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Abstract Self powered neutron detectors (SPNDs) are

used for measuring neutron flux in a nuclear reactor and

hence are essential for safe operation of the reactor. The

main objective in this paper is to develop models on rep-

resentative groups of SPNDs using principal component

analysis (PCA) based techniques. In particular, we identify

models using regular PCA and the iterative PCA (IPCA)

technique proposed in Narasimhan and Shah (Control Eng

Pract 16:146–155, 2008). These models are then used for

performing data reconciliation, gross error detection,

identification and estimation for the SPNDs. Based on

these performances, we compare the PCA and IPCA

models. The proposed models can be used in the reactor to

ensure that faulty detectors can be detected quickly and the

corresponding values estimated in real-time thereby

ensuring continuous reactor operation.

Keywords Principal component analysis �
Iterative PCA � Model identification � Gross errors �
SPND

1 Introduction

Self powered neutron detectors (or SPNDs) are widely used

to measure neutron flux in a nuclear reactor [2, 16]. A

typical nuclear reactor contains several such detectors for

measuring neutron flux at different locations in the reactor

core. Measurement of flux is important for various reasons.

Neutron flux provides a direct measure of the reactor out-

put power and thus measurements from the flux detectors

are used for safety, regulatory and control purposes [16].

Flux measurements from various detectors at different

locations in the reactor can be used to compute flux and

power map for the reactor which is a continuous map

showing the neutron flux variations in the reactor core.

Thus, healthy operation of the SPNDs is important for safe

reactor operation.

Over a period of time, these detectors can develop

faults, for example due to drop in insulation resistance,

fracture of the detector sheath [3] etc. Further, hardware or

software issues involving the data-collection and archiving

systems can also cause faulty readings to be recorded. In

such cases, if the fault is not detected, then erroneous

inferences about reactor operation may be made. If on the

other hand the fault is manually detected, then the usual

practice is to rectify the fault as soon as possible and this

may involve unscheduled reactor shutdown which will be

time consuming and have cost and personnel safety

implications. Our objective in the current work is to

identify models for groups of detectors using their mea-

surement data which can be used for fault detection and

diagnosis. These models are extracted using principal

component analysis (PCA) based techniques which rely on

the eigen-decomposition of the covariance matrix of the

detector measurements. In literature, use of PCA and other

data based techniques for fault detection and diagnosis in
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nuclear systems in general are described in [5, 7, 8, 17, 18,

20, 21]. With regard to SPNDs in particular, use of cor-

relation based methods has been described in [1] in which

the authors use the correlation between SPNDs as a basis

for validation of SPND signals. Despite the widespread

usage and relevance of PCA techniques for fault detection

and diagnosis in nuclear reactors, to the best of our

knowledge, their use for SPND fault detection and diag-

nosis has not been reported.

In this work, we develop PCA based linear models

relating SPNDs of a large nuclear reactor. This exercise is

carried out for two groups of detectors: one group con-

taining detectors with similar dynamics, while the other

group contains detectors with distinctly different dynamics.

We use two variants of PCA: conventional PCA and iter-

ative PCA (IPCA) for the same. While PCA based mod-

eling techniques have been widely used over last several

years, the resulting models are known to vary with the

scaling of the data. IPCA [12] is a recent variation of PCA

which involves iteratively re-scaling the data so that the

underlying models can be correctly identified. The iterative

IPCA procedure requires solving a nonlinear optimization

problem at every iteration. While theoretically elegant, its

implementation for extracting models from real data

(which usually does not exactly satisfy various assumptions

made by different techniques) has not been reported.

Hence, apart from development of useful models for SPND

fault detection and diagnosis, another outcome of our work

is the implementation of IPCA on real data and identifi-

cation of related issues. The models obtained by PCA and

IPCA in our work are compared with regards to their

performance for detecting, identifying and estimating gross

errors in individual detectors for various cases.

The paper is structured as follows: in Sect. 2 we sum-

marize the available data based on which the analysis has

been performed. In Sect. 3 we summarize relevant tech-

niques namely PCA, IPCA, data reconciliation and gross

error analysis, which are used in this work. In Sect. 4 we

present results for two groups of sensors. In particular, we

build models and benchmark them based on the perfor-

mances for a variety of gross error scenarios. This is done

for the case when the underlying sensors have similar

dynamics (Sect. 4.1) and when the sensors have different

dynamics (Sect. 4.2). In Sect. 5 we discuss some relevant

issues before concluding the paper in Sect. 6.

2 Data description

The principle of flux measurement using an SPND is as

follows [2, 15, 19]: on being exposed to neutron flux,

certain material (called emitter) in the detector undergoes

neutron capture to produce radioactive nuclei which decay

to produce more stable nuclei. Electrons are generated

during these processes which form the current output of the

detectors. Electrons are generated mainly due to the fol-

lowing three processes: (i) Neutron capture of emitter

atoms releases c-rays which produce electrons through

secondary processes such as photoelectric/compton effect.

This part of the current is prompt since the electrons are

generated immediately after the neutron capture. (ii) Neu-

tron capture of emitter atoms produce radioactive isotopes

which undergo radioactive decay during which b-rays are

emitted. This part of the current is delayed since the b
decay occurs with a certain half-life. (iii) External c flux in

the reactor which generates background noise in the SPND

signal. SPNDs can be classified into prompt or delayed

SPNDs depending on whether the major component of the

signal is prompt or delayed. For example, cobalt SPNDs

are prompt but vanadium SPNDs have a delayed response.

Although the cobalt SPNDs give prompt current signal,

vanadium SPNDs are more accurate in steady state.

The data used in our work corresponds to a pressurized

heavy water reactor (PHWR) of 540 MWe capacity. The

reactor consists of a cylindrical core with 42 cobalt and 102

vanadium SPNDs. The core of PHWR for which data is

available to us, is considered to be divided into fourteen

control zones with each zone containing three cobalt

SPNDs. Data from the sensors sampled at 1 min intervals

is available for a period of 10 days sometime during the

year 2007. Out of the 14,400 time points thus available,

data is not recorded for at least one sensor for 339 time

points. These data points have been discarded in our work,

thereby resulting in 14,061 time points. The 144 SPNDs

are labeled using serial numbers from 1 to 144. The

numbers 1–42 represent cobalt SPNDs and 43 to 144 rep-

resent the vanadium SPNDs. The data available to us has

been preprocessed so that readings from both types of

detectors are of similar magnitude. The cobalt data avail-

able to us was already scaled (divided by a constant) and

was hence specified in terms of percentage of flux at full

power level, i.e. values were of the order of 0–100, though

sometimes they were more than 100. The available vana-

dium data on the other hand, were directly the flux values

and was hence of the order of 1013. We divided the

vanadium data by a constant so as to express it in terms of

percentage flux as well and therefore the scaled vanadium

data also mostly falls in the range 0–100. As a result of this

scaling, the data considered in our work are dimensionless.

To build models relating the detectors, we used the

following strategy. We analyzed the data in terms of the

correlation coefficients and found that while several pairs

of detectors were strongly correlated to each other, there

were several other pairs which were not correlated. Hence,

we grouped the sensors into 15 clusters based on the cor-

relation matrix. As a result sensors grouped together would
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be expected to have high correlations with each other as

opposed to sensors grouped in different clusters. This

grouping was done in several ways (after appropriately

transforming the data) to account for differences in

dynamics of cobalt and vanadium sensors [13]. In the

current work, we perform model building, data reconcili-

ation and gross error analysis on two representative clusters

chosen from those reported in [13]: the first cluster contains

six cobalt detectors and will hence be labeled pure cluster

(containing detectors with same dynamics). The second

cluster contains six cobalt and two vanadium detectors and

will hence be labeled mixed cluster (detectors with dif-

ferent dynamics). Time-series plots of a detector each from

the two clusters are presented in Fig. 1. The flux has a high

value initially, then drops and then remains at a lower

level for the rest of the time. Further, the vanadium values

appear to be quantized at some time points. In our data

analysis, we have retained these values as such.

3 Summary of relevant techniques

In this section, we first summarize the PCA and IPCA

procedures for obtaining linear, steady state models relat-

ing the true values of the n variables x(t) at any time t. Let

the measurements y(t) be related to the true values as:

yðtÞ ¼ xðtÞ þ �ðtÞ ð1Þ

where yðtÞ; xðtÞ; �ðtÞ are column vectors of length

n and �ðtÞ is random measurement noise (or error) assumed

to be gaussian with mean 0 and covariance matrix R�.

