
2420 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 25, NO. 9, SEPTEMBER 2010

A Generalized Computational Method to Determine
Stability of a Multi-inverter Microgrid
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Abstract—Microgrid-containing parallel-connected inverters,
where each inverter is controlled by decentralized active
power/voltage frequency and reactive power/voltage magnitude
droop control laws results in flexible and expandable systems.
These systems have been known to have stability problems for
large values of active power/voltage frequency droop control gain.
However, so far the stability analysis of multi-inverter systems has
always been performed in a computationally intensive manner by
considering the entire microgrid. In a practical microgrid, where
the number of inverters may be large or the capacity of the units
may differ, it becomes essential to develop a method by which sta-
bility can be examined without much computational burden. The
system of differential algebraic equations has been simplified us-
ing justifiable assumptions to result in a final expression that allows
the stability of the microgrid to be examined separately with re-
spect to the droop control laws of each inverter transformed into
an equivalent network. Moreover, the procedure allows taking into
consideration the R/X ratio of the interconnecting cables. Analysis
of final expressions validate the stability results reported in litera-
ture. Experimental results on hardware show the stable operation
of the microgrid.

Index Terms—Droop control laws, inverter, microgrid, model-
order reduction, system modeling.

I. INTRODUCTION

PARALLEL connection of inverters is an excellent strategy
to build high-capacity reliable power supplies. A collection

of loads and inverters fed by energy sources that can operate in
isolation to the main ac grid is called a microgrid [1], [2]. Under
the assumption that the energy sources feeding the inverters have
sufficient capacity to supply the loads in the microgrid, an “in-
telligent” (centralized) control mechanism to manage balance
of power generation and load demand is not necessary. Further-
more, a masterless control of inverters is desirable, where every
inverter is a grid-forming unit defining the voltage frequency
and magnitude of the microgrid. Under such circumstances, the
failure of a given inverter does not cause a collapse of the micro-
grid and every inverter acts as a plug-and-play entity to make the
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microgrid a conveniently expandable system. Communication
links between the inverters or a supervisory controller are not
essential for the stable operation of the microgrid, but can be
used to enhance the transient performance of the microgrid.

The inverters in the microgrid are controlled by a nested con-
trol strategy. The inner controller ensures that the output voltage
of the inverter tracks desired references [3]. The outer controller
sets the references for the desired output voltages to be tracked
by the inner controller. For a masterless control of the microgrid,
the inverters are controlled to emulate synchronous generators
in conventional power systems. The frequency and magnitude
of the output voltages of an inverter varied with respect to the
active power and reactive power supplied by the inverter, respec-
tively [4]–[13]. This control strategy has been popularly termed
as the droop control strategy and allows the inverters to share
active and reactive power demanded by the loads in the micro-
grid according to their maximum rating. Moreover, the droop
controller is a decentralized controller requiring only the mea-
surements of variables local to the inverter. Stability issues of
microgrids with inverters controlled by droop controllers has
been widely reported in literature [10]–[13].

A complete eigenvalue analysis of the microgrid shows that
the dominant eigenvalues are caused by the droop controller
[10]–[13]. The voltage controller being implemented for funda-
mental and harmonic components has a high bandwidth. How-
ever, the droop controller requires measurement of active and
reactive power supplied by the inverters that are either measured
at low sampling rates or are filtered to obtain the low-frequency
component [12], [13]. Therefore, the dominant eigenvalues of
the microgrid can be examined by a detailed analysis of the
droop controller. Published work has described how the system
stability margin decreases with increase in the droop controller
gains and the system finally becomes unstable for large values
of active power/frequency droop gain [11]–[13]. Moreover, it
has also been shown that the stability results are strongly depen-
dent on the loading conditions of the microgrid and on network
parameters.

The results already published are based on simulations of dy-
namical models of microgrids. These models are fairly dense and
require a detailed knowledge of the system topology [11]–[13].
The prediction of stability is therefore a nonscalable analysis
technique applicable only for microgrids not containing a large
number of inverters. This paper proposes a reduced-order math-
ematical model of the microgrid in which the droop control
laws acting on each inverter can be examined separately and the
inverters are transformed into equivalent networks. From this
mathematical model, the poles of the controlled system can be
obtained. As shown by computation results in Scilab, the poles
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Fig. 1. Topology of the inverters.

of the controlled system obtained by the transfer functions are in
close agreement with the results published. The poles and zeros
of the open-loop plant have been plotted on the complex plane
to predict instability with change in droop controller gains.

The outline of the paper is as follows. Section II describes the
topology of the microgrid and the inverters. The mathematical
model of the microgrid is written in the form of block matri-
ces. Section III describes how the derived model is modified
to decrease the size of the model being examined. Section IV
derives the controller equations and their integration into the
plant model derived in Section III to produce the controlled sys-
tem model. The model of the controlled system is simplified
using justifiable assumptions to present a closed-form expres-
sion through which the stability of the microgrid, with inverters
controlled by droop control laws, can be systematically exam-
ined. Section V contains simulation results showing the stable
boundaries of the microgrid and experimental results showing
the stable operation of the microgrid. Section VI examines the
sensitivity of the stable boundaries of the microgrid with re-
spect to the R/X ratio of the interconnecting cables. Section VII
concludes by highlighting the contributions of the paper and
justifying the assumptions made.

II. SYSTEM DESCRIPTION

This section describes the topology of the inverters, the topol-
ogy of the microgrid chosen for study, and the derivation of the
mathematical model of the microgrid. The system is a three-
phase three-wire system and it is assumed that the network
parameters are equal in all phases.

A. Inverter Topology

Fig. 1 shows the topology of the three-phase three-wire in-
verter for interfacing a constant voltage source Vdc to the micro-
grid. The switches S1–S6 are insulated gate bipolar transistors
(IGBTs) with their associated antiparallel diodes. The six IG-
BTs and the dc-voltage source form a voltage-source inverter
(VSI), whose output is a switched waveform. The inductor Lf

and the capacitor Cf form a low-pass L–C filter that removes
the high-frequency switching harmonics generated by the VSI.
The voltages vf a , vf b , and vf c across the filter capacitor bank
Cf are the output voltages of the inverter. The switches S1–S6 in
Fig. 1 are switched by sine triangle pulsewidth modulation. Loh
et al. [3] provided a detailed comparison of the different types

Fig. 2. Three-inverter-ring-connected microgrid.

of voltage controllers used for forcing the inverter to produce
desired output voltages.

