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In this paper we address the problem that impulses might occur

when a to-be-controlled plant is connected to a suitable controller.

In the behavioral literature this issue is dealt when studying the so-

called ‘regular feedback interconnection’ (RFI) of the plant and the

controller behaviors. We address the question of when a given con-

trolled behavior satisfying desired specifications can be obtained

by RFI of the plant and some suitable controller. The paper presents

an algorithm to construct a controller that yields the controlled

behavior by RFI, if such a controller exists, and then parametrizes

all such controllers. We extend the results to the more general

case when all the to-be-controlled variables might not be available

for interconnection. We show that any disturbances in the plant

continue to remain free in the controlled behavior if and only if

the interconnection is an RFI. This is also equivalent to the well-

posedness of an interconnection. This paper also makes concrete

the intuitive relation between absence of inadmissibility of initial

conditions andRFI. Adoor closingmechanism is analysed in relation

to the results in this paper.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Interconnectionof twodynamical systemsoftencauses ‘impulsivebehavior’ during interconnection

if the systems have not been prepared suitably before interconnection: examples are sparks during
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electrical switchings and jerky behavior during mechanical interconnections. Such situations call for

some fine-tuning of system ‘states’ before the interconnection in order to rule out impulsive behavior.

Considering the damage that impulsive behavior can cause to one or more devices in a system, it

is of practical importance to design controllers that can be interconnected without requiring any

preparation of the to-be-controlled system and the controller, and still guaranteeing absence of any

impulsive behavior: we define such controllers as ‘RFI controllers’ in Section 2.3. This paper deals

with this problem for linear time invariant differential systems; we characterize the conditions under

which a given desired controlled behavior can be obtained using an RFI controller, and construct such

a controller if one exists. This problem has also been dealt in Lomadze [9] using a fairly different

approach as elaborated in Section 9.

The occurrence of impulses for certain initial states of an autonomous LTI system is well studied.

These issues have been of relevance in the study of singular/descriptor/differential-algebraic-equation

systems (see [3,18]). Impulses occurring due to certain initial conditions have also been studied using

polynomialmatrix representations (see [17,14], for example). Initial statesof adynamical systemwhich

lead to impulses are termed inadmissible. We establish a relation between the issue of inadmissible

initial conditions and RFI: while an RFI controller ensures absence of inadmissible initial conditions,

the two are not equivalent, i.e. even when a controller is not an RFI controller, the controlled system

could assure absence of any inadmissible initial conditions.

We then consider the general case when all the variables of the plant may not be accessible to

the controller for interconnection: the so-called partial interconnection case. We state necessary

conditions on the controlled system for existence of an RFI controller for this case. For this general case,

we also prove an equivalence between the property of non-impulsive interconnection and unmodelled

disturbances remaining free after interconnection with the controller. This brings in the relation of

RFI and the familiar concept of well-posedness of interconnections (see Kuijper [8] for related work in

this context).

Though we primarily deal with continuous time differential systems, the results we prove are

relevant for discrete time difference systems also: RFI controllers are precisely those that allow inter-

connection at any instant without constraints on the past values of the states. Due to space limitations,

we deal with just continuous time differential systems; we do not elaborate on this analogy any more

in this paper.

The paper is organized as follows: Section 2 states some preliminaries on polynomial matrices

and about the behavioral approach. Section 3 relates the regular feedback interconnection problem

to the problem of inadmissible initial conditions. Section 4 states this paper’s main result, this leads

to an algorithm for checking regular feedback implementability and constructing an RFI controller.

We also consider a commonly occurring system, viz. a door closing mechanism, to analyse our results

by applying the algorithm. We then present a characterization of all controllers which implement

the desired behavior by RFI in Section 5. Following this, we extend the results and the algorithm

to the partial interconnection case, i.e. when only some of the system variables are available for

interconnection. These results have been presented in Section 6. The intuitive notion that a controller

should allow any ‘unmodelled’ disturbances to continue remaining free in the interconnected system

also is given a concretemeaning and shown to be equivalent to RFI in Section 7. Finally, we consider the

situation ofminimal order regular controllers and showusing some examples how the straightforward

extension of our results cease to be sufficient for this situation (Section 8).We conclude the paperwith

some remarks in Section 9.

2. Basic definitions and preliminaries

In this section we briefly cover preliminaries and some definitions in the behavioral approach. The

notational aspects are also covered here. Table 1 at the end of this paper summarizes the frequently

used symbols for easier reading and reference.

We use the symbol R for the set of real numbers. R[ξ ] is the ring of polynomials in one indetermi-

nate ξ , and R(ξ) is the field of fractions over this ring. We use the convention that a polynomial with

degree less than zero is the zero polynomial. The set of matrices having m rows and n columns with



H. Vinjamoor, M.N. Belur / Linear Algebra and its Applications 432 (2010) 637–660 639

polynomial entries is denoted by Rm×n[ξ ]. When one or more dimensions are unambiguous from the

context, we use • to denote the dimension, for example A ∈ R•×p is a constant matrix with p columns

and a suitable number of rows. At times, we use col(A, B) as short hand for
[
A
B

]
, where A and B have the

same number of columns. We denote the number of components of a generic variable with the same

letter but in a different font, for example w(t) has w components, and w(t) ∈ Rw.

The rest of this section is divided into three parts: preliminaries about polynomialmatrices (Section

2.1), definitions about LTI systemsand thebehavioral approach (Section2.2), anda reviewofdefinitions

and results about interconnection of behaviors (Section 2.3).

2.1. Polynomial matrices

The techniques used in this paper rely on various properties of polynomialmatrices: this subsection

contains relevant definitions and properties. A square polynomial matrix U ∈ Rw×w[ξ ] is said to be

unimodular if its determinant is a nonzero constant.

Let R ∈ Rp×w[ξ ] be a polynomial matrix. The row degree ki of its ith row is defined as the degree

of the highest degree polynomial in the ith row. The leading row coefficient matrix Rlc ∈ Rp×w of R is

defined as the constant matrix whose ith row comprises the coefficients of ξ ki in R(ξ). A polynomial

matrix R(ξ) is said to be row proper if its leading row coefficient matrix Rlc of R(ξ) has full row rank.

Thus row properness of R implies R is full row rank as a polynomial matrix, i.e. its rows are linearly

independent over the field R(ξ). The term row reduced is also common in the literature on polynomial

matrices and is identical to row proper. A polynomial matrix R is called column proper if its transpose

RT is row proper.

The dimension of the state space of a minimal state representation of a dynamical system, the

McMillan degree n, plays a key role in this paper. For a full row rank polynomial matrix R ∈ Rp×w[ξ ],
we use n(R) to denote theMcMillan1 degree of the corresponding dynamical system: it is themaximal

determinantal degree of all the p× p minors of R. The relation to the dynamical system’s state space

is elaborated below in Section 2.3; we require the following well-known relation of n(R) with row

properness of R. See Kailath [7, Section 6.3], Wolovich [23, Section 2.5] among various others for a

detailed exposition of these concepts.

Proposition 2.1. Let R ∈ Rp×m[ξ ] have full row rank. Then, the following statements are true.

1. Suppose k1, k2, . . . , kp are the row degrees of R, then R is row proper if and only if
∑p

i=1 ki = n(R).

2. For every unimodular matrix U ∈ Rp×p[ξ ], n(UR) = n(R).
3. There exists a unimodular matrix U ∈ Rp×p[ξ ] such that UR is row proper.

When R is row proper, and the rows are permuted such that the the row degrees ki are non-

increasing, then the p−tuple (k1, k2, . . . , kp) is called the Forney invariant indices. It is well-known

(see Kailath [7, Lemma 6.3–14], Wedderburn [19]) that if R1 and R2 are row proper and related by

R1 = UR2, with U unimodular, then the Forney indices of R1 and R2 are equal. As stated above, if R is

not row proper but full row rank, then there exists a unimodular matrix U that results in UR being row

proper. Such a row reducing unimodular matrix can be written as a product of unimodular matrices

of a particularly interesting form: those that have only one row different from the identity matrix.

We need such unimodular matrices in this paper. Given a row vector β ∈ R1×p[ξ ], whose ith entry

is a nonzero constant, Uβ ,i is the unimodular matrix obtained by replacing the ith row of the identity

matrix by β . Thus by definition Uβ ,i presupposes that the row vector β ∈ R1×p[ξ ] has a nonzero

constant in its ith entry (and consequently Uβ ,i is unimodular). Premultiplication of amatrix R by such

a unimodular matrix Uβ ,i is nothing but elementary row operations on the ith row of R. The following

proposition makes this concrete in the context of row reduction.

1 Note that this is in deviation with the usual definition of McMillan degree of a polynomial/rational matrix; when the

polynomial matrix R is row proper the two are equivalent. See Kailath [7, p. 466] or Vardulakis [17, p. 40].
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Proposition 2.2. Let R ∈ Rp×w[ξ ] be a full row rank polynomial matrix. Then, R is not row proper if and

only if there exists an i ∈ {1, . . . , p} such that any one of the following equivalent conditions is true:
1. the row degree of the ith row, can be decreased by elementary row operations on that row,

2. there exists a polynomial row vector β ∈ R1×p[ξ ], with βi a nonzero constant, such that the ith

row of Uβ ,iR has a lower row degree than that of the ith row of R,

3. there exists amonomial row vector β ∈ R1×p[ξ ]with βi a nonzero constant, such that the ith row

of Uβ ,iR has a lower row degree than that the ith row of R.

The monomial aspect of β in the last statement above plays a crucial role in this paper, hence we

explain in detail the construction of the monomial vector β ∈ R1×p[ξ ].
Construction of a monomial-�:

1. Let Rlc ∈ Rp×w be the leading row coefficient matrix of (non row proper) R ∈ Rp×w[ξ ]. Find a

nonzeroα ∈ R1×p such thatαRlc = 0; existence ofα is guaranteed since Rlc is not full row rank.

Note that there may be several independent row vectors α; choose any one. Denote the entries

of α by α1, . . . ,αp.
2. Let N ⊆ {1, . . . , p} be the set of indices i such that αi /= 0, and let m ∈ N be such that the row

degree of themth row of R is the highest amongst all rows indexed by N. Define d to be the row

degree the mth of R. (While d depends only on α, the maximum degree might occur at two or

more rows of R indexed by N.)