Further, let Y be the n 9 N data matrix (all available

measurements) where N is the number of observations of

the n variables. Extending Eq. (1), these measurements are

assumed to be related to the true unknown values of the

variables as: Y = X ? E, where X is the corresponding

n 9 N matrix of the true values and E is the n 9 N matrix

of random measurement errors.

It is further assumed that x(t) satisfies the linear model:

AxðtÞ ¼ 0 ð2Þ

where A is a m 9 n matrix (m B n) referred to as the

model (or constraints) matrix. The main aim in both PCA

and IPCA is to estimate the A matrix from available

measurements.

3.1 PCA

A summary of PCA as relevant to our work is presented

here. More details can be obtained from literature, for

example [4]. PCA allows us to represent noisy data in those

directions which capture maximum variability in the data.

These principal component directions are the eigenvectors

of the measurement data covariance matrix. PCA trans-

forms a set of correlated measurements to a set of uncor-

related measurements. The variance along each direction is

given by the corresponding eigenvalue of the covariance

matrix. Those directions along which the variance is low

contribute little to the variability in the data and represent

the relationships between the true values of the variables

being measured. These directions can therefore be con-

sidered as model equations for the measured data.

Let P be the n 9 n matrix containing the n eigenvectors of

the covariance matrix of Y along the columns. We can write:

P = [T|Q] where T is an n 9 (n - m) matrix containing the

n - m significant (those corresponding to higher eigenvalues)

eigenvectors and Q is an n 9 m matrix with the m least sig-

nificant (corresponding to lower eigenvalues) eigenvectors

along the columns. If we assume that the true variation in the

data is only along directions of the n - m eigenvectors con-

tained in T, then we will have for the true data

QTX ¼ 0 ð3Þ

Thus, if x(t) is the true vector (n 9 1) at some instant t, we

have a model relating those n variables as:

AxðtÞ ¼ 0 ð4Þ

where the model matrix A = QT contains the least sig-

nificant m eigenvectors of P along the rows. An issue here

is suitable choice of m. Several methods have been pro-

posed in literature for the same [4].

For any given measurement vector y(t), r(t) =

Ay(t) will be small and is referred to as the residual. These

residuals r(t) are central to gross error analysis as explained

in Sect. 3.3.

Fig. 1 Time series plots of two sensors—one cobalt (from pure

cluster) and one vanadium (from mixed cluster)
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Estimation of noise covariance matrix:

Once the model matrix A is obtained, the measurement

noise covariance matrix R� can be obtained from the

residuals as follows: under the assumption that the mea-

surement noises in various detectors are independent of

each other, R� will be a diagonal matrix. Thus, the

unknowns to be determined are the diagonal elements of R�

which are the variances of the measurement noise in the

individual measurements. The covariance matrix Sr of

residuals is related to R� as:

Sr ¼ AR�A
T ð5Þ

Sr can be computed from the residuals obtained for the

given data and the estimated A. The above equations are a

linear set of equations in the unknowns (diagonal elements

of R�) and can be solved for the same. This method for

estimating the noise covariance matrix is dealt with in [6].

Also see [14] for more information on solving the above

equations. In the results to be presented later, we solve the

above equations as an ordinary least squares problem to

obtain the diagonal entries of R�:

3.2 IPCA

For model identification using PCA, the covariance matrix

of the available measurements was directly considered.

IPCA, on the other hand, involves appropriate scaling of

the data to account for the effects of the measurement

error [12]. The model is then estimated based on the

covariance matrix of appropriately scaled data. This

method essentially combines PCA with a maximum

likelihood estimation procedure for simultaneously

obtaining an estimate of the measurement error covariance

matrix R� along with the model A [12]. The specific

algorithm for the overall procedure is summarized as

follows [12]:

(1) Set the iteration counter k ¼ 1; kð0Þ ¼ 0; Ys ¼
Y; Sys

¼ ð1=NÞYsY
T
s :

(2) Set estimates of the nonzero elements of RðkÞ�
(estimate of R� at iteration k) to be a small fraction

of the corresponding elements of Sys
.

(3) Obtain the transformed matrix Ys = L-1Y where

LLT ¼ RðkÞ� :

(4) Let U be the eigenvector matrix (eigenvectors as

columns in order of decreasing eigenvalues) of the

covariance matrix of Ys. Obtain estimate AðkÞ ¼
UT

n�mþ1;...;nL�1; where UT
n�mþ1;...;n is the transpose of

the submatrix of U corresponding to the last

m columns.

(5) Let k(k) be the sum of the last m eigenvalues. Stop if

the relative change in k is less than the specified

tolerance; else continue.

(6) Obtain the solution for the nonzero elements of R� by

minimizing the following function over R�: Nlogj
AðkÞR�ðAðkÞÞT j þ

PN
t¼1ðrðtÞðAðkÞR�ðAðkÞÞTÞ�1rðtÞÞ;

denote the solution as Rðkþ1Þ
� :

(7) Increment iteration counter k and return to step 3.

As shown in [12], if the model order m is correctly chosen,

the m smallest eigenvalues of the covariance matrix (step 4)

converge to unity. However, in general it may be possible to

obtain only a local optima of the optimization problem in

step 6. Further, in the work of [12], it was assumed that the

model order is such that m(m ? 1) C 2n. This condition is

required to ensure a non-degenerate estimate for R� [12].

For the case of unknown m (as is the case with our data),

[12] has presented an iterative procedure for identifying

m. Essentially, several m values in increasing or decreasing

order can be tried. The identified model order is the

maximum value of m for which m eigenvalues of R�

converge to 1.

We now briefly summarize data reconciliation and gross

error detection, identification and estimation algorithms for

linear, steady state models.

3.3 Review of data reconciliation and gross error

analysis

3.3.1 Data reconciliation

Given noisy measurements related to true values as in

Eq. (1) and the model matrix A, data reconciliation is the

process of obtaining more precise (compared to the mea-

surements) or reconciled estimates of the true values which

would satisfy the process model (constraints). The problem

can be posed as a constrained optimization problem as:

min
xðtÞ

yðtÞ � xðtÞð ÞT W yðtÞ � xðtÞð Þ ð6Þ

with the constraint AxðtÞ ¼ 0 ð7Þ

where W is an n 9 n weighting matrix usually taken as

(and same will be considered in our work) R�1
� : The

solution to the above optimization problem (see [10]) is

given by

x̂ðtÞ ¼ yðtÞ �W�1ATðAW�1ATÞ�1AyðtÞ ð8Þ

where x̂ðtÞ are the reconciled estimates of the true values at

time t.

3.3.2 Gross error analysis

Errors in measurement data can be classified as random

errors and systematic or gross errors [10]. Random errors

generally consist of measurement noise and are always

present in measured variables as considered in Eq. (1).
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They are stochastic in nature and assumed to be zero mean

and Gaussian. Gross errors are non-random and usually

occur as a result of faults in the sensors or process. In our

work, we consider gross errors to be constant biases in the

sensors. Consider a gross error scenario (labeled scenario

k), where we assume the gross error to be constant biases in

pk number of sensors, with the indices of these pk sensors

stored in set Pk. Hence, the measurement vector becomes:

yðtÞ ¼ xðtÞ þ �ðtÞ þ
X

j2Pk

bjej ð9Þ

where bj is the gross error in the jth variable, ej is a unit

vector with 1 at the jth location and 0s elsewhere and �ðtÞ is

the random error component of the measurements as

before. Two methods for gross error analysis (i.e. detection,

identification and estimation) are described next: based on

individual observations and based on aggregated

observations.

Gross error analysis based on individual observations:

The method summarized here is taken from [10]. Given

the model constraint matrix A and the measurements

y(t), the residuals are obtained as

rðtÞ ¼ AyðtÞ ð10Þ

The covariance matrix of these residuals is given by

V ¼ AR�A
T ð11Þ

For gross error detection, the following test statistic is

considered:

cðtÞ ¼ rðtÞT V�1rðtÞ ð12Þ

In absence of any gross error c(t) follows a v2-distribution

with m degrees of freedom. Choosing a confidence level

a, we then obtain a threshold value as v1-a,m
2 where

v1-a,m
2 is the 1 - a upper quantile (i.e. area to the left is

1 - a) from a v2 distribution with m degrees of freedom.

A gross error is detected if c C v1-a,m
2 .