B. Microgrid Topology

Fig. 2 is a single line diagram showing the topology of the
three-phase microgrid used in the analysis. The microgrid is
a three-inverter-ring-connected microgrid. In the blocks, “Inv”
stands for inverter. Inverter 1, Inverter 2, and Inverter 3 have
the topology of Fig. 1. Inverter 1, Inverter 2, and Inverter 3
have local loads Z�1 , Z�2 , and Z�3 respectively. The loads have
been assumed to be three-phase balanced linear passive loads
consisting of resistances R�1 , R�2 , and R�3 and inductances
L�1 , L�2 , and L�3 . L12 , L23 , and L13 are the inductances of the
cables connecting the inverters with associated resistances R12 ,
R23 , and R13 , respectively.

C. System Representation

In this section, mathematical model of the microgrid of Fig. 2
is developed; this is used for analysis. To simplify the process
of system modeling, the microgrid is broken up into subsys-
tems. The variables of each subsystem will be described later
followed by the network laws that constrain the variables. Using
Clarke’s transformation, the three-phase variables in the instan-
taneous reference frame will be transformed into variables in
the synchronously rotating d–q reference frame. The loads con-
nected to the microgrid will be assumed to be balanced. As
already stated, the network parameters in all three phases will
be assumed to be equal. Therefore, under this assumption of
a balanced three-phase system, the variables in the d–q refer-
ence frame will be constant dc quantities in steady state. To
reduce the number of variables and constraining equations, all
the transformed variables that have d and q components will be
expressed as complex variables with a real d part and an imag-
inary q part. The analysis will be performed in the small signal
sense with the variables expressed as deviations of values from
an equilibrium point. Furthermore, a Laplace transformation is
performed on the system assuming the initial conditions to be
zero.
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Fig. 3. Complex variable vf m and its projections vf m d and vf m q .

The complex variables of the microgrid will be collected to-
gether to form a vector x. Furthermore, variables are grouped
in a suitable manner to form subvectors within x that will re-
sult in a mathematical model that possesses a convenient block
matrix structure. The vector containing all the variables of the
microgrid is

x = (u,xv ,xc ,x� ,xint) . (1)

The subvectors are as follows:

u = (u1 , u2 , u3)

xv = (vf 1 , vf 2 , vf 3)

xc = (ic1 , ic2 , ic3)

x� = (i�1 , i�2 , i�3)

xint = (i12 , i23 , i13) . (2)

In the aforementioned equations, the variables in the vectors
are complex. For example, vf 1 = vf 1d + jvf 1q , ic1 = ic1d +
jic1q , i�1 = i�1d + ji�1q , and i12 = i12d + ji12q . The complex
variable u1 is the input to Inverter 1 and is defined as u1 =
δ1 − jV1 . Other variables u2 and u3 can be written in a similar
manner with appropriate changes in the subscripts. The laws
constraining these variables will be described next.

The variable um = δm − jVm for inverter m (m = 1, 2, 3) is
derived with respect to Fig. 3. With respect to Fig. 3, the angle
δm is written as follows [10]:

δm = tan−1
(vf mq

vf md

)
.

The aforementioned equation is a nonlinear equation and is
therefore linearized about the equilibrium point and expressed
in the small signal sense

∆δm = − Vf mq

V 2
f md + V 2

f mq

∆vf md +
Vf md

V 2
f md + V 2

f mq

∆vf mq .

(3)
In (3), Vf md and Vf mq are the values of the variables vf md

and vf mq , respectively, at the equilibrium point. The variable
Vm that denotes the magnitude of the inverter output voltage is
defined as follows:

Vm =

√
v2

f md + v2
f mq

V 2
f md + V 2

f mq

.

The aforementioned nonlinear equation is linearized to

∆Vm =
Vf md

V 2
f md + V 2

f mq

∆vf md +
Vf mq

V 2
f md + V 2

f mq

∆vf mq . (4)

The complex variable um = δm − jVm is therefore defined in
the small signal sense as follows:

∆um = kum ∆vf m =
−Vf mq − jVf md

V 2
f md + V 2

f mq

∆vf m . (5)

The aforementioned equation can be extended to all three in-
verters and written as a matrix equation as follows:

[−Au I ]
[

∆u

∆xv

]
= 0 (6)

where

Au =




1
ku1

0 0

0
1

ku2
0

0 0
1

ku3


 .

The load laws at the three inverters form the next set of
equations. As an example, the load law at Inverter 1 is written
in the small signal sense as follows:

∆vf 1 − Z�1∆i�1 = 0

where Z�m = R�m + sL�m + jωL�m for m = 1, 2, 3. The load
laws can be combined into one single matrix equation as follows:

[−A� I ]
[

∆xv

∆x�

]
= 0 (7)

where

A� =




1
Z�1

0 0

0
1

Z�2
0

0 0
1

Z�3


 .

The KCL laws describing the relationship between the in-
verter output current and the currents through interconnecting
cables connected to the inverters are written as follows:

∆ic1 − ∆i�1 − ∆i12 − ∆i13 = 0

∆ic2 − ∆i�2 + ∆i12 − ∆i23 = 0

∆ic3 − ∆i�3 + ∆i23 + ∆i13 = 0. (8)

The aforementioned laws can be written in the matrix form as
follows:

[ I −I Aint ]




∆xc

∆x�

∆xint


 = 0 (9)

where

Aint =



−1 0 −1
1 −1 0
0 1 1


 .
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The interaction between inverters through the impedance of
the interconnecting cables are described by KVL laws written
as follows:

∆vf 1 − ∆vf 2 − Z12∆i12 = 0

∆vf 2 − ∆vf 3 − Z23∆i23 = 0

∆vf 1 − ∆vf 3 − Z13∆i13 = 0 (10)

where, as an example, Z12 = R12 + sL12 + jωL12 . The afore-
mentioned laws can be written in the matrix form as follows:

[−Az I ]
[

∆xv

∆xint

]
= 0 (11)

where

Az =




1
Z12

− 1
Z12

0

0
1

Z23
− 1

Z23
1

Z13
0 − 1

Z13




.