3. Define �1, . . . , �p to be the ‘slack’ integers: �i := d− rowdegreei(R) for i ∈ {1, . . . , p}.
4. Finallydefineβ ∈ R1×p[ξ ]byβ = [α1ξ�1 α2ξ�2 · · ·αpξ�p ].Notice thatbydefinitionofm,�m =

0 and βm = αm /= 0, in spite of the non-uniqueness of m.

The above method is standard: see Wolovich [23, Section 2.5.7], Vardulakis [17, p. 7], Kailath [7, p.

386] or Stefanidis et al [16, p. 49], for example. Due to non-uniqueness in the α above, there could be

more than one monomial vectors β , and with different degrees of the monomials within β . This non-
uniqueness poses no problems in the way β plays a role in our main results (but can pose difficulties

elsewhere: see Remark 8.4 and discussion following that). Construction of β is shownwithin the door

closing example when re-addressed at the end of Section 4 below. The existence of β in statements

3 and 4 above is linked to (the lack of) row properness through the well-known predictable-degree

propertyof rowpropermatrices.Weuse this result often andhencewestate it below for easy reference.

See Forney [4] or Kailath [7, Theorem 6.3–13] for an elaborate exposition and the proof.

Proposition 2.3. Let R ∈ Rp×w[ξ ] be a full row rank polynomialmatrix with row degrees ki. The following

are equivalent.

1. R is row proper.
2. For every a, b ∈ R1×•[ξ ] such that aR = b, the equality: degree b = maxi:ai /=0[ki + degree ai]

holds.
3. For every a, b ∈ R1×•[ξ ] such that aR = b, the inequality: degree b� ki holds for each i satisfying

ai /= 0.

In the context of inadmissible initial conditions, we need the concept of ‘zeroes at infinity’ of a

polynomial/rational matrix. For a detailed treatment see Kailath [7, Chapter 6].

The Smith–McMillan form and zeroes at infinity: Let H(s) ∈ Rp×w(s) be a full row rank ratio-

nal matrix such that each entry is proper, i.e. the numerator and denominator are coprime. Write

H(s) as H(s) = N(s)/d(s), where N(s) ∈ Rp×w[s] and d(s) is the monic least common multiple of

the denominators of the entries of H(s). The polynomial matrix N(s) = d(s)H(s) can be written as

N(s) = U1(s)[S(s) 0(w−p)×p]U2(s), where S(s) is the Smith form of N(s), and U1 and U2 unimodular
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matrices of suitable sizes. Further, obtain
S(s)
d(s)
=

[
diag( λ1(s)

d(s)
, . . . ,

λp(s)

d(s)
)
]
. Suppose on cancelling com-

mon factors in each entry of
λi(s)
d(s)

we get
εi(s)
ψi(s)

, i = 1, . . . , p. Then, H(s) = U1(s)M(s)U2(s), where

M(s) :=
[
diag

(
ε1(s)
ψ1(s)

, . . . ,
εp(s)

ψp(s)

)
0p×(w−p)

]
is such thatM has thedivisibilityproperty:εi dividesεi+1, andψi+1 dividesψi for all i ∈ {1, . . . , p− 1}.
The rational matrixM is called the Smith–McMillan form ofH(s). In order to define the structure at∞
of H(s), it is standard to consider the Smith–McMillan form of K(λ) := H( 1

λ
) and analyse K at λ = 0.

If any of the numerator polynomials εi(λ) in K(λ) have a root at λ = 0, thenH(s) is said to have zeroes

at infinity.

2.2. The behavioral approach

The problem of non-impulsive interconnection is formulated and solved in this paper using the be-

havioral approach to dynamical systems. For a detailed exposition on the behavioral approach, see

Willems [20,22] and Polderman andWillems [11]; we cover only the essential preliminaries here. We

consider dynamical systems that are described by a set of linear, constant-coefficient ordinary differ-

ential equations. Suppose R0w + R1
d
dt
w + · · · + RN

dN

dtN
w = 0, with Ri ∈ Rp×w, are a set of p differen-

tial equations in the variablew. Constructing the polynomialmatrix R(ξ) := R0 + R1ξ + · · · + RNξ
N ,

theseequationscanbewrittenasR
(

d
dt

)
w = 0.WeassumethetrajectorieswbelongtoL1

loc(R,Rw): the

space of locally integrable functions fromR toRw.We don’t assumedifferentiability of the trajectories;

the differential equations are assumed to be satisfied in the distributional sense, i.e. in theweak sense.

The set of solutions to thedifferential equationsR
(

d
dt

)
w = 0 is called thebehaviorBof the system:

these are all the trajectories that the system laws allow. More precisely,

B :=
{
w ∈ L1

loc(R,Rw)|R
(

d

dt

)
w = 0

}
.

The equation R
(

d
dt

)
w = 0 is called a kernel representation of the behavior, to distinguish it from

other ways of describing the set of allowed trajectories. The set of behaviors is denoted by Lw, the

variable w in the superscript denoting a generic variable in the behaviorB ∈ Lw: this is essential when

distinguishing behaviors with different variables.

We say the polynomial matrix R(ξ) ∈ Rp×w[ξ ] induces a kernel representation for the behavior B

if R
(

d
dt

)
w = 0 is a kernel representation. The matrix R is far from unique: premultiplication of R by

anyunimodularmatrixU ∈ Rp×p[ξ ] leaves the set of solutions (to the equationsU
(

d
dt

)
R

(
d
dt

)
w = 0)

the same. This allows us to consider R having full row rankwithout loss of generality. Aminimal kernel

representation R
(

d
dt

)
w = 0 is a kernel representation inwhich R(ξ) has full row rank as a polynomial

matrix. The rank of such a matrix is an invariant of the behavior: it does not depend on the particular

kernel representation. We call this rank the output cardinality of the behavior and denote it by p(B).
In addition to a full row rank representation, without loss of generality, we start with a row proper

kernel representation of a behavior, i.e. R
(

d
dt
w

)
= 0 with R row proper: Proposition 2.1 allows this.

We briefly discussed the McMillan degree n(B) of a dynamical systemwith behavior B in Section

2.1. IfR ∈ Rp×w[ξ ] induces aminimal kernel representation forB,wedenote theMcMillandegreeofB
by n(R), anddefine it to be themaximal determinantal degree of all the p× pminors ofR. This integer is

thedimensionof thestate space inaminimal state spacedescriptionof thebehaviorand itdependsonly

onB and not on the R used to define it. See Rapisarda andWillems [13] for a systematic development.

Since the notion of state makes concrete the intuitive idea of non-impulsive concatenability of

trajectories within a behavior (see Rapisarda andWillems [13]), theMcMillan degree n(B) expectedly
plays the central role in this paper. We use this in defining Regular Feedback Interconnection in the

following subsection.
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2.3. Interconnection and control

This subsection contains definitions about interconnection aspects in the behavioral approach. One

of the salient features of this approach is that control of a plant is viewed as restriction of the plant

behavior P to a desired sub-behavior K. This restriction is achieved by designing new laws that the

system variables have to satisfy in addition to the plant equations. These additional laws themselves

constitute a dynamical system which we call the controller. Thus control of a plant P ∈ Lw in the

behavioral approach is about designing a sub-behavior K with desired properties and then obtaining

the restriction of P to this controlled behavior K by a suitable choice of a controller C ∈ Lw such that

P ∩ C = K, i.e. the trajectories allowed in the controlled system K are those that satisfy the laws of

both P and C, hence they lie in the intersection of P and C.
Suppose R and C ∈ R•×w[ξ ] induce row proper kernel representations for P and C respectively.

Then a kernel representation for the controlled behavior K := P ∩ C is

[
R

(
d
dt

)
C

(
d
dt

)
]
w = 0. Whether this

kernel representation is minimal, and further row proper, is the focus of this section: we define the

interconnection of P and C to be regular or regular feedback accordingly.

Definition 2.4. LetP and C ∈ Lw be two behaviorswithminimal kernel representations R
(

d
dt

)
w = 0

and C
(

d
dt

)
w = 0 respectively. Their interconnection is said to be regular if rank of

[
R(ξ)
C(ξ)

]
is the sum of

the ranksofRandC. In this case, thecontrolledbehaviorK := P ∩ C is said toberegularly implemented

by C, and C is called a regularly implementing controller. Further, a behavior K is said to be regularly

implementable with respect to P if there exists C ∈ Lw such that K = P ∩ C and the interconnection

of P and C is regular.

Regular interconnectionmeans that the output cardinality of the interconnected system is the sum

of the output cardinalities of the two behaviors. A more special form of regular interconnection is

Regular Feedback Interconnection (RFI): when the McMillan degrees of the two behaviors also sum

up to that of the interconnected system.

Definition 2.5. LetP andC ∈ Lw be twobehaviors. Their interconnection is said tobeRegular Feedback

Interconnection (RFI) if the interconnection is regular and n(P)+ n(C) = n(P ∩ C). In other words,

suppose R
(

d
dt

)
w = 0 and C

(
d
dt

)
w = 0 are row proper kernel representations of P and C, then their

interconnection is said to be RFI if
[
R(ξ)
C(ξ)

]
also is row proper. In this case, the controlled behavior

K := P ∩ C is said to be regular feedback implemented (RFI) by C, and C is called a regular feedback

implementing (RFI) controller. Further, a behaviorK is said to be regular feedback implementable (RFI)

with respect toP if thereexistsC ∈ Lw such thatK = P ∩ C andthe interconnectionofP andC is anRFI.

The focus of this paper is on regular feedback interconnection and, when unambiguous from the

context, we use the abbreviation ‘RFI’ to mean

• Regular Feedback Interconnection, when speaking about interconnection;

• Regular Feedback Implementing, when referring to a controller that implements a given con-

trolled behavior by regular feedback interconnection; and

• Regular Feedback Implementable, in the context of a controlled behavior that can be obtained

by regular feedback interconnection between the plant and some controller.

Note that if an interconnection is a regular feedback interconnection, then it is also regular.2 Thus

we often assume regular interconnection and then formulate questions regarding regular feedback

2 This is true except for some pathological cases due to equations that are just algebraic and not differential, see Julius [5, p. 94].