A technique for identifying the variables with gross

errors along with estimates of the gross errors is the gen-

eralized likelihood ratio method [10]. The residuals r(t) in

the absence of gross error have mean 0. When biases are

present in pk variables corresponding to scenario k (Eq. 9),

then the residuals have mean l(t) = Fkb where Fk ¼
A½ej1 ; ej2 ; . . .; ejpk

�; with j1; j2; . . .; jpk
being the indices of

variables with gross errors (i.e. set Pk) and b is the column

vector of unknown magnitudes of the corresponding pk

gross errors. Under the assumption that residuals are nor-

mally distributed with mean 0 for no gross error case and

mean Fk b for the kth gross error scenario, the maximum

likelihood estimate of b for the kth gross error scenario is

given by

b� ¼ ðFT
k V�1FkÞ�1ðFT

k V�1rðtÞÞ ð13Þ

i.e. the entries of the vector b* are estimates of the gross

errors in sensors j; j 2 Pk corresponding to scenario

k. Amongst competing k scenarios (each with same

number of gross errors), the most likely scenario is the

one with the highest Lk (two times the log likelihood ratio)

value computed as:

Lk ¼ FT
k V�1rðtÞ

� �T
FT

k V�1Fk

� ��1
FT

k V�1rðtÞ
� �

ð14Þ

More information on the above method can be found in

[10].

Gross error analysis based on aggregated observations:

The strategy for gross error detection and identification

based on an individual observation may lead to different

estimates of gross errors (both magnitudes and sensors) at

different times. An alternate strategy of combining all

available observations at any time T to detect, identify and

estimate gross errors can also be implemented. The null

and alternative hypotheses for this case are:

H0 : lðtÞ ¼ 0; t ¼ 1; 2; . . .; T ð15Þ
H1 : lðtÞ ¼ Fkb; t ¼ 1; 2; . . .; T ð16Þ

where lðtÞ is the mean of residuals r(t) at time t when the

kth gross error scenario is being considered. The likelihood

ratio test statistic is:

kðTÞ ¼ sup
Prfrð1Þ; rð2Þ; . . .; rðTÞjH1g
Prfrð1Þ; rð2Þ; . . .; rðTÞjH0g

ð17Þ

where the supremum (sup) is computed over all possible

values of the hypotheses. With the assumption that the

residuals are serially independent Gaussian variables with

mean 0 and covariance V under the null hypothesis, and

only change their mean as given in Eq. (16) in the presence

of a gross error, the likelihood ratio becomes:

kðTÞ ¼ sup
b;Fk

exp
PT

t¼1�0:5ðrðtÞ � FkbÞT V�1ðrðtÞ � FkbÞ
� �

exp
PT

t¼1�0:5rðtÞT V�1rðtÞ
� �

ð18Þ

For maximizing the above form of likelihood ratio

k, equivalently maximization of LðTÞ ¼ 2 lnðkðTÞÞ can

also be considered. For the kth gross error scenario, the

optimal value of b which maximizes this quantity can be

obtained to be (by differentiating L(T) with respect to b and

setting the derivative to 0):

bðTÞ� ¼ ðF
T
k V�1FkÞ�1

T

XT

t¼1

FT
k V�1rðtÞ ð19Þ

where b(T)* indicates the optimal bias estimate for

scenario k after considering all measurements up to time

T. The corresponding value of twice the log likelihood ratio

for the kth gross error is:
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LkðTÞ ¼
XT

t¼1

FT
k V�1rðtÞ

( )T
ðFT

k V�1FkÞ�1

T

�
XT

t¼1

FT
k V�1rðtÞ

( ) ð20Þ

At time T, the gross error is assigned to the k̂ scenario that

has the largest value of Lk(T) amongst all the considered

gross error scenarios. The corresponding L(T) value is then

LðTÞ ¼ Lk̂ðTÞ: Equations (19) and (20) can be taken as

simplifications of the corresponding expressions presented

in [11] for dynamic processes. Further, it can be noted that

the optimal estimate of the bias for kth scenario at time

T (Eq. 19) is simply the average of the estimates of the

biases for kth scenarios obtained at each of the times t ¼
1; 2; . . .; T considering only individual observations (Eq.

13). However, the corresponding log likelihood ratio

obtained at time T using all the measurements till time

T (Eq. 20) is not an average of the log likelihood ratios

obtained at individual time points (Eq. 14). The overall

gross error detection, identification and estimation proce-

dure for this case then is:

(i) Gross error detection: Gross error is detected at time

T if WðTÞ� v2ð1� a;mTÞ where

WðTÞ ¼
XT

t¼1

rðtÞT V�1rðtÞ
� �

ð21Þ

is the test statistic corresponding to the null hypothesis

given data till time T, and has a v2 distribution with Tm

degrees of freedom.

(ii) Once a gross error is detected, the sensor correspond-

ing to highest Lk(T) value is identified as the

erroneous sensor with bias of amount b(T)*. The

above procedure is implemented in a growing win-

dow framework (T increases from 1; 2; . . .;N). In this

case, the identified gross errors and their estimates at

each time can vary.

Further, as noted in [10], gross error scenarios with

different number of gross errors in each scenario cannot

be directly compared on the basis of the likelihood ratio

values since the likelihood ratios are distributed as v2

variables with different degrees of freedom. They can be

instead compared based on the p value (area to the right

from the corresponding distribution) obtained for the

likelihood ratio of each scenario. In our work however,

for simplicity we do not compare scenarios with

different number of gross errors. Hence for a single

gross error case, all competing scenarios will correspond

to single gross errors while for a double gross error

case, all competing scenarios will consist of two gross

errors.

4 Results

We now present the results of PCA and IPCA application

to the two SPND clusters discussed in Sect. 2. In particular,

we perform the following:

– Obtain linear models (including model order) using:

(i) regular PCA with covariance matrix and (ii) IPCA.

Wherever possible, the measurement noise covariance

is estimated as well. For other cases, appropriate

assumptions are made.

– For both the clusters, the IPCA based model order turns

out to be less than that obtained using PCA. Hence we also

consider PCA with same model order as IPCA as a third

model for comparison. This would allow us to compare

PCA and IPCA when they have the same model order.

– Perform data reconciliation using the above three models.

– Perform gross error detection, identification and esti-

mation with gross error introduced in each measure-

ment, one at a time. This is done for bias magnitudes of

1, 3, 5 and 7 % of the mean value (across time) of the

corresponding measurement. This analysis is carried

out using the two approaches discussed in Sect. 3.3.2,

namely based on individual observations and based on

aggregated observations

– Perform gross error detection, identification and esti-

mation with gross errors introduced in two measure-

ments simultaneously. Results for a few scenarios are

presented. Once again, individual and aggregated

observation based strategies are implemented.

For all the bias cases listed above, the corresponding biases

are introduced for the entire data length (t = 1 to t = N). As

mentioned earlier (Sect. 2), 14,061 observations sampled at

1 min interval were available for the detectors. The first

7,000 observations were used as training data for model

identification for each of the techniques, while the perfor-

mance characterization was on the entire dataset. For both

the clusters, data was mean centred using the mean of the

training data before applying any of the above approaches.

For both types of gross error (single and double) cases,

the following quantities will be used to compare perfor-

mances for various methods for the individual and aggre-

gated observations based strategies.

Individual observation analysis:

Detection rate: percentage of the times when a bias (or

biases for multiple bias case) is detected (i.e. null

hypothesis of no bias is correctly rejected).

Identification rate: percentage of the times when a bias

is correctly identified. For multiple bias case, each of the

biased detectors should be correctly identified.

Mean square estimation error (MSE): it is defined as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
P

t2CI
ðb� b�t Þ

Tðb� b�t ÞÞ=ðNcorrectÞ
q

where b is the
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vector of the actual bias introduced, bt
* is the estimate of

biases using the time t measurement, CI is the set of time

points at which the biases are correctly identified and

Ncorrect is the cardinality of CI.

Aggregated observation analysis:

Rise time (RT): the first time instant (as percentage of

the total data length) at which the estimated bias comes

within ±5 % band around the true bias and the bias is

correctly identified at that time. For multiple bias case,

each individual bias estimate should be within the corre-

sponding band.

Settling time (ST): the first time instant (as percentage of

the total data length) at which the estimation bias comes

within ±5 % band around the true bias such that it does not

leave the band later. Once again, for multiple bias case, ST

corresponds to the time when each (i.e. ‘‘AND’’ condition)

of the individual bias estimate has settled.

Confirmed identification time (CIT): the earliest time

(expressed as percentage of the total data length) at which

the biases are correctly identified such that they are cor-

rectly identified at all subsequent time points as well.