The complete model of the microgrid in terms of the block
matrices is as follows:

Atotal∆x = 0 (12)



−Au I 0 0 0

0 0 I −I Aint

0 −A� 0 I 0
0 −Az 0 0 I







∆u

∆xv

∆xc

∆x�

∆xint


 = 0. (13)

III. PLANT MODEL REDUCTION

In Section II, the open-loop plant model of the microgrid had
been derived and presented in a block matrix manner. However,
the model did not include the droop control strategy. In order to
examine the stability of the closed-loop microgrid with the droop
controller, the droop controller equations will be appended to
the plant model. The characteristic polynomial of the controlled
system will be the determinant of the complete model containing
the plant equations and the controller equations. However, if the
closed-loop characteristic polynomial is obtained by computing
the determinant of the matrix obtained by merely appending
the controller equations to the plant model, the computational
burden required turns out to be significant. Therefore, the plant
model will be manipulated and reduced to a convenient form
that allows stability to be examined with lesser computational
burden.

The plant model is seen to act on the vector ∆x that contains
all the variables of the microgrid. However, the droop controller
is a decentralized controller that acts on variables local to the
inverters. The objective of simplification will therefore be to
eliminate the variables that do not affect the droop controller.
Fig. 4 show the input–output division of the variables in the
plant model. Fig. 5 shows the droop controllers implemented
for Inverter 1, Inverter 2, and Inverter 3. As can be seen from
Fig. 5, only the output voltage vf of an inverter and the output

Fig. 4. Input–output division of variables.

Fig. 5. Implementation of droop controllers.

current ic are measured for implementing the droop controller
for that particular inverter.

The method of simplifying the plant mathematical model is
along the following principles. A unimodular matrix is a square
matrix, whose determinant is a nonzero constant. Premultiplica-
tion of a matrix A by a unimodular matrix U when studying the
set of solutions to Aw = 0 is equivalent to performing elemen-
tary row operations on the matrix. However, such elementary
row operations will not change the solution set of the matrix
equations. Moreover, the determinant of the resultant matrix
UA is the product of the determinant of the unimodular matrix
and determinant of the original matrix. Therefore, since the de-
terminant of the unimodular matrix is a nonzero constant, the
determinant of the resultant matrix produces the characteristic
polynomial of the controlled system. The characteristic polyno-
mial of a system is the polynomial, whose roots are the poles of
the system, counted with multiplicity.

The unimodular matrix, which has been chosen as a premulti-
plier to the plant model matrix developed in the previous section,
is written as follows:

U =




I 0 0 0
A� − AintAz I I −Aint

0 0 I 0
0 0 0 I


 . (14)

It is to be noted that det(U) = 1. The resultant matrix obtained
is written as follows:

UAtotal =




−Au I 0 0 0
−(A� − AintAz )Au 0 I 0 0

0 −A� 0 I 0
0 −Az 0 0 I


 .

(15)
As already stated, the decentralized droop controller that is

applied to every inverter requires the measurement of variables
local to the concerned inverter. These variables are the output
voltage vf and the output current ic . The controller equations
will be derived in the next section. However, the structure of
the controller along with the structure of the plant model will
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be utilized to reduce the order of the plant model that is being
analyzed.

The decentralized droop controller is written in the following
block matrix form:

C = [Cinp Cvf Cic 0 0 ] . (16)

The controlled system or the closed-loop system consists of
the controller matrix equations appended with the plant model
equations. The controlled system is written as follows:

Amicro∆x = 0 (17)

where

Amicro =




−Au I 0 0 0
−(A� − AintAz )Au 0 I 0 0

Cinp Cvf Cic 0 0

0 −A� 0 I 0
0 −Az 0 0 I




.

(18)
The aforementioned matrix has been written in a block structure
that will be used in simplifying the determinant computation, as
shown.

The computation of the determinant of Amicro provides the
characteristic polynomial of the controlled system from which
its stability can be analyzed. The Schur’s complement result can
be utilized to compute the determinant of Amicro as follows.
Consider any matrix R written in the block diagonal form

R =
[
R11 R12

R21 R22

]
.

Using Schur’s complement, the determinant of the matrix R is
written as follows:

|R| = |R11 + R12R−1
22 R21 ||R22 |. (19)

The Schur’s complement as defined here requires that the matrix
R22 is invertible. From the block diagonal representation of
Amicro , it can be observed that Schur’s complement is applicable
due to the presence of the identity matrix in place of R22 .
Moreover, since R12 is zero, the determinant of Amicro reduces
to

|Amicro | =

∣∣∣∣∣∣∣
−Au I 0

−(A� − AintAz )Au 0 I

Cinp Cvf Cic

∣∣∣∣∣∣∣ . (20)

The block matrix A� − AintAz happens to have a systematic
structure.

A� − AintAz

=




1
Z� 1

+ 1
Z1 2

+ 1
Z1 3

− 1
Z1 2

− 1
Z1 3

− 1
Z1 2

1
Z� 2

+ 1
Z1 2

+ 1
Z2 3

− 1
Z2 3

− 1
Z1 3

− 1
Z2 3

1
Z� 2

+ 1
Z1 3

+ 1
Z2 3


.

(21)

In general, for any microgrid with inverters connected together
by cables, the aforementioned equations can be written in a
similar manner. The diagonal elements are the sum of terms

corresponding to the load connected at the inverter and the ad-
mittances of the cables connecting the inverter to other inverters.
The off-diagonal element mn is the negative of the admittance
of the cable between inverter m and inverter n when inverter m
and inverter n are connected. In the case of inverter m not being
connected to inverter n, the off-diagonal term mn will be zero.
A further approximation can be made is that |Zl | � |Zcable |,
since the cable impedances are essentially parasitic. There-
fore, the admittances corresponding to the load impedances
Zl1 , Zl2 , and Zl3 are neglected and dropped from further
expressions.

IV. CONTROLLER EQUATIONS

The droop controllers applied to every inverter varies the volt-
age frequency and voltage magnitude from their nominal values
as linear functions of the active and reactive power supplied by
the inverter, respectively. Mathematically, the droop controller
equations for inverter m are written as follows [4]–[13]:

ωm = sδm = ω0 − kpm pm

Vm = V0 − kqm qm (22)

where ω0 and V0 are the nominal values of angular frequency and
voltage magnitude, respectively. They have been chosen to be
100π rad/s and 230 V, respectively. The angular frequency ωm

of inverter m output voltage has been expressed as a derivative
of the phase angle δm derived earlier. kpm and kqm are the droop
coefficients, while pm and qm are the active power and reactive
power supplied by the inverter, respectively. The first equation
is called the p–ω droop control law, while the second equation
is called the q–V droop law.