We have ignored this aspect in our paper and have defined regular feedback interconnection to be a special kind of a regular

interconnection, as done in Kuijper [8] and Willems [22].
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interconnection. These notions were introduced in Willems [21], and have been studied further in

Kuijper [8], Willems [22,2] and Praagman et al. [12] among various others. In Kuijper [8], the ‘degree

of singularity’ of an interconnection has been defined and zero degree of singularity is called regular

feedback interconnection. The door closing mechanism, which we treat in Section 4 below, has been

shown to be an interconnection with a degree of singularity equal to two and hence is not a regular

feedback interconnection.

The relation of RFI to concatenability of trajectories has been brought out inWillems [21,22], Julius

and van der Schaft [6, Section 3.1]. We state this relation as a proposition below for easy reference.

It relates concatenability of trajectories to RFI: non-impulsive concatenability of arbitrary trajectories

in two behaviors to a suitable common trajectory in the intersection is possible if and only if the

interconnection of the behaviors is a regular feedback interconnection. We use the notation w23 :=
w2 ∧

τ
w3 for concatenation of w2 to w3 at time τ , i.e.

w23(t) := w2 ∧
τ
w3(t) =

{
w2(t) for t � τ ,
w3(t) for t > τ.

Proposition 2.6. Let P and C ∈ Lw. Then the following are equivalent.

• The interconnection of P and C is RFI.
• For every w1 ∈ P ,w2 ∈ C and τ ∈ R, there exists a w3 ∈ P ∩ C such that w13 := w1 ∧

τ
w3 and

w23 := w2 ∧
τ
w3 respectively satisfy the equations of P and C in a weak sense.

Note that w13 and w23 are not C∞ trajectories, but are just L1
loc. In this context, satisfying the

system’s differential equations in a weak sense amounts to no impulse at the time of concatenation

τ . According to the above proposition, when the interconnection of P and C is an RFI, then during

interconnection at any time τ , no matter what the past trajectories w1 and w2 of P and C were, there

exists a suitable non-impulsive transition tow3 ∈ P ∩ C. Conversely, when the interconnection is not

an RFI, there exist trajectories w1 ∈ P and w2 ∈ C that cannot transition to any trajectory in P ∩ C
without causing an impulse at the time of interconnection. Thus, Regular Feedback Interconnection

(RFI) is equivalent to guaranteeing absence of impulsive phenomenon during interconnection.

We finish this section with some notation about row dimension of the polynomial matrices in-

ducing the concerned behaviors’ kernel representations. The plant, the controlled system and the

controller behaviors are denoted by P , K and C respectively. Since we are characterizing conditions

about regular feedback implementability,we assume theweaker condition of regular implementability

whenever relevant. Hence the controllers we begin with are always regular controllers. This allows

us to denote/assume the output cardinalities of P , K and C ∈ Lw by p, k and (k− p) respectively (see

Definition 2.4). Accordingly, minimal kernel representations for P and C are, respectively, induced by

R ∈ Rp×w[ξ ] and C ∈ R(k−p)×w[ξ ].

3. Inadmissible initial conditions

Using the background covered in the previous section, we study the relation between RFI and the

occurrence of impulses due to ‘inadmissible’ initial conditions in an autonomous system. While this

relation is intuitively expected, Theorem 3.2 shows that RFI implies absence of any inadmissible initial

conditions, but the converse is not true. We illustrate this with a practical example of a door closing

mechanism.

Wenowdefine an inadmissible initial condition vector for an autonomous systemQ
(

d
dt

)
w(t) = 0,

with Q(ξ) ∈ Rp×p[ξ ] nonsingular; see Verghese et al [18], Dai [3] and Vardulakis [17] for a

similar treatment. Let z be equal to the degree of the highest degree entry in Q(ξ). Let w(0),

w(1)(0),…,w(z−1)(0) be the values of w, d
dt
w, …, dz−1

dtz−1 w at time t = 0−. Define the vector

w̄(0) = (w(0),w(1)(0), . . . ,w(z−1)(0)). We call w̄(0) ∈ Rpz an initial condition vector. A vector
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w̄(0) ∈ Rpz is said to be an inadmissible initial condition vector if the corresponding solution w(t)
contains the Dirac impulse δ(t) and/or its distributional derivatives.

We use the following result from Vardulakis [17, Theorem 4.32], which gives a necessary and

sufficient condition for existence of inadmissible initial conditions for autonomous systems.

Proposition 3.1. Consider the autonomous system defined by Q
(

d
dt

)
w(t) = 0 where Q ∈ Rw×w[ξ ] is

nonsingular, and suppose z is the degree of the highest degree entry in Q(ξ). Then, for every initial

condition vector w̄(0) = (w(0),w(1)(0), . . . ,w(z−1)(0)) ∈ Rzw, the corresponding solution w(t) has no
Dirac impulses nor its distributional derivatives if and only if Q(ξ) has no zeroes at infinity. In other words,

there exist no inadmissible initial conditions for Q
(

d
dt

)
w = 0 if and only if Q has no zeros at∞.

Using so-called valuations theory (see Kailath [7, Section 6.4] and Vardulakis [17]), a row proper

or a column proper matrix matrix does not have any zeroes at infinity. This can also be checked using

the definition of zeros at∞ through the Smith–McMillan form described in the previous section. Use

of this relation between row properness and absence of zeroes at∞ leads to the following theorem:

RFI controllers ensure that the controlled system has no inadmissible initial conditions; its proof is

straight-forward and follows from the definition of RFI, hence it has been skipped.

Theorem 3.2. Let R
(

d
dt

)
w = 0 be a row proper kernel representation of P. Suppose the autonomous

behavior K ⊆ P is regular feedback implementable. Then, there exists a controller C with a row proper

kernel representation C
(

d
dt

)
w = 0 (say) such that the system of differential equations

[
R

(
d
dt

)
C

(
d
dt

)
]
w = 0

has no inadmissible initial conditions.

We now ask the converse question: if the interconnection is not RFI, do there necessarily exist

inadmissible initial conditions? We will see in the following example that this is not true. This is

because column properness also is sufficient to ensure that there are no zeroes at infinity, but column

properness does not imply RFI. We can see this by analysing a very commonplace system, viz. the door

closing mechanism.

Let M be the mass/inertia of the door, m the mass/inertia of the door closing mechanism, b the

damping coefficient of the damper, and k the spring constant of the spring. Suppose θ is the angle as

shown in Fig. 1 and F the force/torque exerted by the door closing mechanism on the door. A kernel

representation for this system is given by K
(

d
dt

) [
θ
F

]
= 0 where

K(ξ) =
[

Mξ2 −1
mξ2 + bξ + k 1

]
. (1)

Due to K not being row proper, it is seen that this is not RFI; see also Kuijper [8] andWillems [22] for a

discussion. However, thematrix in Eq. (1) does not have any zeroes at infinity, since it is columnproper,

i.e. KT (ξ) is row proper. This implies that there are no inadmissible initial conditions and, as observed

in real life, no impulsive behavior is exhibited for any initial condition of the controlled door system.

We will show below in Section 4.1 that the behavior represented in Eq. (1) cannot be implemented by

RFI by any controller.

4. Plant equation of reducible degree (PERD) and regular feedback implementability

In this section we study the conditions on a desired control objective K (and on the plant P) for the

existence of a controller that implements K by regular feedback interconnection (RFI) with the plant

P . More precisely, we solve the following problem: given P and K ∈ Lw, find necessary and sufficient

conditionsunderwhich thereexists a controllerC ∈ Lw such thatK = P ∩ C and the interconnection is
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Fig. 1. A door closing mechanism.

anRFI. Inorder to formulate this conditionwedefine thenotionof a ‘PlantEquationofReducibleDegree’

(PERD). The definition requires use of Proposition 2.2 which states that if a polynomial matrix is not

row proper, then there exists a row of this matrix whose row degree can be proper by elementary row

operations on that row. Recall that in the text preceding that proposition we defined Uβ ,i ∈ Rk×k[ξ ]
as the unimodular matrix constructed by replacing the ith row of the identity matrix by β ∈ R1×k[ξ ]
(assuming the ith entry of β is a nonzero constant). We use this to define a PERD.

Definition 4.1. Consider the interconnection of P and a regular C ∈ Lw. Suppose R ∈ Rp×w[ξ ] and
C ∈ R(k−p)×w[ξ ] induce row proper kernel representations of P and C, respectively. Define K :=

[
R

C

]
.

Suppose there exists amonomial vector β ∈ R1×k[ξ ] such that

• for some i ∈ {1, . . . , p}, the entry βi is a nonzero constant and the row degree of the ith row of

Uβ ,iK is strictly less than that of the ith row of K , and

• none of the last (k− p) entries of β is a nonzero constant.

Then, the ith row of R(ξ) is said to be a Plant Equation of Reducible Degree (PERD).

Note thataPERD isdefinedusingspecifickernel representationsofP andC. Further, therecouldexist
more than one PERDs for given row proper kernel representations. In spite of the seeming dependence

on the representations used to define PERD, the following theorem shows that existence of a PERD

characterizes non-regular-feedback-implementability of K.

Another point about the above definition is noteworthy. The existence of a β clearly implies that

the interconnection of P and that controller is not an RFI. However, it is not straightforward to deduce

if K can be obtained by RFI using some other controller, or whether no such RFI controller exists. The

condition n(K)� n(P) is obviously necessary but insufficient for existence of anRFI controller. Suppose

we have a regular controller satisfying n(C) > n(K)− n(P), then the natural question is: does there

exist a lower order controller Crf that implementsK by RFI (and hence satisfies n(Crf ) = n(K)− n(P)),
or is the interconnectionofP andevery other regular controller not anRFI? The following theoremputs

thismatter to rest:we show that regular feedback implementability ofK is equivalent to non-existence

of PERD for every regular controller.

Theorem 4.2. Let P ∈ Lw and let R
(

d
dt

)
w = 0 be a row proper kernel representation of P. Suppose

K ⊆ P is regularly implementable with respect to P. Then, the following are equivalent.