Estimation error (EE): it is defined as:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb� bðNÞ�ÞTðb� bðNÞ�Þ

q
where b(N)* is the bias esti-

mate when all the available N measurements have been

used. EE is computed only if bias is correctly identified at

the Nth instant.

4.1 Results for the pure cluster

The pure cluster consists of six cobalt detectors, namely 5,

12, 19, 26, 33 and 40. It can be noticed that these sensor

numbers are separated by seven and represent sensors

which are in two adjacent zones in the reactor and hence

are strongly correlated.

4.1.1 Model identification using PCA

Eigenvalues of the covariance matrix corresponding to the

training data are shown in Fig. 2. It is seen that there is a

sharp knee at the second eigenvalue. Hence, the number

of significant eigenvalues is taken to be one. Then, the

number of independent model equations are five. These

equations (constraint model matrix A) are displayed

below with the equations listed in order of decreasing

eigenvalues.

A¼

0:182 �0:346 0:434 �0:468 0:601 �0:276

0:738 0:203 �0:146 �0:149 �0:347 �0:500

�0:231 0:699 �0:367 �0:417 0:374 �0:085

�0:400 �0:298 �0:499 0:308 �0:115 �0:627

�0:058 0:224 0:511 �0:558 �0:490 0:365

2

6
6
6
6
4

3

7
7
7
7
5

ð22Þ

The residuals r(t) = Ay(t) for the entire data set are

shown in Fig. 3. It can be seen that all of the residuals show

a sudden change in the region 7,000–8,500. This can be

related to one of the detectors (detector 19) showing a jump

in the same region. This issue is discussed later when data

reconciliation is performed.

Estimation of noise covariance matrix:

Given the model matrix and the residuals, the mea-

surement noise covariance matrix R� can be estimated as

discussed in Sect. 3.1 (Eq. 5). In particular, under the

assumption that R� is diagonal, these diagonal entries

(measurement noise variances in individual detectors)

are estimated to be: [0.3875, 0.1817, 2.3930, 0.1904,

0.1991, 0.0799]. From these estimated variances, it is seen

that the noise variance of detector 19 is much greater than

variances of other detectors. This is related to the fact that

detector 19 showed an unusual jump in the 7,000–8,500

time interval as mentioned above. This estimated R� is used

later for performing data reconciliation.

4.1.2 Model identification using IPCA

IPCA as discussed in Sect. 3.2 is used to obtain both the

constraint model and the noise covariance matrix simul-

taneously. Since the true model order is unknown, as

suggested in [12] and discussed in Sect. 3.2, we compute

the IPCA based model for model orders m = 5, 4, 3, and

2. For the true model order, the last m eigenvalues of the

covariance matrix of the scaled data should turn out to be

unity. The converged eigenvalues for various model orders

are shown in Fig. 4. From this figure it is seen that for

m = 2, the last m eigenvalues converge to 1. However for

m = 3, 4 and 5, the number of unity eigenvalues is less

Fig. 2 Plot of the six eigenvalues of covariance matrix for pure

cluster
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than m. Hence, for our data, we take m = 2 as the model

order obtained by IPCA. The corresponding converged

model constraint matrix A is

A¼ 3:184 �1:959 0:213 �5:124 �2:993 6:934

�2:398 6:956 13:727 �14:785 �12:658 9:049

� �

ð23Þ
Estimation of noise covariance matrix:

As discussed in [12], for the case when m(m ? 1) \ 2n,

the measurement noise variances in individual sensors

cannot be obtained uniquely without any additional

assumptions. Since this condition is satisfied for the current

case (m = 2, n = 6), we do not use noise covariance matrix

obtained from IPCA. Instead we use the measurement noise

covariance matrix obtained by PCA earlier, when perform-

ing data reconciliation with the IPCA model.

4.1.3 Comparison of PCA and IPCA models

From the above results, it is noted that different model

orders are obtained for PCA and IPCA. Further, while the

PCA model equations are scaled (have unit length), IPCA

model equations do not have unit length. For the sake of

comparison, we scale the IPCA equations as well (pre-

multiply A by a diagonal matrix) so that they have unit

length. The IPCA constraint matrix then is:

Ascaled¼
0:323 �0:199 0:021 �0:519 �0:303 0:703

�0:090 0:262 0:517 �0:557 �0:477 0:341

� �

ð24Þ

The residuals obtained from the above scaled equations

and those obtained from the last two equations of PCA

(corresponding to the two smallest eigenvalues) are

plotted together in Fig. 5. For the scaled IPCA model,

the first residual does not have the sharp change

observed for the PCA model. The second residual for

both cases are similar. As discussed in the beginning in

Sect. 4, we will also consider the model obtained by

PCA for m = 2 (same model order as obtained by IPCA)

when presenting various results. The model for this case

is simply the last two (corresponding to the two small-

est eigenvalues) equations of the A matrix obtained by

PCA.

In Table 1 we list the distance between the row spaces

of the models for these three models: PCA with m = 5,

PCA with m = 2 and IPCA (m = 2, the scaled A matrix).

These models are referred to as PCAm5, PCAm2 and IP-

CAm2 respectively in all subsequent discussions. As dis-

cussed in [12], for two full row rank matrices B (size

Fig. 3 Plot of residuals with PCA model (m = 5) for pure cluster

Fig. 4 Plot of eigenvalues for different model orders with IPCA for

pure cluster
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b 9 n) and C (size c 9 n) such that each row of B and C is

normalized to length one, the distance of matrix B from

C can be computed as:

h ¼
Xb

i¼1

hi ð25Þ

where hi is the minimum distance of Bi (ith row of

B matrix) from the subspace spanned by the rows of C and

is given by:

hi ¼k Bi � BiC
TðCCTÞ�1C k2 ð26Þ

In the above equation, the vector BiC
T(CCT)-1C is the

projection of vector Bi on the subspace spanned by rows of

matrix C. Hence, hi will be 0 if Bi belongs to the subspace

of rows of C. Note that the resulting distances are not

symmetric. These distances are listed pairwise for the three

models in Table 1. An entry in this table corresponds to

distance of the model listed in the corresponding row from

the model listed in the corresponding column. It is seen

from this table that as expected PCAm2 model lies within

the PCAm5 model (hence distance is 0) and the distance

between PCAm5 and PCAm2 model is 3 since the con-

straint vectors in PCA are orthonormal and 2 of the 5

vectors of PCAm5 model are included in PCAm2 model. It

is to be noted that the distance of PCAm2 model is slightly

more from the IPCAm2 model compared to the distance of

IPCAm2 model from PCAm2 model. Further, distance of

IPCAm2 model from PCAm5 model is very small, though

not 0 thereby indicating that the two dimensional row space

of IPCAm2 model is not exactly a subspace of the 5

dimensional row space of PCAm5 model. Hence, in this

sense, IPCA gives us a fundamentally different model from

PCA.

4.1.4 Data reconciliation

In this section, we present the results of data reconciliation

of SPNDs based on the three models obtained in previous

section. The plots for various detectors after reconciliation

along with the raw measurements are presented in Fig. 6.

The test statistic c(t) (Eq. 12) is also plotted in Figs. 7

and 8 for the three models along with the threshold value

corresponding to a = 0.05. False alarm rates obtained for

the entire dataset for the three cases are: 11.87 % for

PCAm5, 12.35 % for PCAm2 and 11.31 % for IPCAm2

while for the training data these rates are 4.99, 1.72,

0.53 % for the three models respectively. Hence, only for

the full PCA model is the false alarm rate for the training

data close to the designed false alarm rate. Further, it can

seen from the plot of detector 19 (Fig. 6) that there is a

sudden jump in the measured value between the sample

numbers 7,040–8,480. As a result of this, the test statistic

c also jumps in this interval for all the three models

thereby resulting in high false alarm rate overall. How-

ever, the reconciled values for this detector obtained by

the three models show that they are able to by and large

ignore this jump. Just by looking at this data, one can

assume that there may have been a bias in detector 19 in

this interval, and as such this bias can be estimated using

the gross error related techniques presented earlier.

However, in absence of any independent confirmation

about this bias, we chose to not do this. Instead in the bias

detection, identification and estimation analysis presented

later, we will consider cases where known biases have

been artificially introduced.