The active power and reactive power supplied by the inverter
are written as follows:

pm = vf mdicmd + vf mq icmq

qm = vf mq icmd − vf mdicmq .

It is to be noted that the aforementioned equations contain the d
and q components of variables as real separate variables. More-
over, the aforementioned equations are seen to have a product
nonlinearity, and therefore, are linearized about the equilibrium
point as follows:

∆pm = Icmd∆vf md + Icmq∆vf mq + Vf md∆icmd

+ Vf mq∆icmq

∆qm = −Icmq∆vf md + Icmd∆vf mq + Vf mq∆icmd

− Vf md∆icmq

where Icmd and Icmq are the values of the output currents icmd

and icmq of inverter m, respectively, at the equilibrium point.
Linearizing the droop controller equations, and substituting

the expressions for ∆pm and ∆qm , the following expressions
are obtained:

s∆δm = −kpm (Icmd∆vf md + Icmq∆vf mq + Vf md∆icmd

+ Vf mq∆icmq )
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∆Vm = kqm (Icmq∆vf md − Icmd∆vf mq − Vf mq∆icmd

+ Vf md∆icmq ). (23)

The droop controller equations for the three inverter units in
the microgrid are written in the matrix form as follows:[

sI

0

]
∆δ +

[
0
I

]
∆V +

[
Cvd

Dvd

]
∆xvd +

[
Cvq

Dvq

]
∆xvq

+
[
Cid

Did

]
∆xcd +

[
Ciq

Diq

]
∆xcq = 0. (24)

The vectors in the aforementioned equation are the real, and
imaginary vectors corresponding to the complex vectors of (2)
are as follows:

δ = [ δ1 δ2 δ3 ]

V = [−V1 −V2 −V3 ]

xvd = [ vf 1d vf 2d vf 3d ]

xvq = [ vf 1q vf 2q vf 3q ]

xcd = [ ic1d ic2d ic3d ]

xcd = [ ic1q ic2q ic3q ] .

The reason for choosing V with negative signs in the voltage
magnitudes is to remain in compliance with the definition of
u = δ − jV . The following vectors are also defined:

kp = [ kp1 kp2 kp3 ]

kq = [ kq1 kq2 kq3 ] .

The matrices are as follows:

Cvd =




kp1Ic1d 0 0
0 kp2Ic2d 0
0 0 kp3Ic3d


 .

The aforementioned matrix is written as a product of diagonal
matrices as follows:

Cvd = [ diag(kp) × diag(Xcd) ]

where diag(kp) implies a diagonal matrix, whose diagonal ele-
ments are the vector kp and Xcd is the values of the vector xcd

at the equilibrium point. Similarly

Cvq = [ diag(kp) × diag(Xcq ) ]

Cid = [ diag(kp) × diag(Xvd) ]

Ciq = [ diag(kp) × diag(Xvq ) ]

Dvd = [ diag(kq ) × diag(Xcq ) ]

Dvq = [−diag(kq ) × diag(Xcd) ]

Did = [−diag(kq ) × diag(Xvq ) ]

Diq = [ diag(kq ) × diag(Xvd) ] .

In the previous section, the plant model was derived using
complex variables. The following vector is defined:

xcld = [ δ V xvd xvq xcd xcq ] .

However, as shown earlier, the controller utilizes the real com-
ponents of the complex variables. As a result, the plant model
derived will be modified so as to act on the real variables. Rewrit-
ing the matrix Ared such that it acts on real variables

Acld∆xcld = 0 (25)


−Ar
u Ai

u I 0 0 0
−Ai

u −Ar
u 0 I 0 0

−Ar
imp Ai

imp 0 0 I 0

−Ai
imp −Ar

imp 0 0 0 I

sI 0 Cvd Cvq Cid Ciq

0 I Dvd Dvq Did Diq







∆δ

∆V

∆xvd

∆xvq

∆xcd

∆xcq




=0

(26)

where Aimp = (A� − AintAz )Au . Ar
u and Ai

u are the real and
imaginary components of the matrix Au while Ar

imp and Ai
imp

are the real and imaginary components of the matrix Aimp . The
determinant of the matrix Acld in the aforementioned equation
provides the characteristic polynomial. In a manner similar to
obtain the reduced-order plant model, the matrix Acld in the
aforementioned equation will also be reduced, as described later.

The matrix Acld will be premultiplied by a unimodular matrix
(described in Section III, paragraph 3). The unimodular matrix
is chosen to be

Ucld =




I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0

−Cvd −Cvq −Cid −Ciq I 0
−Dvd −Dvq −Did −Diq 0 I




. (27)

It is to be noted that det(U) = 1. The matrix product UcldAcld

is

UcldAcld =




−Ar
u Ai

u I 0 0 0
−Ai

u −Ar
u 0 I 0 0

−Ar
imp Ai

imp 0 0 I 0

−Ai
imp −Ar

imp 0 0 0 I

Cmod
δ Cmod

V 0 0 0 0
Dmod

δ Dmod
V 0 0 0 0




. (28)

Following the similar arguments for reducing the matrix Amicro ,
the determinant of the matrix Acld is written using the Schur’s
complement as follows:

|Acld | =
∣∣∣∣ Cmod

δ Cmod
V

Dmod
δ Dmod

V

∣∣∣∣ . (29)

The matrices Cmod
δ , Cmod

V , Dmod
δ , and Dmod

V are written as
follows:

Cmod
δ = sI + CvdAr

u + CvqAi
u + CidAr

imp + CiqAi
imp

(30)

Cmod
V = −CvdAi

u + CvqAr
u − CidAi

imp + CiqAr
imp (31)
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Dmod
δ = DvdAr

u + DvqAi
u + DidAr

imp + DiqAi
imp (32)

Dmod
V = I−DvdAi

u +DvqAr
u −DidAi

imp +DiqAr
imp . (33)

The aforementioned equations appear to be complicated and
each of the matrices Cmod

δ , Cmod
V , Dmod

δ , and Dmod
V have el-

ements that contain several terms. However, by making an ap-
proximation that will be described next, many of the terms will
be found to cancel out leaving matrices that have a convenient
structure.

The droop controller allows inverters to share active and re-
active power demanded by the loads in the microgrid by varying
the frequency and magnitude of the output voltages of the invert-
ers. Active power flow across a predominantly inductive cable is
closely coupled to the phase angle difference between the volt-
ages at the two ends of the cable [4]. Similarly, the reactive power
flow is closely coupled to the difference in magnitudes of the
voltages at the two ends of the cable when the cable is predomi-
nantly inductive [4]. The assumption of all cables being predom-
inantly inductive is followed in the paper so that the droop con-
trol strategy is effective in power sharing between the inverters.