1. K is regular feedback implementable.

2. For every controller C ∈ Lw that implements K regularly, there exists no PERD in
[
R
C

]
, where

C
(

d
dt

)
w = 0 is any row proper kernel representation of C.
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In view of the difficulty posed by a regular controller satisfying n(C) > n(K)− n(P) as described
above, if C is not an RFI controller, then the polynomial matrix col(R, C) is not row proper. Existence of

β as pointed in Proposition 2.2 helps in decreasing the rowdegree of some row.While anymodification

of the controller equations using the plant equations is justifiable, since this amounts to just choosing

another regular controller (see Proposition 4.3), modification of a plant equation is not allowed. How-

ever, as noted in the text following Proposition 2.2, the elementary row operations and the sequence

of operations to obtain row properness is far from unique. Due to this non-uniqueness in the sequence

of rows of col(R, C) whose degrees are decreased successively to obtain row properness, it appears a

priori that a PERD’s mere existence does not rule out the possibility of a sequence of modifications

of just the controller equations to eventually obtain row properness, and hence an RFI controller. The

above theorem’s significance lies in addressing this concern conclusively.3

In order to prove Theorem 4.2, we need the following result from Kuijper [8, Theorem 3.3] (see also

Praagman et al. [12, Theorem 11]), which characterizes all regularly implementing controllers C ∈ Lw

for a given controlled behavior K.

Proposition 4.3. Let P ∈ Lw and let R ∈ Rp×w[ξ ] induce a minimal kernel representation for P. Suppose
C ∈ Lw is a regular controller that implements K with respect to P , and let C ∈ R(k−p)×w[ξ ] induce a

minimal kernel representation for C. Consider a controller C′ ∈ Lw with a minimal kernel representation

induced by C′ ∈ R(k−p)×w[ξ ]. The following are equivalent:
1. C′ also regularly implements K.
2. There exist a polynomial matrix P ∈ R(k−p)×p[ξ ] and a unimodular matrix V ∈ R(k−p)×(k−p)[ξ ]

such that C′ = PR+ VC.

We utilize the following easy consequence of the above proposition: any regularly implementing

controller C′ admits a minimal kernel representation induced by C′ of the form PR+ C, where P is a

suitable polynomialmatrix.Moreover,whenutilizing the above proposition later to parametrize all RFI

controllers, we show that each P above results in a different controller system (i.e., a different controller

behavior), and not just a different set of equations possibly of the same behavior. (See Lemma 5.2.)

Proof of Theorem 4.2. (1⇒ 2): Suppose K is RFI with respect to P , and let Cr be an RFI controller

with Cr ∈ R(k−p)×w[ξ ] inducing a row proper kernel representation for Cr . In view of Proposition

4.3, any other controller C2 with minimal kernel representation C2

(
d
dt

)
w = 0 that implements K

regularly can be obtained using a matrix Q ∈ R(k−p)×p[ξ ] from R and Cr as C2 = QR+ Cr . Suppose

V ∈ R(k−p)×(k−p)[ξ ] is unimodular such that VC2 is row proper.

Assume that there exists a PERD for
[

R
VC2

]
, i.e. there exists aβ ∈ R1×k[ξ ] (β partitioned suitably into

[βp βc]) and i ∈ {1, . . . , p} such that βi = 1 and the ith row of
(
Uβ ,i

[
R

VC2

])
has a row degree strictly

lower than that of the ith row of R. Define b to be the ith row of
(
Uβ ,i

[
R

VC2

])
. Further, there are no

nonzero constant entries in βc ∈ R1×(k−p)[ξ ]. We now show that such a β leads to a contradiction to

the Regular Feedback Interconnection of P and Cr .
Evaluating [βp βc]

[
I 0

VQ V

]
, we get [βp + βcVQ βcV] =: a, say. Since the ith entry of βp is 1, and

since there are no nonzero constant entries in themonomial vector βc , we infer that the ith entry of a

is nonzero. Thus we used β to obtain b ∈ R1×w[ξ ] and an a ∈ R1×k[ξ ] such that b = a
[
R
Cr

]
, and the

degree of b is strictly less than the row degree of the ith row of R, with ai /= 0. By Proposition 2.3, this

contradicts the row properness of
[
R
Cr

]
. Thus there cannot exist any PERD for any regular controller

that implements K if K is regular feedback implementable.

3 On the contrary, in Section 8.2 in the context of minimal order regular controllers, Remark 8.3 and the ensuing text elaborate

on the inconclusiveness, despite the absence of any CERD (Controller Equation of Reducible Degree).
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(2⇒ 1): In this part of the proof, we need to assume non-existence of any PERD in col(R, C) arising
out of every regular controller that implementsK (Property 2 of Theorem 4.2), and show the existence

of an RFI controller that implements K. We show this as follows: we start with a regular controller C1
having Property 2 andmodify C1, if it is not already an RFI controller, to obtain C2 that also implements

K regularly, and so on. In a finite number of stepswe show that thismethod yields an RFI controller due

to Property 2. Since thismodification is nothing but an algorithm for construction of an RFI controller, if

one exists,wewrite this part of the proof in the formof an algorithmbelow in the following subsection.

The termination of the algorithm in a finite number of steps to yield an RFI controller is also shown

there. �

4.1. Construction of an RFI controller

In this subsection we show how a regular controller C1 that implements K can be modified to

obtain a regular feedback implementing controller C2 by using the notion of PERD and Theorem 4.2.

This construction is chalked out as an algorithm below and it also constitutes the second part of the

proof of Theorem 4.2.

Algorithm:

Input: R ∈ Rp×w[ξ ] and C ∈ R(k−p)×w[ξ ] respectively inducing row proper kernel representations for

P and a regular controller C.
Output: A controller which implements K := P ∩ C by RFI, OR a conclusion that no such controller

exists.

1. Check whether
[
R
C

]
is row proper. If yes, then stop: the matrix C induces a kernel representation

of the required controller, i.e. an RFI controller. If not, proceed to Step 2.

2. Construct Rlc, the leading row coefficient matrix of
[
R
C

]
. Find a nonzero vector α ∈ R1×k such

that αRlc = 0. Using α, construct the monomial vector β(ξ) as explained in the text following

Proposition 2.2. Partition β = [βp βc] corresponding to the sizes of R and C. We now have

exactly one of the following two situations.

(a) Situation 1: There is one or more nonzero constant entries only in βp; in that case, the

algorithm ends: there exists a PERD and hence K is not regular feedback implementable.

(b) Situation 2: βc has one or more nonzero constant entries; in this case, a lower McMillan

degree controller implements K regularly. This is constructed in the next step.

3. Construct Uβ ,i with i ∈ {p+ 1, . . . , k} by replacing the ith row of the identity matrix by β(ξ)

and premultiply
[
R
C

]
by the unimodular matrix Uβ ,i so that the degree of the (i− p)th row in

C is proper by at least one. Call this new controller’s representation Cnew after obtaining row

properness, if necessary (see Proposition 2.1, Statement 3). Go to Step 1with this new controller.

Since the row degree of some row in the controller decreases by at least one in each iteration, the

algorithm will terminate in a finite number of steps into one of the following situations: Situation 1

is reached in Step 2, or Rlc has full row rank, i.e. the last controller is an RFI controller. Note that the

controller is modified each time in Step 3 to obtain a new regular controller with a lower McMillan

degree. In the context of the latter part of Theorem 4.2’s proof, each new regular controller satisfies

Property 2 of Theorem 4.2 by assumption, and this implies that the algorithm never terminates into

Situation 1 within Step 2 above, and hence yields an RFI controller in a finite number of steps.

Example. Consider the door closing mechanism mentioned in Eq. (1) and shown in Fig. 1. We have

already seen earlier that the system described by Eq. (1) does not have any inadmissible initial condi-

tions.Wenowanalysewhat happenswhenwe interconnect the door closingmechanism (construed as

the controller) to the door (thought of as the plant). As noted before, the interconnection represented

by Eq. (1) is not RFI, see Section 3, Kuijper [8], Willems [22]. However, the interconnection is regular.
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Physically this means that the states of the plant and the controller, i.e. θ and
•
θ have to be set to

compatible values during interconnection.

Consider the first row (i.e. the equation for the door alone) as the plant. The matrix in Eq. (1) is

a minimal kernel representation of K. It can be seen that K has been regularly implemented by the

controller (i.e. the second row in the matrix in Eq. (1)). We now find whether some other controller

can implement the same behavior by RFI. We do this by applying the above algorithm.

• Step 1: The given representation is not RFI.

• Step 2: The leading row coefficient matrix is given by Rlc =
[
M 0
m 0

]
. A nonzero vector α satisfy-

ingαRlc = 0 isα = [−m
M 1

]
. Since the rowdegrees of thematrixK(ξ) are equal, themonomial

vector β ∈ R1×2[ξ ] in this case is β = α. This does not have a nonzero constant only in βp(ξ),
i.e. both the entries in β are nonzero constants.

• Step 3: Constructing Uβ ,i by replacing the ith row of the identity matrix I2×2 by β , we get

Uβ ,2 =
[

1 0

−m
M 1

]
. On premultiplying

[
R
C

]
by Uβ ,2 we get

[
Mξ2 −1

bξ + k 1+ m
M

]
.

• Back to Step 1: This interconnection is still not RFI.

• Step 2: The new leading row coefficient matrix is
[
M 0
b 0

]
. A vector α for this case is α =[− b

M 1
]
and the monomial vector β(ξ) = [− b

M ξ
]
. Note that this does have a nonzero

constant only in βp(ξ), and thus the controlled behavior K has a regular controller such that

there exists a PERD, namely, the first row.

Thus, using Theorem 4.2 we conclude that K cannot be implemented by RFI using any controller.

5. Characterization of all regular feedback implementing controllers

In the previous section we saw how an RFI controller Crf that implements K can be obtained. In

this section we show how all RFI controllers that implement K can be obtained from Crf . Section 5.1

provides away of constructing aminimal kernel representations for all RFI controllers that implement

K. Section 5.2 quantifies the size of this set of controllers.

5.1. Parameterization of all RFI controllers

In this subsection, we define a set of polynomial matrices and show in Theorem 5.1 that this set of

polynomial matrices parametrizes the set of regular feedback implementing controllers.

Theorem 5.1. Suppose R ∈ Rp×w[ξ ]and Crf ∈ R(k−p)×w[ξ ] induce row proper kernel representations of

P and C, and suppose their row degrees are rj for j ∈ {1, . . . , p} and ci for i ∈ {1, . . . , k− p} respectively.
Assume C is an RFI controller, and let K ∈ Lw be the resulting controlled behavior. Define the set of

polynomial matrices DegBnd(R, Crf ) ⊆ R(k−p)×p[ξ ]with a bound on the degrees of its entries as follows:
DegBnd(R, Crf ) :={P ∈ R(k−p)×p[ξ ]|degree(pij)� ci − rj , for each i ∈ {1, . . . , k− p}

and for each j ∈ {1, . . . , p}}.
Then, there is a one to one correspondence between the polynomial matrices DegBnd(R, Crf ) and the set

of RFI controllers that implement K, i.e.