Qualitatively, the performances of the three models for

the various detectors are quite similar (Fig. 6). The dif-

ferences (labeled as adjustments) between the original and

Fig. 5 Residuals for PCA and

IPCA models—right plot has

residual from the last equation

(2nd for IPCA and 5th for PCA),

while the left plot has the

residuals from the second last

equation (1st for IPCA and 4th

for PCA)

Table 1 Distance between models for pure cluster

Model PCAm5 PCAm2 IPCAm2

PCAm5 0 3 3.25

PCAm2 0 0 0.29

IPCAm2 3.05E-5 0.20 0
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reconciled data are shown in Table 2 for the three models.

In this table, the mean and variances of the adjustments are

shown for each of the six detectors. It is seen that the

variance of the adjustments for detector 19 are the largest

for each model as there is a large adjustment for this

detector during the 7,000–8,500 time period. Further,

overall adjustments (in terms of their variances) are much

higher for PCAm5 than for the other models.

Fig. 6 Original and reconciled

data: pure cluster
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4.1.5 Gross error related analysis

The gross error related analysis namely detection, identi-

fication and estimation is performed using two approaches:

individual observation based analysis and multiple

observation based analysis for the following gross error

scenarios:

– Single gross error: We introduce a bias of 1, 3, 5 or

7 % of the corresponding mean value of the training

data in one measurement at a time as discussed in the

beginning of Sect. 4.

– Two simultaneous gross errors: Three cases are con-

sidered for this scenario: (a) bias of 5 % each in

detectors 5 and 26, (ii) bias of 5 % each in detectors 12

and 33, and (iii) bias of 5 % each in detectors 19 and

40. For this case, since IPCAm2 and PCAm2 consist of

only two equations, it is not possible to identify two

gross errors using these two models. Hence in the

results presented only gross error detection rates for

these two models are given.

Results for single gross error scenarios:

(i) Individual observation based approach: results are

presented in Table 3. In this table as well as all

subsequent tables, a ‘‘–’’ means that the corresponding

event does not take place or the corresponding

quantity cannot be calculated. From this table, it can

be seen that PCAm5 performs better than the other

models for almost all cases. IPCAm2 is better than

PCAm2 for detectors 5 and 12. For detector 19 they

Fig. 7 Test statistic for PCAm5

(left) and PCAm2 (right) model

(horizontal line is the threshold

value corresponding to

a = 0.05)

Fig. 8 Test statistic for IPCAm2 model (horizontal line is the

threshold value corresponding to a = 0.05)

Table 2 Data reconciliation for pure cluster

Detector 5 12 19 26 33 40

PCAm5 Adj. mean -0.252 -0.026 0.289 0.075 -0.165 0.091

Adj. var. 0.394 0.086 2.346 0.072 0.337 0.052

IPCAm2 Adj. mean -0.038 0.023 0.398 -0.016 -0.020 -0.002

Adj. var. 0.019 0.005 1.454 0.006 0.005 0.001

PCAm2 Adj. mean -0.031 0.016 0.408 -0.009 -0.021 -0.003

Adj. var. 0.013 0.002 1.570 0.004 0.005 0.001
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have similar performances. For detector 33, PCAm2 is

better for all magnitudes while for detectors 26 and

40, PCAm2 is significantly better for 1 % magnitude.

For all models, performance improves as the bias

magnitude increases.

(ii) Aggregated observations based approach: results for

this case are presented in Table 4. In this as well as

subsequent tables in the paper, ‘‘Inst.’’ indicates

instantly (i.e. in the first observation). Once again,

results for PCAm5 are much better compared to the

other two models for low and medium bias magnitudes

(1, 3, and 5 %) for all detectors. For high (7 %) bias,

results of PCAm5 and PCAm2 are comparable and are

better than IPCAm2. In almost all cases (detectors and

Table 3 Single gross error: individual observations approach for pure cluster

1 % (Bias 0.515) 3 % (Bias 1.545) 5 % (Bias 2.575) 7 % (Bias 3.604)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 5

Detection rate 27.62 24.74 28.98 99.91 98.53 99.79 100 99.89 99.94 100 99.99 100

Ident. rate 7.89 13.94 18.41 96.55 88.09 89.34 99.89 89.65 89.64 99.94 89.74 89.71

MSE 0.631 0.606 0.492 0.270 0.322 0.293 0.274 0.337 0.296 0.275 0.345 0.290

1 % (Bias 0.544) 3 % (Bias 1.632) 5 % (Bias 2.721) 7 % (Bias 3.809)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 12

Detection rate 78.42 12.52 19.47 100 18.74 91.57 100 41.37 99.99 100 77.28 100

Ident. rate 67.15 0 0.16 99.89 0.11 86.35 99.91 26.02 99.69 100 68.15 99.79

MSE 0.132 – 0.617 0.157 1.558 0.314 0.157 1.050 0.409 0.163 0.951 0.414

1 % (Bias 0.464) 3 % (Bias 1.393) 5 % (Bias 2.322) 7 % (Bias 3.251)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 19

Detection rate 15.10 12.47 11.40 17.86 13.50 12.38 28.38 17.57 16.43 61.50 56.92 56.23

Ident. rate 10.36 10.24 10.24 12.03 10.24 10.24 22.27 10.24 10.24 56.87 47.92 51.28

MSE 3.337 4.494 4.509 3.145 4.494 4.509 2.386 4.494 4.509 1.544 2.079 2.018

1 % (Bias 0.514) 3 % (Bias 1.543) 5 % (Bias 2.571) 7 % (Bias 3.599)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 26

Detection rate 98.34 92.89 68.76 100 100 100 100 100 100 100 100 100

Ident. rate 91.96 72.31 47.45 99.68 89.50 84.23 99.94 89.61 89.37 100 89.67 89.60

MSE 9.815E-2 9.71E-2 0.130 0.103 0.131 0.157 0.104 0.134 0.178 0.104 0.136 0.180

1 % (Bias 0.439) 3 % (Bias 1.317) 5 % (Bias 2.194) 7 % (Bias 3.072)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 33

Detection rate 21.43 22.40 21.97 99.57 95.87 95.53 100 99.94 99.99 100 99.98 100

Ident. rate 5.45 0.87 7.1119-3 86.91 81.32 67.86 99.61 89.22 84.52 99.85 89.52 88.60

MSE 0.450 0.368 0.376 0.256 0.239 0.208 0.256 0.296 0.279 0.257 0.300 0.296

1 % (Bias 0.467) 3 % (Bias 1.401) 5 % (Bias 2.334) 7 % (Bias 3.268)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 40

Detection rate 96.52 95.65 85.11 100 100 99.96 100 100 100 100 100 100

Ident. rate 82.09 78.98 72.51 99.41 89.61 89.65 99.85 89.69 89.69 99.98 89.73 89.72

MSE 9.962E-2 0.104 0.111 0.105 0.119 0.139 0.108 0.120 0.141 0.109 0.121 0.141
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Table 4 Single gross error: aggregated observations approach for pure cluster

1 % (Bias 0.515) 3 % (Bias 1.545) 5 % (Bias 2.575) 7 % (Bias 3.604)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 5

Det. rate 99.99 94.64 96.72 100 99.99 100 100 100 100 100 100 100

CIT 9.86 – – Inst. – – Inst. 95.44 – Inst. 70.02 46.68

RT 12.35 14.05 49.31 4.05 12.83 48.40 3.72 12.02 47.53 3.45 11.36 46.70

ST 65.40 – – 11.14 – – 3.72 95.40 – 3.45 70.02 46.70

EE 8E-4 – – 8E-4 – – 8E-4 5E-3 – 8E-4 5E-3 2.7E-2

1 % (Bias 0.544) 3 % (Bias 1.632) 5 % (Bias 2.721) 7 % (Bias 3.809)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 12

Det. rate 99.99 77.05 100 100 100 100 100 100 100 100 100 100

CIT 5.59 86.29 – Inst. 6.94 – Inst. 3.76 – Inst. Inst. –

RT 15.15 14.71 40.62 9.94 14.10 14.66 8.81 13.65 12.89 7.54 13.28 12.04

ST 15.15 – – 9.94 – – 8.81 – – 7.54 96.52 –

EE 5.5E-3 0.181 – 5.5E-3 0.181 – 5.5E-3 0.181 – 5.5E-3 0.181 –

1 % (Bias 0.464) 3 % (Bias 1.393) 5 % (Bias 2.322) 7 % (Bias 3.251)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 19

Det. rate 99.99 74.61 99.99 99.99 100 99.99 100 100 99.99 100 100 100

CIT 14.07 52.93 – 10.33 11.01 – 5.26 6.56 2.87 7.8E-2 4.13 Inst.

