex plane for the
corresponding Hermitian matrix. Statement 3 below makes a similar statement, but
at the point ∞.

Lemma A.5. Consider M ∈ Rw×m[ξ] with M having full column rank. Suppose
the behavior having the image representation w = M( d

dt)� has McMillan degree n.
Then, the following are equivalent.

1. M(ξ) is right-prime,
2. MT (λ̄)M(λ) > 0 for all λ ∈ C, and
3. deg [det (MT (−ξ)M(ξ))] = 2n.

Proof. We shall prove the following chain of implications: 1 ⇒ 2, 2 ⇒ 1, 1 ⇒ 3
and 3 ⇒ 1.
(1 ⇒ 2) We assume right-primeness of M and show that MT (λ̄)M(λ) is positive
definite for all λ ∈ C. That MT (λ̄)M(λ) � 0 for all λ ∈ C is obvious. Due to the
right-primeness, M(λ) has full column rank for all λ ∈ C, and this implies the required
positive definiteness for all λ.
(2 ⇒ 1) MT (λ̄)M(λ) > 0 for all λ ∈ C means that M(λ) is injective for all λ proving
its full column rank property for all λ, and hence right-primeness.
(1 ⇒ 3) M(ξ) can be partitioned (after a permutation of rows, if needed) into
col(W1(ξ), W2(ξ)) such that W2W

−1
1 is a proper rational matrix, and W1(ξ) has

determinant of degree n. Suppose G(ξ) := W2(ξ)W1(ξ)−1. (See [19] for McMil-
lan degree’s relation to an observable image representation, and observability of the
image representation is equivalent to right-primeness of the matrix M .) Consider
det (MT (−ξ)M(ξ)) which equals det (WT

1 (−ξ)W1(ξ) + WT
2 (−ξ)W2(ξ))

= det (W1(−ξ))det (W1(ξ))det
(
I +
(
W2(−ξ)W1(−ξ)−1

)T (
W2(ξ)W1(ξ)−1

))
= det (W1(−ξ))det (W1(ξ))det

(
I + GT (−ξ)G(ξ)

)
.

In order to determine the degree of det (MT (−ξ)M(ξ)), we let ξ → ∞ to get rid of
the strictly proper part within the last term above: limξ→∞det (I+G(−ξ)T G(ξ)) = a
(say). Notice that 0 < a < ∞; a < ∞ because of the properness of W2W

−1
1 = G,

while due to the positive definiteness of (I + limξ→∞GT (−ξ)G(ξ)) we obtain that its
determinant a > 0. Thus the degree of det (M(−ξ)T M(ξ)) is twice the degree of
det W1, and is thus 2n.
(3 ⇒ 1) In order to prove this, we assume M(ξ) is not right-prime and arrive at
the required contradiction. Non-right-primeness of M means that M can be fac-
tored into M = M̃F such that M̃ is right-prime, and F has a nonzero and non-
constant polynomial as its determinant. This implies that w = M̃( d

dt )� is an ob-
servable kernel representation for B and hence M̃ can be partitioned (after possibly
a permutation of rows) into M̃ = col(W1, W2) such that degree of det W1 = n.
Notice that det (MT (−ξ)M(ξ)) = det F (−ξ) det F (ξ) det (M̃(−ξ)T M̃(ξ)). We
now use the proof of (1 ⇒ 3) above and that M̃ is right-prime to conclude that
the degree of det (M̃(−ξ)T M̃(ξ)) is 2n. Hence degree of det MT (−ξ)M(ξ) equals
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2n + 2(deg (det F )). Since F has determinant a nonzero, nonconstant polynomial,
we obtain det MT (−ξ)M(ξ) > 2n, thus obtaining the required contradiction. This
proves (3 ⇒ 1) and also the lemma.
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