1. For every P ∈ DegBnd(R, Crf ), the controller C′ ∈ Lw defined by the kernel representation induced

by PR+ Crf is an RFI controller.

2. For every RFI controller C′ ∈ Lw that implements K, there exists a unique P ∈ DegBnd(R, Crf ) such

that PR+ Crf induces a kernel representation of C′.
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The above theorem is the crux of this section. Before proving itwe need a couple of lemmas. Firstwe

prove (Lemma5.2) thatwhendealingwithminimal kernel representationsofP anda regular controller

C, manipulation of C results in, not just a different representation, but a different controller system.

Lemma 5.2. Let R and C induce minimal kernel representations of P and C respectively, and suppose

their interconnection is regular. For polynomial matrices P1, P2 ∈ R•×p[ξ ], define C1 := P1R+ C and

C2 := P2R+ C, and suppose C1 and C2 ∈ Lw are two regular controller behaviors induced by C1 and C2
respectively. Then, P1 = P2 ⇔ C1 = C2.

Proof. Theonlynontrivial implication tobeproved is: P1 /= P2 ⇒ theredoesnot exist anyunimodular

matrix U such that UC1 = C2; this would prove that the behaviors described by C1 and C2 are unequal.

Suppose there exists such a U. Then [(UP1 − P2) I − U]
[
R
C

]
= 0. Since the interconnection is regular[

R
C

]
has full row rank. This implies U = I and P1 = P2. This contradiction proves that C1 = C2 ⇒

P1 = P2. �

As seen from the statement of Theorem 5.1, the parametrization is closely related to the bounds on

row degrees of row proper representations ofmatrices.We now state a lemmawhich shows that given

a block-upper triangular unimodular matrix with certain restrictions on the degrees of the entries,

the inverse of this matrix satisfies the same restrictions. In order to simplify the presentation for the

rest of the section, we assume without loss of generality, that the rows of the matrix which induce

a row proper kernel representation are arranged with non-increasing row degrees. The technicalities

in the statement of this lemma and its proof are more about the case when one or more rows in the

polynomial matrix V , P and Q have the same row degrees. In the following lemma, μ1, . . . ,μ� play

a role in the degree constraints, while ν1, . . . , ν� denote the multiplicities and hence the sizes of the

partitioned block matrices. A first reading of the lemma and the proof can be done assuming all row

degrees are different, i.e. νi = 1 for each i, and � = n.

Lemma 5.3. Let ν1, . . . , ν� be positive integers satisfying ν1 + · · · + ν� = n and let μ1 > μ2 > · · · >
μ� be � non-negative integers. Suppose V ∈ Rn×n[ξ ] is a unimodular matrix with entries va,b. Partition

V into blocks Vi,j ∈ Rνi×νj [ξ ]. Assume V satisfies the following:
A1. V is block-upper-triangular, i.e. Vi,j = 0 for i > j.
A2. Vi,i are invertible real matrices.
A3. For every entry va,b in Vi,j , with i < j, suppose degree (va,b)�μi − μj.

Define U := V−1 and let Ui,j ∈ Rνi×νj [ξ ] be a partition of U like that of V . Suppose ua,b are the entries of
U. Then,

C1. U is block-upper-triangular, i.e. Ui,j = 0 for i > j,

C2. Ui,i are invertible real matrices and Ui,i = V
−1
i,i ,

C3. For every entry ua,b in Ui,j with i < j, we have degree (ua,b)�μi − μj.

Further, let r1, r2, · · · rp be non-negative integers. Assume P ∈ Rn×p[ξ ] has entries pa,b. Partition P into

blocks Pi,j ∈ Rνi×1[ξ ] with i ∈ {1, . . . , �} and j ∈ {1, . . . , p}.
A4. Suppose every entry pa,b in Pi,j satisfies degree (pa,b)�μi − rj. Define Q := UP = V−1P with

entries qa,b and columns Qi,j ∈ Rνi×1[ξ ] with i ∈ {1, . . . , �} and j ∈ {1, . . . , p}.
Then,

C4. every entry qa,b in Qi,j also satisfies degree (qa,b)�μi − rj.
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Proof. Due to the block-upper triangular assumption on V , it follows that U too is block upper tri-

angular and, consequently, Ui,i = V
−1
i,i ; this proves claims C1 and C2. We prove claim C3, viz. we

show that for ua,b in Ui,j with i < j, degree (ua,b)�μi − μj . Let Ui• denote the ith block row of

U i.e. Ui• = [
Ui,1 · · · Ui,l

]
with Ui,k ∈ Rνi×νk . Similarly, let V•j denote the jth block column of

V . Using UV = I and expanding Ui,•V•,i+1 = 0, we get Ui,iVi,i+1+Ui,i+1Vi+1,i+1 = 0, and then using

Ui+1,i+1 = (Vi+1,i+1)−1 we obtain Ui,i+1 = −Ui,iVi,i+1Ui+1,i+1. We noted that for all va,b in Vi,i+1,
degree (va,b)�μi − μi+1. Since Ui,i and Ui+1,i+1 have only constant entries, the degrees of the entries

of Ui,i+1 are also at mostμi − μi+1. This holds true for all i ∈ {1, . . . , �− 1}. This proves claim C3 for

the first super(block)-diagonal.

Next, expanding the left hand side of Ui,•V•,i+2 = 0, and using Ui+2,i+2 = (Vi+2,i+2)−1, we get

Ui,i+2 = −Ui,iVi,i+2Ui+2,i+2 − Ui,i+1Vi+1,i+2Ui+2,i+2

Using the same reasoning as for the first super block diagonal, we conclude that the degree of each

entry of the first product in the right hand side is at most μi − μi+2. Consider the second product

in the right hand side. For all ua,b in Ui,i+1 we inferred that degree (ua,b)�μi − μi+1 and for all ve,f
in Vi+1,i+2 we assumed degree (ve,f )�μi+1 − μi+2. Therefore, all entries in the product on the right

hand sidehavedegrees boundedbyμi − μi+1 + μi+1 − μi+2 = μi − μi+2. This holds true for all i ∈{1, . . . , �− 2}. Thus the degrees of the entries of Ui,i+2 are at mostμi − μi+2. This proves the degree

bound claim (C3) for the second super block diagonal. Continuing in this way, claim C3 of the lemma is

proved. We now prove claim C4. Let P•,m denote themth column of P. Consider the product Ui,•P•,m =
Ui,iPi,m + Ui,i+1Pi+1,m + · · · + Ui,lPl,m. Consider an arbitrary term Ui,kPk,m, with k in {i, . . . , �}, of this
product. For everyentry in thisproduct, thedegree is boundedby (μi − μk)+ (μk − dm) = μi − dm;

thus proving claim C4 of the lemma. This completes proof of Lemma 5.3. �

With the aid of the above lemmas we now prove Theorem 5.1.

Proof of Theorem 5.1. (1): Suppose P ∈ DegBnd(R, Crf ). Consider the controller C′ defined by the

kernel representation induced by C := PR+ Crf = [
P I

] [
R
Crf

]
. Let b be the ith row of C and let a

be the ith row of
[
P I

]
. Denote the entries of a by a1, . . . , ak . Then b = a

[
R
Crf

]
. By the definition of

DegBnd(R, Crf ), each entry aj of a for j ∈ {1, . . . p} has a degree of at most ci − rj . Also, the (p+ i)th
entry of a is 1. Hence the entries of b have a degree of at most ci. By the predictable degree property

(see Proposition 2.3) we have that degree (b) = max{�∈1,...,k:a� /=0}[k� + degree a�] where k� are the

row degrees of
[
R
Crf

]
. Using kp+i = ci, degree ap+i = 0 and row-properness of

[
R
Crf

]
, we conclude that

degree (b) = ci. Thus C and Crf have the same row degrees. Moreover, since they both implement K,[
R
C

]
induces a minimal kernel representation of K and is row proper. Hence n(C) = n(Crf ) and C′ too

is an RFI controller.

(2): Assume C′ ∈ R(k−p)×w[ξ ] induces a row proper kernel representation for a regular feedback

implementing controller C′. Since C and C′ are both regular feedback implementing controllers for K,

we assume without loss of generality that

[
R

C′
]
is row proper and with the same row degrees as

[
R
Crf

]
(see text following Proposition 2.1 about Forney indices). Note that as a result of this, C′ and Crf are both

row proper with the same row degrees. Further, since C′ is regularly implementing, due to Proposition

4.3, there exist P and V such that C′ = PR+ VCrf .

Assumewithout loss of generality thatCrf hasnon-increasing rowdegrees. Suppose the rowdegrees

are μ1 > μ2 > · · ·μ� � 0 with μ1 the degree of the first ν1 rows of Crf , μ2 the degree of the next

ν2 rows, etc. This is essential to handle repeated row degrees. Thus ν1 + ν2 + · · · + ν� = k− p and

νj � 1 are the multiplicities of the row degrees. Also let r1, . . . , rp be the row degrees of R.

We will first show that the matrices P ∈ R(k−p)×p[ξ ] and V ∈ R(k−p)×(k−p)[ξ ] satisfy the degree

related hypotheses listed in Lemma 5.3 viz. the degree each entry pi,j and vi,j in P and V respectively

is bounded from above by the Forney indices of R and Crf (claim C4). Having done so, we can then use
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Lemma 5.3 to conclude that the matrix V−1P also satisfies the degree bounds mentioned in claim C4

of Lemma 5.3, this would prove that V−1P ∈ DegBnd(R, Crf ).