RT 17.08 12.96 49.38 10.33 11.01 48.52 6.29 6.56 47.57 2.8E-2 4.13 46.55

ST – – – – – – – – – – – –

EE 0.383 0.446 – 0.383 0.446 – 0.383 0.446 0.915 0.383 0.446 0.915

1 % (Bias 0.514) 3 % (Bias 1.543) 5 % (Bias 2.571) 7 % (Bias 3.599)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 26

Det. rate 100 100 100 100 100 100 100 100 100 100 100 100

CIT Inst. – – Inst. – – Inst. 73.96 – Inst. Inst. –

RT 14.46 13.08 47.71 11.50 11.24 43.99 9.55 7.40 40.58 7.10 4.44 37.75

ST 14.46 – – 11.50 – – 9.55 73.96 – 7.10 4.44 –

EE 8.6E-3 – – 8.6E-3 – – 8.6E-3 3.8E-3 – 8.6E-3 3.8E-3 –

1 % (Bias 0.439) 3 % (Bias 1.317) 5 % (Bias 2.194) 7 % (Bias 3.072)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 33

Det. rate 100 100 100 100 100 100 100 100 100 100 100 100

CIT 7.32 – 61.37 Inst. – 47.19 Inst. 81.05 45.61 Inst. Inst. 44.08

RT 17.15 14.11 48.87 15.25 12.94 47.19 13.43 12.15 45.61 12.26 11.53 44.08

ST – – 85.68 – – 47.19 13.43 81.05 45.61 12.26 11.53 44.08

EE 6.7E-2 – 1.5E92 6.7E-2 – 1.5E-2 6.7E-2 2E-2 1.5E-2 6.7E-2 2E-2 1.5E-2
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bias magnitudes), PCAm5 is able to confirm the

correct bias instantly while the other two models are

not always able to confirm the correct bias. As

expected, as bias magnitude increases for a given

detector, the performance of each model gets better.

Results for two simultaneous gross error scenarios:

(i) Individual observation based approach: the results are

presented in Table 5.

(ii) Aggregated observations based approach: the results

are again presented in Table 5.

For both (i) and (ii) above, all three models result in almost

100 % gross error detection rate. PCAm5 does much better

for scenarios 1 and 2 compared to scenario 3 for both

approaches. The reason is probably the presence of detector

19 for which there was an unexpected jump for some time

as discussed earlier.

In the above simultaneous gross error scenarios, we had

introduced gross errors in both the sensors to be of same %

magnitude of the corresponding sensor mean. To check if

the results would vary significantly if these percentages

were to be different, we also performed gross error analysis

for an additional scenario involving bias of 5 % in sensor 5

along with a simultaneous bias of 3 % in sensor 26. The

results (not presented here) indicated that once again

PCAm5 model performs better both for individual and

aggregated observations cases.

4.2 Results for the mixed cluster

The mixed cluster consists of eight detectors in total—six

cobalt detectors and two vanadium detectors, namely 4, 11,

18, 25, 32, 39, 49 and 139.

4.2.1 Model identification using PCA

Eigenvalues of the covariance matrix corresponding to the

training data are shown in Fig. 9. It is seen that there is a

sharp knee at the second eigenvalue. The number of sig-

nificant eigenvalues is thus taken to be one. Then, the

number of independent model equations are seven. These

equations (constraint model matrix A) are displayed

below with the equations listed in order of decreasing

eigenvalues.

The residuals r(t) = Ay(t) for the entire data set

are shown in Fig. 10. It can be seen that the residual

corresponding to the first equation (largest eigenvalue)

appears to be significantly different from 0 for several

time points and is consistently above 0 for the latter

half of the data. This probably indicates that model

order m = 6 could also have been tried, but we have

not explored this option in our work. Further, it can

be seen that residual 1 shows a sharp drop in the

region of 5,600–7,000 time points. This is due to a

Table 4 continued

1 % (Bias 0.467) 3 % (Bias 1.401) 5 % (Bias 2.334) 7 % (Bias 3.268)

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Detector 40

Det. rate 98.02 99.93 99.99 100 100 100 100 100 100 100 100 100

CIT 6.81 – – Inst. – – Inst. 71.23 – Inst. Inst. –

RT 14.68 13.03 47.25 12.24 11.15 42.76 10.82 7.09 38.90 6.80 4.31 35.50

ST 14.68 – – 12.24 – – 10.82 71.23 – 6.80 4.31 –

EE 1.6E-2 – – 1.6E-2 – – 1.6E-2 1.6E-3 – 1.6E-2 1.6E-3 –

A ¼

�0:114 �0:095 �0:091 �0:077 �0:112 0:869 �0:434 �0:084

�0:469 �0:265 �0:291 �0:054 �0:037 0:244 0:749 0:010

0:584 0:072 0:178 �0:384 �0:401 0:162 0:365 �0:392

�0:045 0:459 �0:164 0:295 �0:702 0:024 0:042 0:421

0:178 �0:323 0:029 �0:556 �0:020 �0:009 �0:039 0:743

�0:185 �0:449 0:758 0:298 �0:311 0:007 0:023 0:036

0:512 �0:547 �0:424 0:504 �0:060 0:001 �0:005 0:032

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð27Þ
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sudden drop in detector 39 which dominates residual

1. Also some of the other residuals show a sudden

change in the region 7,000–8,500 time points (for

example, residual 6 increases while 7 decreases). This

is due to a sudden increase in detector 18 in this

region.

Estimation of noise covariance matrix:

For the above PCA model, assuming it to be a diagonal

matrix, the diagonal entries of R� are estimated as:

[0.476, 0.158, 0.25, 0.092, 0.386, 8.627, 1.962, 0.317].

4.2.2 Model Identification using IPCA

We compute the IPCA based model for model orders

m = 7, 6, 5 and 4. The converged eigenvalues for various

model orders are shown in Fig. 11. From this figure it is

seen that for m = 4, the last m eigenvalues converge to 1.

However for m = 5, 6 and 7, the number of unity

eigenvalues is less than m. Hence, for this case, we take

m = 4 as the model order obtained by IPCA. The con-

verged model constraint matrix A is:

In this case since m = 4, the condition m(m ? 1) C 2n is

satisfied [12], and hence it is possible to obtain an estimate

of the measurement error variances (assuming R� to be a

diagonal matrix) from IPCA. These converged measure-

ment error variances are: [0.001, 0.001, 0.013, 0.016,

0.042, 5.528, 0.001, 0.147].

4.2.3 Comparison of PCA and IPCA models

As in the case of the pure cluster, it is noted that different

model orders are obtained for PCA and IPCA. Since the

IPCA model equations did not have unit length, for the

sake of comparison, we scale the IPCA equations as well

(premultiply A by a diagonal matrix) so that they have unit

length. The equations then are:

Table 5 Double gross error: results for pure cluster

Individual observations approach Aggregate observations approach

PCAm5 PCAm2 IPCAm2 PCAm5 PCAm2 IPCAm2

Scenario 1: (sensors 5 and 26) (5 % magnitude of actual bias)

Detection rate 100 100 99.58 Detection rate 100 100 100

Ident. rate 94.76 – – CIT Inst. – –

MSE 0.314 – – RT 9.70 – –

ST 9.70 – –

EE 0.014 – –

Scenario 2: (sensors 12 and 33) (5 % magnitude of actual bias)

Detection rate 100 100 100 Detection rate 100 100 100

Ident. rate 95.74 – – CIT Inst. – –

MSE 0.296 – – RT 13.40 – –

ST 13.40 – –

EE 0.067 – –

Scenario 3: (sensors 19 and 40) (5 % magnitude of actual bias)

Detection rate 100 100 100 Detection rate 100.00 100.00 100.00

Ident. rate 73.39 – – CIT Inst. – –

MSE 1.347 – – RT 10.82 – –

ST 10.00 – –

EE 0.385 – –

A ¼

1:000 2:651 �4:104 �3:477 1:437 0:236 0:180 1:140

1:400 1:592 �4:014 0:391 1:717 0:036 0:063 �2:147

�4:945 6:144 3:156 �5:812 1:573 �0:158 �0:179 �0:376

�2:794 1:043 4:618 �0:980 �1:164 0:309 0:539 �0:889

2

6
6
4

3

7
7
5 ð28Þ
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The residuals obtained from the above scaled equations and

those obtained from the last four equations of PCA (cor-

responding to the four smallest eigenvalues) are plotted

together in Fig. 12. They appear to have different behav-

iours, specially in the 7,000–8,500 time points interval.