By changing the frequency during transients, a difference in
phase angle across a cable between two inverters is produced
that allows control of active power flow. Similarly, by chang-
ing magnitudes of the output voltages of the inverter, a volt-
age magnitude difference is produced across cables that results
in reactive power flow control. The following assumptions are
therefore made.

1) The phase angle difference would depend on the
impedances of the cables connecting the inverters for
a certain active power flowing across the cable. These
impedances can be assumed to be very small, and there-
fore, the phase angle differences between the inverters will
also be small.

2) Similarly, the difference in the magnitudes of the output
voltages of the inverters will be very small.

3) The output voltages of the inverters can be considered to
be very close in phase and magnitude. Therefore, at the
chosen equilibrium point, the d and q components of all the
inverter output voltages are assumed to be approximately
equal. For this microgrid, Vf 1d ≈ Vf 2d ≈ Vf 3d =: Vf d

and Vf 1q ≈ Vf 2q ≈ Vf 3q =: Vf q .
With the aforementioned approximations, the matrices Cmod

δ ,
Cmod

V , Dmod
δ , and Dmod

V simplify to

Cmod
δ = sI + diag(kp)

[
−Q + (V 2

f d + V 2
f q )X

]
(34)

Q = diag(Q1 , Q2 , Q3)

X =




X12 + X13 −X12 −X13

−X12 X12 + X23 −X23

−X13 −X23 X13 + X23




where Xmn = ωLmn/|Zmn |2 and |Zmn |2 = (Rmn +
sLmn )2 + (ωLmn )2 have been substituted due to space
constraints

Cmod
V = diag(kp)

[
−P − (V 2

f d + V 2
f q )Y

]
(35)

P = diag(P1 , P2 , P3)

Y =




Y12 + Y13 −Y12 −Y13

−Y12 Y12 + Y23 −Y23

−Y13 −Y23 Y13 + Y23




where Ymn = (Rmn + sLmn )/|Zmn |2 has been substituted
due to space constraints

Dmod
δ = diag(kq )

[
−P + (V 2

f d + V 2
f q )Y

]
(36)

Dmod
V = I + diag(kq )

[
Q + (V 2

f d + V 2
f q )X

]
. (37)

The aforementioned matrices have a very convenient structure
similar to the structure of A� − AintAz . Moreover, as earlier
stated, such a structure will be obtained for any microgrid with
inverters connected together by cables. The matrices can be
written by mere inspection of the microgrid topology. A few
comments are to be made regarding these matrices. Pm and
Qm are the active and reactive power supplied by inverter m
at the equilibrium point, respectively. The variable ω in the
matrices is the value of the angular frequency of the microgrid at
equilibrium when the frequencies of all inverter units are equal.
With the p–ω droops producing a drop in frequency of the order
of 1% to 2%, ω ≈ ω0 . Similarly, (V 2

f d + V 2
f q ) is merely equal

to the square of the voltage magnitude of the voltage vectors.
The q–V droop produces a drop in the voltage magnitudes of
the order of 2% to 4%. Therefore, (V 2

f d + V 2
f q ) ≈ V 2

0 . When
the system is represented in the per unit system, both ω0 and V0
will be equal to 1.

The matrices in the aforementioned equations are completely
comprised of the inductances and resistances of the intercon-
necting cables and the active and reactive powers supplied by
inverter units at the equilibrium point. The determinant |Acld |
will be a polynomial depending on the elements of Cmod

δ , Cmod
V ,

Dmod
δ , and Dmod

V . A simplification will be described next to
neglect the higher order terms of droop control gains in the
polynomial.

From (34)–(37), it is evident that the determinant of the matrix
Amod

cld has off-diagonal terms that are multiplied by the control
gains kp1 , kp2 , and kp3 and kq1 , kq2 , and kq3 . The diagonal
terms on the other hand are polynomials that contain the control
gains. The determinant of such a matrix can be described using
an example as follows. The determinant of an n × n matrix B
is written as follows:

B =
∑

σ∈Sn

sgn(σ)
n∏

m=1

bm,σ (m ). (38)

In (38), the sum is computed over all permutations σ of the
ordered set {1, 2, . . . , n}. The sgn(σ) is a sign function asso-
ciated with a permutation. The ordered set {1, 2, . . . , n} pro-
vides the first permutation. Therefore, the first term is the prod-
uct b1σ (1)b2σ (2) . . . bnσ (n) , which is the product of the diagonal
terms b11b22 . . . bnn . Consider a term where a permutation has
been made such that σ(r) = s for any r �= s in the ordered set
{1, 2, . . . , n}. Therefore, the product will not contain the terms
brr and bss , but will contain off-diagonal terms in their place.
The product of two off-diagonal terms will result in a product
of two droop control gains.
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Using a 3 × 3 matrix, an illustration can be made

B =




s + kp1b11 kp1b12 kp1b13

kp2b21 s + kp2b22 kp2b23

kp3b31 kp3b32 s + kp3b33


 .

The determinant of the aforementioned matrix will contain six
products corresponding to 3! permutations. The determinant is
written as follows:

|B = (s + kp1b11)(s + kp2b22)(s + kp3b33)

− kp2kp3b23b32(s+ kp1b11)− kp1kp2b12b21(s+ kp3b33)

− kp1kp3b13b31(s + kp2b22) + kp1kp2kp3b12b23b31

+ kp1kp2kp3b13b21b32 . (39)

The first term in the determinant is the product of the diagonal
terms. The second, third, and fourth terms are seen to be terms
multiplied by a product of two droop control gains. The fifth
and sixth terms are seen to be terms multiplied by a product
of three droop control gains. The droop control gains kp and
kq are usually very small so that the drop in voltage frequency
and voltage magnitude will be within an acceptable range of
their nominal values. Therefore, a product of two or more droop
control gains will result in a term that is negligible. Therefore,
|B| can be approximated to

|B| ≈ (s + kp1b11)(s + kp2b22)(s + kp3b33). (40)

Similarly, the determinant of the Acld can be approximated to
the product of the diagonal terms alone and is written as follows:

|Acld | =
[
s + kp1

(
− Q1 +

ωL12

|Z12 |2
+

ωL13

|Z13 |2
)]