Let b ∈ R1×w[ξ ] be the ith row of

[
R

C′
]
with i > p and let a ∈ R1×k[ξ ] be the (i− p)th row

of
[
P V

]
. Hence b = a

[
R
Crf

]
, and degree (b) = degree

(
a

[
R
Crf

])
. Let aj with j ∈ {1, . . . , k}, be the

entries of a. Using the predictable degree property, viz. Proposition 2.3, we have that degree (b) =
maxm∈1,...,k:am /=0[km + degree (am)] where km’s are the row degrees of

[
R
Crf

]
. Therefore,

km + degree(am)� degree(b) for each m ∈ {1, . . . , k : am /= 0}, and consequently, degree(am)�
degree(b)− km for eachm ∈ {1, . . . , k : am /= 0}. Thus the degree of am, i.e. the (i− p,m)th element

(note that i > p) of
[
P V

]
, is bounded from above by rowdegreei

([
R
Crf

])
− rowdegreem

(
R
Crf

)
. Note

that if rowdegreei

([
R
Crf

])
< rowdegreem

([
R
Crf

])
, then, by our convention that a polynomial of degree

less than zero is the zero polynomial, the (i− p,m) entry of
[
P V

]
is zero.

Thus we have shown the following:

(1) Form� p, either the (i− p,m) element of
[
P V

]
is zero or the degree of the (i− p,m) element

of
[
P V

]
, which is now an element in P, is at most c(i−p) − rm because rowdegreeicol(R, C) = c(i−p)

andm < p⇒ rowdegreemcol(R, C) = rm.

(2) For p < m� k, we have shown that either the (i− p,m) element of
[
P V

]
is zero or the degree

of the (i− p,m) element of
[
P V

]
, which is now an element in V , is at most c(i−p) − c(m−p) because

rowdegreemcol(R, C) = c(m−p).
Thus the degree related conditions in Lemma 5.3 viz. claims C3 and C4 have been proved. This is

utilized in what follows.

Now we shall show that V is block upper-triangular. Consider the ν2 rows of Crf with degree μ2

and the set of ν3 rows of Crf with degree μ3. From the degree related conditions proved just above

(statements (1) and (2)) we see that vi,j = 0 for i ∈ {ν1 + 1, . . . , ν2} and j ∈ {1, . . . , ν1}. The degree

bounds established also imply that vi,j ∈ R for i ∈ {ν1 + 1, . . . ν2} and j ∈ {ν1 + 1, . . . , ν2}. The same

argument applied to other sets of rows of the same degree together imply that V is block upper-

triangular and that the blocks on the diagonal arematrices with real (i.e. not polynomial) entries. Also,

since V is unimodular and V is block upper-triangular, the blocks on the diagonal must be invertible.

Thus the conditions required in Lemma 5.3 are satisfied and this helps conclude that for qa,b ∈ Qi,j we

have degree(qa,b)�μi − rj . From this it follows that V−1P ∈ DegBnd(R, Crf ).

Finally, Lemma 5.2 assures that V−1P depends only on the controller behavior C′, thus proving the

uniqueness stated in claim 2 of Theorem 5.1. �

5.2. ‘Size’ of the set of RFI controllers

Using Theorem 5.1 we see that any RFI controller can be constructed from a given RFI controller’s

kernel representation by various P’s with a restriction on the degrees of the entries. Unlike regular

interconnection where the set of controller behaviors is infinite dimensional, the set of RFI controller

behaviors is finite dimensional for the case of regular feedback interconnection (see Lomadze [9]).

Using the above results, in this section we give a precise count of the dimension of this affine space of

RFI controllers. Assume Crf ∈ R(k−p)×w[ξ ] is row proper and induces aminimal kernel representation

of an RFI controller. Let {c1, . . . , ck−p} be the (k− p)-tuple of row degrees of Crf . Suppose R induces

a row proper kernel representation for the plant P and let (r1, . . . , rp) denote the row degrees of R.

Recall the set DegBnd(R, Crf ) as defined in Theorem 5.1. The following theorem gives a count of the

dimension of the set DegBnd(R, Crf ). Its proof is skipped since it follows easily by noting that each

entry pij has an upper bound of ci − rj on its degree (see Theorem 5.1), and hence the set of allowed

pij ’s form a vector space of dimension ci − rj + 1. The ‘max’ operation ensures that when ci < rj , then

no row-operations are allowed, and hence this does not contribute to the count.

Theorem 5.4. Suppose R and Crf ∈ R•×w[ξ ] are row proper matrices and induce minimal kernel repre-

sentations of the plant and a regular feedback implementing controller. Let rj for j ∈ {1, . . . , p} and ci for
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i ∈ {1, . . . , k− p} be the row degrees of R and Crf respectively. Then the set DegBnd(R, Crf ) and hence the

set of RFI controllers is a finite dimensional vector space of dimension
∑p

j=1
∑k−p

i=1 max(ci − rj + 1, 0). In

particular, if ci < rj for all i and j, then Crf is the unique
4 RFI controller.

A very similar computation has been done in Rosenthal et al. [15, Section 2]: the stabilizer of the set

of row proper matrices of a given McMillan degree is computed in the group of unimodular matrices.

In our case the unimodular matrices are of a special form viz.
[
I 0
P V

]
because we are studying the

problem of controller design by keeping the structure
[
R
C

]
intact. The computation in Rosenthal et al.

[15, Section 2] is about rowproper kernel representations (AR systems)with a given set of rowdegrees,

of which our control problem is a special case.

6. Partial interconnection

Until now we had considered the case where all the variables are available for interconnection.

In this and the following sections, we look into the more practical case in which only some of the

systemvariables are accessible to the controller for interconnection:we call these variables the control

variables c. The variables thatwewish to control are termed the to-be-controlled variablesw. Thus the

full plant behavior Pfull ∈ Lw+c has typical elements (w, c) ∈ Pfull (with possibly some components

common to w and c). The controller behavior C ∈ Lc has only the control variables c as its variables.

The full controlled behavior Kfull ∈ Lw+c is defined as the interconnection of Pfull and C:
Kfull := {(w, c) ∈ Pfull|c ∈ C}.

Since the interconnection of Pfull ∈ Lw+c and C ∈ Lc is not plain intersection, we use the symbol∧ to

denote the interconnection of Pfull and C, i.e. Kfull := Pfull ∧ C, the behavior Kfull ∈ Lw+c defined as

above. The results in this section require the definition of the behavior obtained by ‘eliminating’ the

to-be-controlled variable w: we define the control variable plant behavior Pc ∈ Lc as

Pc := {c ∈ L1
loc(R,Rc)|there exists a wsuch that (w, c) ∈ Pfull}.

For the partial interconnection case, Pfull ∧ C =: Kfull is said to be a regular interconnection if the

output cardinalities of the full plant and the controller add up to that of Kfull.

Similarly, the interconnection is said to be an RFI if it is regular and n(Pfull)+ n(C) = n(Kfull).

The following theorem, oneof themain results of this section, shows that the casePc = L1
loc(R,Rc)

is relatively easy to conclude about regular feedback implementability of Kfull ∈ Lw+c. The case

that Pc = L1
loc(R,Rc) is equivalent to Rw being full row rank in a minimal kernel representation

Rw

(
d
dt

)
w + Rc

(
d
dt

)
c = 0of the full plantPfull: this is standard inbehavioral literature, seePolderman

and Willems [11, Theorem 6.2.6].

Theorem 6.1. Let Pfull ∈ Lw+c and suppose Kfull is regularly implementable with respect to Pfull through

c. Assume Pc = L1
loc(R,Rc). Then,

1. the controller C ∈ Lc that regularly implements Kfull is unique,

2. if Kfull is regular feedback implementable, C is an RFI controller.

Proof of Theorem 6.1. Claim 1: Suppose⎡
⎣Rw

(
d
dt

)
Rc

(
d
dt

)
0 C

(
d
dt

)
⎤
⎦ [

w

c

]
= 0

4 We thank an anonymous reviewer for bringing this important special case to our notice.



H. Vinjamoor, M.N. Belur / Linear Algebra and its Applications 432 (2010) 637–660 653

induces a minimal kernel representation on Kfull, where,
[
Rw Rc

]
induces a minimal kernel repre-

sentation on the plant and C induces aminimal kernel representation on the controller. All controllers

which implement Kfull by full regular interconnection can be obtained by premultiplying this repre-

sentation by matrices P and V as in Proposition 4.3. Assume that Kfull can be implemented regularly

by another controller through c. Therefore, there exists P(ξ) /= 0 such that PRw = 0. Thus Rw does

not have full row rank Hence Pc�L1
loc(R,Rc). This is contradictory to the assumption that Pc =

L1
loc(R,Rc). Hence claim one is proved. Now we prove claim 2. Since Kfull is regular feedback imple-

mentable and since there is a unique regularly implementing controller, this unique controller must

also be regular feedback implementing, thus proving the claim. �
Thus if Pc equals L1

loc(R,Rc), then C is the unique controller behavior that regularly implements

Kfull through c. Hence the McMillan degree cannot be decreased using an analogue of the

algorithm in Section 4.1. We now state a theorem which is useful when Pc is a proper subset of

L1
loc(R,Rc).
This result is a necessary condition for regular feedback implementability of Kfull: given Kfull is

regular feedback implementable, the controlled control variable plant behavior Pc ∧ C too is regular

feedback implementable.

Theorem 6.2. LetKfull = Pfull ∧ C be a regular interconnection. IfKfull is regular feedback implementable

through c, then Pc ∧ C is regular feedback implementable.

Proof of Theorem 6.2.Without loss of generality we assume that

[
R1 R2
0 R3
0 C

]
induces aminimal kernel

representation of Kfull, (R1 is of full row rank, R3 is a minimal kernel representation of Pc and C is

a minimal kernel representation of the controller). Suppose Kfull is regular feedback implementable.

Then there exists aC′ such that

[
R1 R2
0 R3
0 C′

]
is rowproper. Thus

[
R3
C′

]
too is rowproper.Henceweconclude

that Pc ∧ C is regular feedback implementable. �

Remark 6.3. Regular feedback interconnection of Pc and C is not sufficient for that of Pfull and C
also. A simple example is when Rw =

[
1
0

]
, Rc =

[
ξ 0
0 1

]
, and C = [ξ 0]. The reason is that during the

‘elimination’ ofw to obtain Pc , a notion of ‘proper elimination’ (see [10]) plays a key role when dealing

with the function spaceL1
loc. It appears that proper eliminability ofw from Pfull to obtain Pc , together

with RFI of Pc and C, is sufficient to ensure that the interconnection of Pfull and C is also an RFI. Due to

paucity of space, we do not investigate this matter further.