Once again, the sudden changes in residuals for IPCA

model in this region can be attributed to changes in

detector 18.

We also list the distance between the row spaces of the

models obtained by PCA with m = 7, PCA with m = 4

and IPCA (m = 4) in Table 6. These models are labeled as

PCAm7, PCAm4 and IPCAm4 respectively. Similar to the

results for the pure cluster case, distance of IPCAm4 from

PCAm4 is smaller than vice versa. Also, distance of IP-

CAm4 is non-zero (though small) from PCAm7 thereby

indicating that these two are indeed different models.

Comparison of the noise variances estimated by the two

approaches is also quite interesting. For both PCA and

Ascaled ¼

0:157 0:417 �0:645 �0:547 0:226 0:037 0:028 0:179

0:263 0:299 �0:754 0:073 0:322 0:006 0:012 �0:403

�0:474 0:589 0:303 �0:558 0:151 �0:015 �0:017 �0:036

�0:481 0:179 0:795 �0:169 �0:200 0:053 0:093 �0:153

2

6
6
4

3

7
7
5 ð29Þ

Fig. 10 Plot of residuals for PCA model (m = 7) for mixed cluster

Fig. 9 Plot of the eigenvalues of covariance matrix for mixed cluster

Fig. 11 Plot of eigenvalues for different model orders with IPCA for

mixed cluster
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IPCA, detector 39 has the highest measurement noise

variance amongst all detectors. However, the variances

estimated by IPCA are much lower than those estimated by

PCA.

4.2.4 Data reconciliation

In this section, we present the results of data reconciliation

of SPNDs based on the models obtained in previous sec-

tion. The plots for various detectors are given in Fig. 13. In

these plots, reconciled values as obtained by PCAm7,

PCAm4 and IPCAm4 models are compared with the

measured values.

The test statistic c(t) (Eq. 12) is also plotted in Figs. 14

and 15 for the three models along with the threshold value

corresponding to a = 0.05. False alarm rates obtained for

the entire dataset for the three cases are: 9.82 % for PCAm7,

16.76 % for PCAm4 and 13.32 % for IPCAm4 while for the

training data these rates are 3.31, 1.25, 0.86 % for the three

models respectively. In this case, once again PCAm7 is

closest to the designed value of false alarm rate of 5 %. It can

be seen from the plot of detector 18 (Fig. 13) that there is a

sudden jump in the measured value between the sample

numbers 7,040 and 8,480. A similar behaviour was observed

for the pure cluster case for detector 19. Hence, this further

gives us a reason to not consider these deviations as biases.

However, by just looking at the data from the mixed cluster,

one can conclude that this is quite likely a bias. As a result of

this jump, the test statistic also increases in this interval for

Fig. 12 Residuals for PCA and

IPCA models for mixed

cluster—in the decreasing order

of eigenvalues. a Residual 1

(corresponding to the larger

eigenvalue), b residual 2, c
residual 3, and d residual 4

(corresponding to the smallest

eigenvalue)

Table 6 Distance between models for mixed cluster

Model PCAm7 PCAm4 IPCAm4

PCAm7 0 3 3.66

PCAm4 0 0 1.25

IPCAm4 2.58E-4 0.3 0
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Fig. 13 Original and reconciled

data: mixed cluster
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all the three models (Figs. 14, 15) resulting in high false

alarm rate overall for each model. However, similar to the

pure cluster case, all the three models are able to by and large

ignore this jump when data reconciliation is performed

(Fig. 13). Detector 39 also has a sudden drop in the

5,600–7,000 time points interval. While PCAm7 is able to

essentially ignore this drop, estimates from other models are

affected by it: the drop is more in PCAm4 estimates than

IPCAm4 estimates. Interesting thing to note is that none of

the models reject the null hypothesis of no bias in this

interval (Figs. 14, 15).

The adjustments between the original and reconciled data

are shown in Table 7. As expected, for detector 39 the

variance of the adjustment is highest for PCAm7 and is the

lowest for PCAm4. Further, while a significant adjustment is

made to detector 49 by PCAm7, the same is not true for

IPCAm4. The variance of correction made by PCAm4 are in

between the variances of the other two models. As shown in

Fig. 13 (and also in Fig. 1), there seems to be some quan-

tization effects in the measurements of this sensor and as

such we would expect some corrections in them. Similarly,

we would expect corrections in detector 139 (Fig. 13) as

well, but all the three models don’t correct it by much.

4.2.5 Gross error related analysis

Similar to the pure cluster case, the gross error related

analysis namely detection, identification and estimation is

performed using individual observation and aggregated

observations based approaches. For each approach, the

performances for various models are compared for the

following two scenarios:

– Single gross error: We introduce a bias of 1, 3, 5 or

7 % in one measurement at a time as discussed in the

beginning in Sect. 4.

– Two simultaneous gross errors: We consider three

scenarios where simultaneous biases in two measure-

ments are introduced. These scenarios are: (i) bias of

5 % each in sensors 4 and 25, (ii) bias of 5 % each in

sensors 11 and 49, and (iii) bias of 5 % each in sensors

49 and 139. Note that sensors 4,11, and 25 are cobalt

while sensors 49 and 139 are vanadium sensors. Hence,

we investigate performances for scenarios when biases

are introduced in only cobalt and vanadium sensors, as

well as in both a cobalt and a vanadium sensor.

Results for single gross error scenarios:

(i) Individual observation based approach: the results are

presented in Table 8. For low bias magnitudes (1 %),

Fig. 14 Test statistic for

PCAm7 (left) and PCAm4

(right) models (horizontal line
is the threshold value

corresponding to a = 0.05)

Fig. 15 Test statistic for IPCAm4 model (horizontal line is the

threshold value corresponding to a = 0.05)
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all three models perform quite poorly against all the

criteria with results from PCAm7 being comparable

(better in some and worse in some) to the other two

models. However, for higher magnitudes, results of

PCAm7 are clearly superior to other two models.

Between PCAm4 and IPCAm4, the results are similar

for 1 and 3 % magnitudes, while they are superior for

IPCAm4 for most cases for 5 and 7 % magnitudes.

For detectors 39 and 49, performance of PCAm4 is

quite poor irrespective of the bias magnitudes. This is

due to the PCAm4 equations (columns 6 and 7 of the

A matrix in Eq. 27) being reasonably insensitive (have

small coefficients) to these detectors.

As pointed out earlier, detector 39 has a sudden drop

in the 5,600–7,000 time points interval. In order to

determine if this could have resulted in the poor

performances when gross errors were introduced in

detector 39, we carried out the following additional

analysis (results not shown): we replaced the SPND39

data from 5,600–7,000 points by a constant value

equal to the value of SPND39 at 5599th instant, built

new models based on this new data, and then

performed gross error analysis on this new data. In

this case, the performance improved significantly

compared to the previous cases. For example, detec-

tion rates for PCAm7 for bias magnitudes from 3 %

onwards were almost 100 %. This does suggest that

the jump in the data is responsible for the bad

performance of the identified models when applied to

gross error analysis for detector 39. It is thus quite

possible that this jump corresponds to bias in the

detector, but in absence of any independent confirma-

tion, we have still included this data in the analysis.

(ii) Aggregated observations based approach: the results

are presented in Table 9. From this table, for a given

sensor and a model, as the magnitude of the

introduced bias increases, as expected the perfor-

mance of that model improves. Across various

sensors, for low (1 and 3 %) bias magnitudes,

PCAm7 is clearly outperforming other models for

almost all sensors. For higher bias magnitudes (5 and

7 %), the performances are relatively comparable

across the three models. Overall, PCAm7 seems to be

best followed by IPCAm4. PCAm4, in particular,

performs quite poorly for detectors 39 and 49.

Results for two simultaneous gross error scenarios:

(i) Individual observation based approach: results are

presented in Table 10. From this table, it is seen that

PCAm7 easily outperforms the other two models for

all the three scenarios. Between PCAm4 and IPCAm4,

the performance of the latter is markedly better. For

all three methods, detection rates are almost always

100 %.

(ii) Aggregated measurements based approach: results for

the aggregated observation based approach for two

simultaneous gross errors are presented in Table 11.

From this table, it is seen that PCAm7 does much

better than the other two models for all the three

scenarios. Between PCAm4 and IPCAm4, the latter

can be said to perform better for the first two

scenarios. For all three methods, the detection rates

are once again very high (100 %).