[
s + kp2

(
− Q2 +

ωL12

|Z12 |2
+

ωL23

|Z23 |2
)]

×
[
s + kp3

(
− Q3 +

ωL13

|Z13 |2
+

ωL23

|Z23 |2
)]

[
1 + kq1

(
Q1 +

ωL12

|Z12 |2
+

ωL13

|Z13 |2
)]

×
[
1 + kq2

(
Q2 +

ωL12

|Z12 |2
+

ωL23

|Z23 |2
)]

[
1 + kq3

(
Q3 +

ωL13

|Z13 |2
+

ωL23

|Z23 |2
)]

. (41)

In general, for any inverter m in the microgrid, the following
two polynomials are written:

s + kpm

(
− Qm +

∑
{n}

ωLmn

|Zmn |2

)

1 + kqm

(
Qm +

∑
{n}

ωLmn

|Zmn |2

)
(42)

where {n} is the set of all inverters to which inverter m is
connected. As can be seen from the aforementioned equations,
each inverter in the microgrid appears to be transformed into an

equivalent network with the interconnecting impedances con-
necting it to other inverters taken into account. The droop control
laws are then applied to this equivalent network providing two
polynomials for each inverter. Therefore, the properties of the
controlled system can be examined by examining each polyno-
mial with a single droop coefficient individually. The roots of
the aforementioned polynomial when written for each inverter
provide the poles of the controlled system. The computational
burden of evaluating a single polynomial is far lesser than the
computation of the determinant of the entire system model, as
has been reported in literature. As an example, one polynomial
is evaluated next.

Consider the first polynomial in the product

s + kp1

(
− Q1 +

ωL12

|Z12 |2
+

ωL13

|Z13 |2
)

= 0. (43)

This can be simplified to

s|Z12 |2 |Z13 |2 + kp1(−Q1 |Z12 |2 |Z13 |2 + ωL12 |Z13 |2

+ ωL13 |Z12 |2) = 0.

The aforementioned equation is in the standard root locus form
of den(s) + k num(s) = 0, where k = kp1 is the control gain
and num(s)/den(s) is the plant transfer function. Furthermore,
the roots of num(s) and den(s) provide the zeros and poles
of the open-loop plant, respectively, using which the root loci
and stability of the system for change in control gains can be
predicted. The poles and zeros of the plant transfer functions
correspond to closed-loop poles for k → 0 and k → ∞, re-
spectively. They can be computed as roots of sZ2

12Z
2
13 and

−Q1Z
2
12Z

2
13 + ωL12Z

2
13 + ωL13Z

2
12 . We use Scilab to com-

pute the roots and plot them in the complex s plane.

V. SIMULATION AND EXPERIMENTAL RESULTS

Section V-A shows through simulations in Scilab, the move-
ment of poles of the controlled system for variation in the control
gains. Section V-B shows experimental results from a hardware
setup of a three-inverter-ring-connected microgrid. The experi-
mental results show the stable operation of the microgrid with
desired power sharing between the inverters.

A. Simulation Results

A three-inverter-ring-connected microgrid of Fig. 2 is con-
sidered for study. The simulation results presented in this sec-
tion examines the stability of the controlled system having the
characteristic polynomial of (41). Equation (41) contains the
following.

1) The impedances Z12 , Z23 , and Z13 of the cables.
2) The active and reactive power supplied by each inverter at

the equilibrium point about which the system is linearized.
3) The p–ω droop control gains kp1 , kp2 , and kp3 and the

q–V droop control gains kq1 , kq2 , and kq3 .
The simulations are performed with the system parameters in

per unit. The parameters of the base system are listed in Table I.
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TABLE I
BASE SYSTEM PARAMATERS

The impedances of the cables have been chosen for the sim-
ulation study as follows:

R12 = 0.01 Ω, L12 = 150 µH

R23 = 0.01 Ω, L23 = 200µH

R13 = 0.01 Ω, L13 = 250 µH.

The cables have been chosen with low R/X ratio for the droop
laws of (22) to be effective. The inductances of the cables has
been chosen to be different. The droop control gains of the
inverters are chosen to be equal, i.e, kp1 = kp2 = kp3 and kq1 =
kq2 = kq3 . Since the p–ω and q–V droop control gains of the
inverters are equal, the inverters are assumed to supply equal
active and reactive power at the equilibrium point, which are
P1 = P2 = P3 = 3450 W and Q1 = Q2 = Q3 = 4500 VAR.

The stability of the microgrid is analyzed by plotting the
roots of the six polynomials in the determinant of the controlled
system of (41). This equation shows that the stability of the
controlled system is decided by the stability of the constituent
polynomials. The determinant of the controlled system is rewrit-
ten naming the constituent polynomials

|Acld | = apω1(s)apω2(s)apω3(s)

× aqV 1(s)aqV 2(s)aqV 3(s). (44)

The polynomials apω1(s), apω2(s), and apω3(s) contain the
gains kp1 , kp2 , and kp3 , respectively. The polynomials aqV 1(s),
aqV 2(s), and aqV 3(s) contain the gains kq1 , kq2 , and kq3 , respec-
tively. The roots of these polynomials change with variations in
their droop control gains. Furthermore, using Scilab or MAT-
LAB, the exact values of the control gains that cause instability
will be obtained.

As described in the previous section, each polynomial
can be written in the form of den(s) + k num(s) = 0 with
num(s)/den(s) resembling a plant transfer function. Table II
lists the zeros of the transfer function that are the roots of num(s)
and the poles that are the roots of den(s). When the roots of
the polynomials are plotted for varying positive gains, as per
theory of root locus plots, the loci originate from the poles of
the transfer function for zero gain and terminate at the zeros as
gain tends to infinity. In the figures given next, the zeros of the
transfer function are plotted as “o,” while the poles are plotted
at “×.” However, as can be seen from Table II, some of the ze-
ros are far away from the dominant poles. While plotting these
zeros, they are scaled and brought closer to the dominant poles
to improve the clarity of the plots.