If Pc�L1
loc(R,Rc), then a regularly implementing C is not unique. We can hence look within the

set of regularly implementing controllers to find one that is, in fact, a regular feedback implementing

controller. We now state an algorithm which enumerates the steps for this procedure.

RFI controller construction: the partial interconnection case

Input:

1. A minimal kernel representation of the plant in the form mentioned above i.e.
[
R1 R2
0 R3

]
with

R3 and
[
R1 R2

]
row proper.

2. A rowproper polynomialmatrixCwhich induces aminimal kernel representation of a controller

C ∈ Lc which implements Kfull by regular interconnection through c.

Output: A controller which implements Kfull by RFI through c if some sufficient conditions are satis-

fied, OR the conclusion that Kfull is not regular feedback implementable through c if some necessary

conditions are not satisfied.
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Steps of the algorithm:

1. Consider
[
R3
C

]
. Use the algorithm mentioned in Section 4.1 to find a controller which imple-

ments this interconnection by RFI. If no controller exists, stop; neither Pc ∩ C nor Kfull can be

implemented by RFI. Else,

2. Let Crf be the resulting controller. Check whether

[
R1 R2
0 R3
0 Crf

]
is an RFI. If yes, then the problem

is solved. If not, then our results do not conclude/help further.

7. Disturbances, freeness and regular feedback implementability

In most realistic cases of designing a controller, one must account for the presence of external

disturbances, which by definition are external and hence are inputs to the systems: both the to-be-

controlledand thecontrolled. The least that isdesired is that thecontrollernot restrict thedisturbances.

In this section we analyse the situation that a given plant behavior Pfull ∈ Lw+c is, in fact, obtained

from a larger system Pext
full ∈ Lw+c+d with disturbance variables d also. Assuming that d is unrestricted

by the laws describing Pext
full , we check conditions under which a controller continues to leave the

disturbances unrestricted after interconnection also. This is made precise below.

In order to make concrete the notion of ‘unrestricted/free’, we define the notion of freeness of a

variable when considering a behavior B ⊆ L1
loc(R,Rw+d). The variable d is said to be free in B if for

everyd ∈ L1
loc(R,Rd) there exists aw ∈ L1

loc(R,Rw) such that (w, d) ∈ B. IfRw

(
d
dt

)
+ Rd

(
d
dt

)
d = 0

is a rowproperkernel representationofB, thendbeing free inB is equivalent ton([Rw Rd]) = n([Rw]).
See Polderman andWillems [11] for a detailed discussion on this and the relation to properness of the

transfer function from d to the output variables amongst w.

Let Pfull ∈ Lw+c. An extension Pext
full ∈ Lw+c+d (with d a positive integer) of Pfull is a behavior with

variables w,c and d such that

1. d is free in Pext
full .

2. Pfull = {(w, c)|(w, c, 0) ∈ Pext
full}.

Similarly, for the controlled behavior Kfull = Pfull ∧ C with controller C ∈ Lc,

Kext
full = {(w, c, d)|(w, c, d) ∈ Pext

full and c ∈ C}.
The theorembelow is themain result of this section. Regular feedback interconnection is equivalent

to disturbances continuing to be free in the controlled system after interconnection for every extension

of the plant. When disturbances are restricted to the space of infinitely often differentiable functions

C∞, the equivalence to freeness in every extension and regular interconnection has been established

in [2, Section 7].

Theorem 7.1. Let Pfull ∈ Lw+c and C ∈ Lc be a plant and a controller respectively. Then the following are

equivalent.

1. The interconnection of Pfull and C is an RFI.
2. For every extension Pext

full of Pfull, the disturbance d is free in Kext
full.

Proof. (1⇒ 2): Let Rw
(

d
dt

)
w + Rc

(
d
dt

)
c=0 be a minimal kernel representation of the full plant

Pfull ∈ Lw+c with McMillan degree n(Pfull), and let C
(

d
dt

)
c = 0 be a minimal kernel representation

of the controller with McMillan degree n(C). Suppose the interconnection is an RFI. Consider any

extensionof theplantPext
full ∈ Lw+c+d representedminimally byRw

(
d
dt

)
w + Rc

(
d
dt

)
c + Rd

(
d
dt

)
d=0.
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Fig. 2. Well-posedness.

Since d is free in Pext
full , we noted above that n([RwRc]) = n([RwRcRd]), i.e. a maximal degree minor of

[Rw Rc Rd] iswithin [Rw Rc]. Consider the followingminimal kernel representationofKext
full := Pext

full ∧ C:
⎡
⎣Rw

(
d
dt

)
Rc

(
d
dt

)
Rd

(
d
dt

)
0 C

(
d
dt

)
0

⎤
⎦

⎡
⎣w

c

d

⎤
⎦ = 0. (2)

Due to the interconnection of Pfull and C being an RFI, n(Kfull) = n(Pfull)+ n(C) and hence amaximal

degreeminor of

[
Rw

(
d
dt

)
Rc

(
d
dt

)
0 C

(
d
dt

)
]
continues to be amaximal degreeminor of the polynomialmatrix

inducing the kernel representation of Kext
full in Eq. (2) also. Thus d is free in Kext

full also.

(2⇒ 1): That the interconnection is regular follows from Theorem 12 of [2]. It remains to prove

that the interconnection is, in fact, regular feedback. We prove this part as follows. We construct a

particular extension Pext
full and use the fact that d is free in Kext

full to show that the interconnection of Pfull

and C is an RFI.

Assume [Rw Rc] ∈ Rp×(w+c)[ξ ] is row proper and induces a kernel representation for Pfull. Let

k1, k2, . . . , kp be the row degrees of [RwRc]. Define Rd ∈ Rp×p[ξ ] by Rd(ξ) = diag(ξ k1 , ξ k2 , . . . ξ kp),

and consider the extension Pext
full ∈ Lw+c+d represented by Rw

(
d
dt

)
w + Rc

(
d
dt

)
c + Rd

(
d
dt

)
d = 0.

Since n([Rw Rc]) = n([Rw Rc Rd]), the disturbance is free in Pext
full . Let C ∈ Lc be a controller behavior

with a row proper kernel representation C
(

d
dt

)
c = 0.We obtain the kernel representation for Kext

full as

in Eq. (2) above. Due to the assumption that d is free in Kext
full, we know n

([
Rw Rc Rd
0 C 0

])
= n

([
Rw Rc
0 C

])
.

The LHS of this equality is nothing but n(Kfull), while the RHS is n(Kext
full). Due to the particular choice

of Rd we made, n(Pfull) = ∑p
i=1 ki = n(Rd), and further due to the block of zeros below Rd in Eq. (2),

n(Kext
full) = n(Rd)+ n(C). Combining these equalities, we get n(Kfull) = n(Pfull)+ n(C), thus proving

regular feedback interconnection of Pfull and C. �

We briefly relate the work in this section with the classical concept of well-posedness of an inter-

connection. Consider the interconnectionof a plant and controller in the feedback configuration shown

in Fig. 2. An interconnection is said to bewell-posed if the transfermatrix from (e, f ) to (w, v) exists and
is proper (see Zhou andDoyle [24, Section 5.2]). This is nothing but freeness of external disturbances in

the interconnected system. Theequivalenceof regular feedback interconnection andwell-posedness of

interconnections has been established in Kuijper [8, Theorem 2.1, (ii)], and we proved the equivalence

of RFI to disturbances remaining free after interconnection in every extension of the plant. At first sight,

it appears that requiring the freeness of the disturbance in every extension is rather restrictive, since

the traditional notion of well-posedness does not require this5. The reason for this is that the plant

and controller as operators shown in the figure are assumed to have proper transfer function matrices

(for the case of LTI systems), and in this case it suffices to define well-posedness in that way. The fact

that regular feedback interconnection is related to an input/output feedback interconnection between

the plant and the controller with proper transfer matrices is well-known: see Kuijper [8] andWillems

[22, Theorem 12].

5 In the traditional notion of well-posedness, the signals e and f are added at the junctions denoted in Fig. 2, and hence Rd = I.
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8. Minimal McMillan degree systems

In this section we consider some relatively peripheral problems about interconnections pertaining

tominimalMcMillandegree systems. It is of general interest toobtain a controllerwithas lowMcMillan

degree as possible. This is important from the point of view of physically implementing a control law:

lower the controller order, easier it is to realize it; for instance, micro-controller register requirements

are less demanding. Unlike the previous two sections, we deal with the case that all variables are

available for interconnection, i.e. P and C ∈ Lw.

The following remark addresses the question of minimumMcMillan degree K achievable by RFI.

Remark 8.1. For a given P ∈ Lw, the minimum McMillan degree K ∈ Lw that can be achieved using

an RFI controller is n(P) itself. (See text preceding Theorem 4.2.) Of course, the controller has to have

McMillan degree zero itself for the interconnection to be an RFI. An example of such a controller is a

controller which sets all the inputs of the plant to zero. Moreover, as noted in Theorem 5.4, when the

degree of every row in the plant equations (from a row proper R) is degree one or more, then such a

controller is a unique controller which implements that particular K by RFI.

The next subsections relax the RFI condition and seek minimum McMillan degree K (Section 8.1)

or controller for a specified K (Section 8.2).

8.1. Minimum order K with K regularly implementable

Consider the following problem: find the McMillan degree of a behavior K ⊆ P which satisfies the

following properties:

• K can be obtained by regular interconnection.

• K has the least McMillan degree possible.

Note that K need not be regular feedback implementable. We write R(ξ) = D(ξ)Rcon(ξ), where

D(ξ) is nonsingularRcont induces aminimal kernel represent ofPcont, the controllable part
6 ofP . Since,

Rcont is left-prime, we can extend it to a unimodular matrix by augmenting Rcont by a suitable polyno-

mial matrix below. Let C be such that
[
Rcont
C

]
is unimodular. TheminimumMcMillan degree that K can

achieve is theMcMillan degree ofD(ξ). As is clear, one such interconnection is obtained by using a con-

troller represented by C. In some sense, this interconnection is the ‘maximum’ control possible by reg-

ular interconnection. The minimumMcMillan degree K achievable by regular interconnection is thus

theMcMillandegreeof the autonomouspart ofP .WhenP is controllable, thenD(ξ)above canbe taken

to be the identity matrix, and the controller is then exactly the same as that in Kuijper [8, Section 3].

8.2. Minimal order regular controllers

If an RFI controller exists, then it is has the lowest possible McMillan degree amongst all regularly

implementing controllers i.e., it is a minimal order controller. However, suppose for a given K an RFI

controller does not exist. We would then have to inevitably ‘prepare’ the states of the plant and the

controller before interconnection so that there are no impulses at interconnection. In such a scenario,

it is desirable (again for implementation reasons) that the controller have as few states as possible.

The precise formulation of the problem follows below. This section discusses how some obvious ways

to extend results in this paper to solve this problem do not work, and this problem is left unsolved due

to its non-trivial nature.

6 The decomposition of a behavior into its controllable part and an autonomous part iswell-studied in the behavioral literature.

See Polderman andWillems [11] for a detailed exposition.Pcont is the largest controllable behavior withinP . Here, Rcont is such

that Rcont(λ) has full row rank for every λ ∈ C. Such an Rcont is also called left-prime.
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Problem 8.2. Given P and K ∈ Lw such that K is regularly implementable, but not regular feed-

back implementable, find a minimum McMillan degree regular controller, and parametrize all such

controllers.

Unlike other problems in this section, in this problemK is already specified. Let R be rowproper and

letC1 inducea rowproperkernel representationof a regular controller. Supposeweapply thealgorithm

mentioned in Section 4.1 till one is facedwith the situation that everyβ results in a PERD, i.e. controller

order cannot be decreased further: then one expects that the controller obtained at this step has the

least McMillan degree amongst all regular controllers that implement K. Further, having found such a

controller, the results of Section 5 suggest that we might be able to find all controllers by restricting P

to the set DegBnd(R, C). We now state this property about minimal order regular controllers precisely

(and show that it is not true). The first remark is about the possible non-minimality of a regular

controller for a K that is not regular feedback implementable. The following remark says that, even if

all equations of reducible degree are plant equations, i.e. there are no ‘controller equations of reducible

degree’, one cannot conclude that the regular controller is of minimal order.

Remark 8.3. Suppose R ∈ Rp×w[ξ ] and C ∈ R(k−p)×w[ξ ] induce row proper kernel representations

for P and C ∈ Lw respectively, and assume the interconnection is regular with K := P ∩ C. Let Klc be

the leading row coefficient matrix of K := col(R, C). Suppose for every α ∈ R1×k such that αKlc = 0,

the following inequality holds for each i ∈ {p+ 1, . . . , k} satisfying αi /= 0:

rowdegreei(K) < max
j∈{1,...,p}:αj /=0

(rowdegreej(K)). (3)

Then, these assumptions do not suffice to conclude that C has the least McMillan degree amongst all

regular controllers that implement K.

Of course, the necessity of the assumptions is obvious: if the condition in Eq. (3) is not satisfied

then using a ‘controller equation of reducible degree’ one can decrease the controller McMillan de-

gree. An example to show the lack of sufficiency as claimed in the above remark is as follows. Let

R =
[
ξ2 ξ 0

]
, and let C1 =

[
ξ 2 0

0 −ξ2 ξ

]
. Note that C1 is row-reduced and the lack of row

properness of col(R, C) is due to only plant equations of reducible degree. However, the controller

induced by C2 :=
[
ξ 2 0
0 0 ξ

]
is of McMillan degree strictly less than that by C1, andmoreover, C2 can

be obtained from R and C1 using a P and a unimodular V , as discussed in Proposition 4.3.

The next question that naturally arises is as follows: knowing C2 is minimal, is C1 within the set of

all controller representations that can be got from R and C2 using a P with a degree bound, like we had

shown in Section 5.2? The following remarkmakes this precise and claims that this too is not true. The

remark is followed by a relevant example.

Remark 8.4. Consider P and K ∈ Lw and let C ∈ Lw be a regular controller implementing K such that

n(C) is minimal amongst all such regular controllers. Let R ∈ Rp×w[ξ ] and C ∈ R(k−p)×w[ξ ] induce
row proper kernel representations of P and C respectively, and let (r1, . . . , rp) and (c1, . . . , ck−p) be
their row degrees. Construct DegBnd(R, C) ⊆ R(k−p)×p[ξ ]

DegBnd(R, C) := {P ∈ R(k−p)×p[ξ ]|degree(pa,b)� ca − rb}. (4)

Then, there exist regular controllers C′, with n(C′) = n(C), none of whose kernel representations can

be obtained from any P ∈ DegBnd(R, C) using PR+ C.

As an example, consider C2 as defined above just after Remark 8.3. Consider C3 :=
[
ξ 2 0
0 −ξ ξ

]
,

which is rowproper and also regularly implementsK, like C2 does.While they have the sameMcMillan

degree, one can check that there does not exist P ∈ DegBnd(R, C2) nor any unimodular U such that
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C3 = U(PR+ C2). In other words, we require a P with entries which have degree higher than those

allowed by the constraints posed within Equation 4. This is more easily evident from the more gen-

eral controller Cn :=
[
ξ 2 0

0 −ξn ξ

]
, which: regularly7 implements K; satisfies row properness; has

McMillan degree n+ 1 (unaffected by premultiplication by unimodular U); and can require P of a

degree not bounded by (any function of) row degrees of just R and C2.

In summary, the problem of finding minimal order regular controllers appears to be non-trivial.

What is even more pertinent is that the results of Sections 4 and 5 do not directly extend to the case

of minimal order controllers for a K that is not regular feedback implementable. It is in view of the

above examples that Theorem 4.2 is important: the mere existence of a PERD makes the sequence

of row-reduction irrelevant, and allows conclusion of non-RFI of K. The characterization of minimal

order regular controllers and their parametrization is a topic of further research.

9. Concluding remarks

In this section we summarize the key results in the paper. In Section 3, we showed that regular

feedback interconnection ensures that no inadmissible initial conditions exist for the autonomous

controlled system, but the converse is not true. While a relation between RFI and absence of inadmis-

sible initial conditions is intuitively expected, we argued (and provided a practical counter example)

as to why absence of inadmissible initial conditions is not enough to guarantee absence of impulsive

behavior at the time of controller interconnection.

Concerning the question as to when a given desired specification K can be met using an RFI con-

troller,we stated andproved a necessary and sufficient condition for this: non-existence of PERD (Plant

Equation of Reducible Degree) for the controlled system equations arising from any regular controller

is equivalent to K being RFI. This easily verifiable test also allows us to construct an RFI controller, if

one exists. Further, we used one such controller and parameterized all the controllers that implement

K by RFI (Theorem 5.1); we also gave a count of the dimension of this affine space (Theorem 5.4).

The regular feedback implementability problem has been addressed in Lomadze [9], though only

for the full interconnection case, i.e. when all the variables are available for interconnection with a

controller. Anecessary and sufficient condition for regular feedback implementability is obtainedusing

observability indices and rational matrix manipulation. Apart from we not requiring the seemingly-

unutilized controllability condition assumed8 in Lomadze [9], ourmethod of characterizing RFI allows

systematic modification of a regular controller to obtain an RFI controller, if one exists.

In this paper, as an application of the main results, we checked if the interconnection of a door and

a door closing mechanism is an RFI, and investigated the existence of inadmissible initial conditions.

Though the controlled system has no inadmissible initial conditions, the interconnection is not RFI,

thus implying that before interconnection, some ‘preparing’/fine-tuning of the internal states of the

controller is inevitable; seeKuijper [8]andWillems [22].Moreover,weshowedthat thesamecontrolled

behavior cannot be obtained by RFI using any controller, and obtained the unique controller that is of

minimal order.

In Section 6 we dealt with the issue of partial interconnection: the case when to-be-controlled

variables are possibly different from the control variables. We formulated and proved necessary con-

ditions for a controlled behavior Kfull to be implementable by RFI and used this to get an algorithm

for finding controllers that implement Kfull by RFI. Finding necessary and sufficient conditions for this

case remains to be investigated.

We also established an equivalence between RFI and the notion that disturbances in a plant ought

to remain unrestricted after the controller interconnection also (Theorem 7.1).We noted the similarity

between this notion and that of well-posedness; see also Kuijper [8].

7 Cn can be obtained from C2 by the following row operations on row 3 (i.e. r3) of col(R, C2): r3 ← r3 + ξ (n−1)r1 followed by

r3 ← r3 − ξ nr2.
8 Though controllability is assumed in the paper, and crucially utilized within Example 1 (in Lomadze [9, p. 863]), it appears

that the proofs of the main results utilize ‘right unimodularity’ of only F in Eq. (1) in Lomadze [9, p. 859], and not controllability

of the plant behavior P .
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Table 1

Notation.

Symbol Meaning Symbol Meaning

P Plant behavior PERD Plant equation of reducible degree

K Controlled behavior RFI Regular feedback interconnec-

tion/implementing/implementable

C Controller behavior Uβ ,i An identity matrix with its ith row re-

placed by the monomial row vector

β(ξ)

p Output cardinality of plant P B1 ∧ B2 Interconnection of two behaviors B1

and B2

k Output cardinality of K k− p Output cardinality of a regular con-

troller

Rlc Leading coefficient matrix of R(ξ) DegBnd(R, Crf ) Set of polynomial matrices constructed

using R and Crf

n(•) McMillan degree Pext
full Pfull with disturbance inputs

Kext
full Kfull with disturbance inputs Pfull Plant behavior with to-be-controlled

variables w and control variables c

Pc Pfull projected on the c variables Kfull Controlled behavior with to-be-

controlled variables w and control

variables c

L1
loc Set of locally integrable functions Lw Linear time invariant behavior with w

system variables

Certain auxiliary issues like minimizing the controlled behavior’s McMillan degree and/or the

controller’sMcMillan degreewere addressed in Section 8. The extension of our results towards finding

minimal order controllers when K is not RFI appears non-trivial. We illustrated this with suitable

examples. Some related issues that we did not address are described below. While regular feedback

interconnection is closely related to occurrence of impulses when interconnection takes place, an

equally important issue is when the plant and controller are disconnected: it is well-known that

inductors pose a problemwhen disconnected. Conditions for impulse-free disconnection may or may

not be significantly different. Also, when an interconnection is not RFI, often a change of controller is

not practically desirable. In such a situation formulating conditions regarding the time instants when

interconnecting won’t cause impulses can be very useful: the use of electric lamps as synchroscopes

to decide when two electric generators can be connected are very popular (see Agrawal [1, p. 542]).
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