Fig. 6(a)–(c) shows the movement of the roots of the polyno-
mials apω1(s), apω2(s), and apω3(s) as their respective control
gains kp1 , kp2 , and kp3 are varied. The arrows indicate the direc-
tion of movement of the roots as the control gain increases. The

TABLE II
ZEROS AND POLES OF THE POLYNOMIALS

plots are very similar in some aspects. In all the plots, the roots
move into the right half of the s plane for large values of the con-
trol gain. As the roots are the poles of the controlled system, this
indicates instability for large values of control gain. The zeros
are scaled and plotted closer to the imaginary axis to improve
the clarity of the plot. Therefore, the zero on the right half of the
s plane implies that the controlled system is unstable for large
gains with root loci moving closer toward it. The value of the
control gains kp1 , kp2 , and kp3 for which the controlled system
becomes unstable is found through Scilab to be 0.0051 p.u. or
3.21 × 10−4 rad/(Ws). The value of kp1 , kp2 , and kp3 at which
the microgrid became unstable are equal in this case because
the microgrid considered is small containing only three inverters
and the values of the impedances of the cables connecting them
are very close. For larger microgrids, instability will result at
distinct values of the p–ω droop control gain.

Fig. 7(a)–(c) are plots of the poles (marked by “×”) of
aqV 1(s), aqV 2(s), and aqV 3(s) with respect to kq1 , kq2 , and
kq3 , respectively. The “o” indicates the zeros of the transfer
function. However, it is to be noted that the zero has been scaled
and plotted closer to the real axis in order to improve the clar-
ity of the plot. As before, the arrows indicate the direction of
movement of the roots of the polynomials as the control gains
increase. As can be seen from the plot, the controlled system
does not lose stability as the q–V droop control gains vary.

B. Experimental Results

This section provides experimental results to prove the sta-
ble operation of the microgrid when the inverters are controlled
by the droop control laws. The experiments are conducted on
a low-voltage level three-phase microgrid of 140 V. The in-
verters are formed of commercial inverters of the three-leg sin-
gle dc capacitor topology shown in Fig. 1. The dc capacitor
of the inverters are charged through single-phase rectifiers to
maintain a dc voltage of 300 V. The inductor–capacitor (Lf –
Cf ) filter connected at the output of the inverter, as shown in
Fig. 1, has the parameters Lf = 3 mH and Cf = 200µF. Each
inverter has its own associated control board containing the
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Fig. 6. Variation of roots of apω 1 (s), apω 2 (s), and apω 3 (s) for variation of kp1 , kp2 , and kp3 , respectively. (a) Roots of apω 1 (s). (b) Roots of apω 2 (s).
(c) Roots of apω 3 (s).

Fig. 7. Variation of roots of aqV 1 (s), aqV 2 (s), and aqV 3 (s) for variation of kq 1 , kq 2 , and kq 3 , respectively. (a) Roots of aqV 1 (s). (b) Roots of aqV 2 (s).
(c) Roots of aqV 3 (s).

Texas Instruments TMS320VC33 floating point processor. The
voltages and currents required for control are measured by a
sensing circuit, converted into analog signals between 0 and
5 V, and fed to a 12-bit analog-to-digital converter AD7864.
The control laws are implemented in the DSP and control the
switching of the inverters. The droop control gains for the in-
verters are chosen as kp1 = kp2 = kp3 = 0.0125 rad/(Ws) and
kq1 = kq2 = kq3 = 0.005 V/VAR.

Fig. 8 shows the operation of the inverters when they are
not connected in parallel to form a microgrid, but operating in
the stand-alone mode. The output voltages of the inverters can
be seen to be relatively smooth sinusoids having a magnitude
close to 85 V, which results in a line-to-line voltage of 140 V.
The output currents of the inverters are seen to be unequal due
to unequal local load connected at the inverters. The local load
connected at Inverter 1 consists of six 250 V, 200 W incandescent
lamps and a three-phase reactor bank of 0.012 H per phase. The
local load connected at Inverter 2 consists of four 250 V, 200 W
incandescent lamps, while local load at Inverter 3 consists of six
250 V, 200 W incandescent lamps. Therefore, the output current
of Inverter 1 is far greater than the output currents of Inverter 2
and Inverter 3.

Fig. 9 shows the phase a output voltages of the inverters
when connected in parallel to form a microgrid. The voltages
are seen to have magnitudes that are approximately equal and
are almost in phase with each other. This is due to the fact that the
interconnecting impedances being of the order 150 − 200 µH,
very small phase angle differences or the voltage magnitude
differences are required for the inverters to share load power
demand equally. Fig. 10 shows the phase a output currents of
the inverters when forming the microgrid. The currents supplied
by the inverters indicate a roughly equal power sharing between
the inverters.

Fig. 8. Inverters’ phase a output voltages and currents in stand-alone
operation.

Fig. 9. Phase a output voltages of the inverters when forming the microgrid.

Fig. 11 shows the active and reactive power supplied by the
inverters when connected in parallel to form the microgrid.
Fig. 11(a) shows that the active power supplied by the inverters
are equal since they have p–ω droop control gains that are equal
kp1 = kp2 = kp3 . Fig. 11(b) shows the reactive power supplied
by the inverters to be unequal despite the q–V droop control
gains being equal kq1 = kq2 = kq3 . The unequal sharing of
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Fig. 10. Phase a output currents of the inverters when forming the microgrid.

Fig. 11. Active and reactive power supplied by the inverters. (a) Active power
supplied by the inverters. (b) Reactive power supplied by the inverters. (c) Active
and reactive power supplied by the inverters.

reactive power is due to the fact that the voltage magnitudes
of the inverters are also constrained by network laws besides
the q–V droop laws. As a result of which, reactive power is
not shared in exactly the manner as desired. Since, the reactive
power demand of the load at Inverter 1 is the highest, Inverter 1
continues to supply the largest fraction of the load demand.

Furthermore, both the plots, but particularly the reactive
power flow plot, contain significant low-order harmonics. This
is due to the damped low-frequency oscillations produced by
the dominant poles of the controlled system lying close to the
imaginary axis. These low-frequency oscillations decrease in
magnitude as time progresses. These low-frequency oscillations
are also reported in literature [12].

VI. SENSITIVITY TO R/X RATIO

In this section, the applicability of the results for a broader
class of microgrids will be discussed. The R/X ratio of the inter-
connecting cables play an important role in the stability margin
of the microgrid. This section will examine the effect of varia-
tion of R/X ratio of the interconnecting cables.

The variation of the eigenvalues of the controlled system
with respect to system parameters are observed through the

roots of the polynomials of (41). As an example, the roots of
the polynomials containing the p–ω droop gain and q–V droop
gain of Inverter 1 will be examined as follows:[

s + kp1

(
− Q1 +

ωL12

|Z12 |2
+

ωL13

|Z13 |2
)]

[
1 + kq1

(
Q1 +

ωL12

|Z12 |2
+

ωL13

|Z13 |2
)]

= 0. (45)

After rearranging, (45) can be expressed in standard root loci
forms as the transfer functions of equivalent plants in cascade
as follows:[

dpω1 + kp1npω1

][
dqV 1 + kq1nqV 1

]
= 0 (46)

where dpω1 = s|Z12 |2 |Z13 |2 and dqV 1 = |Z12 |2 |Z13 |2 resem-
ble the denominators of the transfer function of the equivalent
plants of (45). The numerators of the equivalent plant npω1 and
nqV 1 can be written from (45). However, for reasons that will
be described later, the focus will be on the open-loop poles ob-
tained from the denominators dpω1 and dqV 1 . From dpω1 = 0
and dqV 1 = 0, the open-loop poles of the equivalent plant are
as follows:

Polespω1 = 0,−R12

L12
± jω,−R13

L13
± jω

PolesqV 1 = −R12

L12
± jω,−R13

L13
± jω (47)

As can be seen from the aforementioned expressions, the
open-loop poles of the equivalent transformed system are
strongly influenced by the ratio of the resistance to inductance
(R/L) of the interconnecting cables. By considering a nominal
angular frequency, the R/L ratio can be interpreted as the R/X
ratio that is available for cables through data sheets. As this ratio
of R/X increases, the open-loop poles move further into the left
half of the complex s plane. In a similar manner, the R/X ratio
and the impedance Zmn of the cable between Inverter m and
Inverter n will affect the open-loop zeros of the equivalent plant.
This evident from (45).

However, while plotting the root locus of the transfer func-
tion of the equivalent plant, the root loci will originate from
the open-loop poles at zero gains, i.e., kp1 = 0 and kq1 = 0 and
terminate at the open-loop zeros when the droop control gains
tend to infinity, i.e., kp1 → ∞ and kq1 → ∞. As already stated,
the droop control gains are chosen to be small to ensure that the
voltage frequency and voltage magnitude are within limits. Typ-
ically, kp1 will be in the range of 1%–2% and kq1 will be within
2%–4%. Therefore, the relevant part of the root locus for the
droop control strategy is in the vicinity of the open-loop poles.
As observed from the aforementioned equation, the stability
margin of the controlled system will increase for increasing R/X
ratio of the interconnecting cables due to the open-loop poles of
the equivalent plant moving into the left half of the complex s
plane.

VII. CONCLUSION

The stability of multi-inverter microgrids has been examined
with respect to a three-inverter-ring-connected microgrid. As
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has been reported in literature, the interconnections between the
inverters and the choice of droop control gains play a significant
role in the stability of the microgrid. The model of the microgrid
that has been derived in this paper considers only the effect of
the droop control gains and the topology of the microgrid. The
voltage controller associated with each inverter that ensures the
inverters to produce desired output voltages has not been in-
cluded in the model. The voltage controller has been shown to
have a high bandwidth, thereby resulting in dynamics that are
significantly faster that the droop control dynamics [12], [13].
However, even without the voltage controller, the mathematical
model of a three-inverter microgrid is considerably complex.
Literature contains stability analysis of microgrid by examin-
ing the complete mathematical model. However, analysis based
on complete models are difficult for microgrids with a large
number of inverters and complex interconnections due to the
computational burden.

The significant contribution in this paper has been to simplify
the mathematical model using justifiable assumptions to a form
that can be examined with reduced computational burden, from
which the stable boundaries of the microgrid are determined ac-
curately. It has been shown that the stability of the microgrid can
be analyzed with each inverter transformed into an equivalent
network. The impedances of the interconnections play a signif-
icant role and are included in each equivalent inverter network
by mere knowledge of the connectivity of the concerned inverter
to other inverters. The effect of the droop control laws can be
examined separately. This is under the assumption that the in-
terconnection cables are predominantly inductive and the droop
laws can be decoupled. The model for a large and complex mi-
crogrid can therefore be written as a product of models of each
inverter with its droop control laws. The computational burden
required to analyze the stability of these individual models is
significantly lower.

The proof of stability in Sections II–IV that result in the
generalized equation of (42) has been based on several assump-
tions. The assumptions will be summarized next with a brief
justification of their validity for microgrids in general.

1) The dynamics of the inner voltage controller of the in-
verter has been neglected and the inverter output voltages
have been assumed to be equal to the references generated
by the droop control strategy. This assumption is valid,
as has been cited in [12] and [13], since the inner volt-
age controller is a fast controller with a high bandwidth,
while the droop controller is a slow controller with a low
bandwidth. This assumption has been made in Section II
during modeling of the microgrid.

2) The load impedances in the microgrid will not be sig-
nificantly less than 1 p.u., as smaller values would im-
ply inverter overloads. In an inverter-based microgrid, the
overload capacity is limited, as the inverters are likely to
be damaged even if overloaded for short durations. How-
ever, the impedances of the interconnecting cables is much
smaller in the range of 0.01–0.05 p.u., since the microgrid
covers a small area. Therefore, in Section III [specifically
(21)], the reciprocal of the load impedances are neglected
with respect to the reciprocal of the cable impedances.

3) The small values of impedances of the interconnecting
cables require small phase angle differences and voltage
magnitude differences between inverters to produce power
flow between inverters. As a result, the output voltage
phasors of the inverters will be very close to each other in
phase angle and magnitude. Hence, while linearizing the
microgrid in Section IV, the d and q components of the
inverter output voltages at the equilibrium point have been
assumed to be equal. This assumption is valid for a large
class of microgrids with small cable impedances.

4) The deviation in the voltage frequency of the microgrid
is limited to 1%–2% from the nominal frequency (50–
60 Hz), while deviation in voltage magnitude is limited
to 2%–4% from the nominal distribution level voltage
(230 or 110 V line neutral). The p–ω and q–V droop
control gains are therefore maintained to be small of the
earlier mentioned orders. The product of two or more
droop control gains will be negligible, and therefore, a
term multiplied to such a product of more than one gain
can be neglected. This assumption is made in the final part
of the proof in Section IV.

Simulation results have been presented to show the stability
of the microgrid for varying droop control gains. The boundaries
of stability are obtained using Scilab. The results are very close
to the results reported in literature validating the accuracy of
the simplified model [11], [12]. Experimental results have been
presented to show the stable operation of the microgrid.
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