Similar to the pure cluster case, to check if the results

would vary significantly if the % magnitudes of the two

biases were to be different, we also performed gross error

analysis for an additional scenario involving bias of 5 % in

detector 11 along with a simultaneous bias of 3 % in

detector 49. The results (not presented here) once again

indicated that PCAm7 model performs better for both

individual and aggregated observations cases.

5 Discussions

Performances of PCA and IPCA models for two types of

SPND clusters have been compared in this paper. In both

the cases, it was found that IPCA led to a lower model

order than PCA. Indeed for the pure cobalt cluster, the

model order m was much lower than the minimum required

to obtain unique estimate of the measurement error

covariance matrix (assuming it is a diagonal matrix). In

Table 7 Data reconciliation for mixed cluster

Detector 4 11 18 25 32 39 49 139

PCAm7 Adj. mean 0.284 -0.120 0.589 -0.065 -0.281 1.654 0.116 -0.173

Adj. var. 0.505 0.072 0.544 0.064 0.292 8.279 1.638 0.302

PCAm4 Adj. mean -0.107 -0.226 0.420 0.077 -0.196 0.087 0.078 -0.030

Adj. var. 0.085 0.100 0.277 0.026 0.242 0.188 0.059 0.209

IPCAm4 Adj. mean -0.011 -0.010 0.395 0.128 -0.489 1.870 0.001 -0.052

Adj. var. 0.001 0.001 0.273 0.065 0.292 6.988 0.000 0.296
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Table 8 Single gross error: individual observations approach for mixed cluster

1 % (Bias 0.555) 3 % (Bias 1.666) 5 % (Bias 2.777) 7 % (Bias 3.888)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 4

Det. rate 11.97 20.51 16.56 88.97 90.92 92.14 100 100 100 100 100 100

Ident. rate 3.46 0 1.24 81.67 53.86 72.62 99.42 74.85 95.95 99.94 85.7 99.83

MSE 0.555 – 0.601 0.348 0.190 0.344 0.432 0.277 0.408 0.432 0.314 0.457

1 % (Bias 0.572) 3 % (Bias 1.716) 5 % (Bias 2.861) 7 % (Bias 4.005)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 11

Det. rate 33.91 18.68 23.66 100 100 100 100 100 100 100 100 100

Ident. rate 17.37 0.88 5.32 98.05 72.41 93.44 99.25 86.11 97.08 99.74 99.42 98.20

MSE 0.289 0.392 0.371 0.224 0.231 0.318 0.227 0.301 0.323 0.230 0.330 0.326

1 % (Bias 0.558) 3 % (Bias 1.674) 5 % (Bias 2.79) 7 % (Bias 3.906)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 18

Det. rate 22.73 20.59 18.97 89.11 71.89 94.50 100 100 100 100 100 100

Ident. rate 13.28 10.35 10.91 86.83 68.17 91.17 99.42 99.06 99.27 99.89 99.66 99.82

MSE 0.819 1.892 0.973 0.391 0.758 0.422 0.417 0.635 0.435 0.417 0.634 0.435

1 % (Bias 0.575) 3 % (Bias 1.726) 5 % (Bias 2.876) 7 % (Bias 4.027)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 25

Det. rate 48.88 43.94 43.16 100 99.97 99.99 100 100 100 100 100 100

Ident. rate 35.25 24.76 23.21 97.85 96.21 95.39 99.14 99.08 97.09 99.71 99.66 98.24

MSE 0.296 0.509 0.491 0.238 0.327 0.328 0.239 0.331 0.329 0.240 0.333 0.330

1 % (Bias 0.822) 3 % (Bias 2.467) 5 % (Bias 4.111) 7 % (Bias 5.756)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 32

Det. rate 13.78 19.69 12.75 75.04 81.99 28.50 99.40 99.79 69.92 100 100 99.28

Ident. rate 4.10 1.66 0.16 70.79 59.74 3.19 98.91 92.91 49.89 99.95 96.44 84.39

MSE 1.275 1.172 3.974 0.454 0.419 0.842 0.629 0.636 0.429 0.650 0.651 1.183

1 % (Bias 0.580) 3 % (Bias 1.740) 5 % (Bias 2.900) 7 % (Bias 4.061)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 39

Det. rate 9.84 16.78 13.85 12.57 16.77 19.64 23.18 16.86 32.66 41.39 17.02 53.39

Ident. rate 0.16 0.24 0.14 1.39 0.22 1.61 9.10 0.23 5.33 28.74 0.23 13.61

MSE 4.961 80.700 5.038 4.511 79.850 4.530 3.663 77.989 3.887 2.774 77.870 2.853

1 % (Bias 0.534) 3 % (Bias 1.603) 5 % (Bias 2.671) 7 % (Bias 3.740)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 49

Det. rate 10.29 16.89 14.42 27.39 17.23 24.12 70.19 17.88 46.27 91.15 18.57 66.75

Ident. rate 0.43 0.45 6.401E-2 16.12 0.44 8.12 60.47 0.43 30.05 82.59 0.56 48.03

MSE 2.394 37.509 3.835 1.315 37.560 2.521 0.838 36.950 1.805 0.752 32.680 1.487
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Table 8 continued

1 % (Bias 0.554) 3 % (Bias 1.663) 5 % (Bias 2.772) 7 % (Bias 3.881)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 139

Det. rate 11.82 18.81 14.81 72.09 67.51 78.17 100 98.64 99.96 100 100 99.96

Ident. rate 3.01 3.10 2.90 63.03 54.39 61.30 99.71 97.22 97.63 99.90 99.77 99.90

MSE 1.646 2.168 1.925 0.460 0.569 0.492 0.483 0.504 0.474 0.485 0.551 0.509

Table 9 Single gross error: aggregated observations based approach for mixed cluster

1 % (Bias 0.555) 3 % (Bias 1.666) 5 % (Bias 2.777) 7 % (Bias 3.888)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 4

Det. rate 96.74 52.17 56.82 99.99 100. 100. 100. 100. 100. 100. 100. 100.

CIT 9.05 – – 1.4E-2 Inst. 2.1E-2 Inst. Inst. Inst. Inst. Inst. Inst.

RT 20.76 11.85 28.19 12.83 10.18 12.37 11.05 1.4E-2 10.33 10.01 Inst. 9.05

ST – – – 69.53 73.31 71.58 61.9 66.79 64.75 10.01 5.75 9.05

EE 6.7E-2 – – 6.7E-2 5.6E-2 7.3E-2 6.7E-2 5.6E-2 7.3E-2 6.7E-2 5.6E-2 7.3E-2

1 % (Bias 0.572) 3 % (Bias 1.716) 5 % (Bias 2.861) 7 % (Bias 4.005)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 11

Det. rate 99.86 99.96 99.37 100. 100. 100. 100. 100. 100. 100. 100. 100.

CIT 2.47 – 8.75 Inst. Inst. 3.656 Inst. Inst. Inst. Inst. Inst. Inst.

RT 2.64 11.44 8.75 Inst. 9.41 0.48 Inst. Inst. Inst. Inst. Inst. Inst.

ST – – – 6.91 – – 6.26 6.33 2.1E-2 5.41 Inst. Inst.

EE 5.9E-2 – 0.112 5.9E-2 0.130 0.112 5.9E-2 0.130 0.112 5.9E-2 0.130 0.112

1 % (Bias 0.558) 3 % (Bias 1.674) 5 % (Bias 2.790) 7 % (Bias 3.906)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 18

Det. rate 99.92 55.89 68.1 100. 100. 100. 100. 100. 100. 100. 100. 100.

CIT 8.534E-2 55.69 50.15 Inst. Inst. Inst. Inst. Inst. Inst. Inst. Inst. Inst.

RT 22.9 11.14 50.15 21.24 9.04 21.05 13.99 5.7E-2 12.53 11.43 Inst. 10.47

ST – – – – – – 61.46 – 63.22 11.43 – 10.47

EE 8.8E-2 0.262 9.6E-2 8.8E-2 0.262 9.6E-2 8.8E-2 0.262 9.6E-2 8.8E-2 0.262 9.6E-2

1 % (Bias 0.575) 3 % (Bias 1.726) 5 % (Bias 2.876) 7 % (Bias 4.027)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 25

Det. rate 99.99 97.55 99.95 100. 100. 100. 100. 100. 100. 100. 100. 100.

CIT 5.23 5.67 6.29 Inst. Inst. Inst. Inst. Inst. Inst. Inst. Inst. Inst.

RT 2.84 12.42 6.29 Inst. 5.7E-2 Inst. Inst. 1.4E-2 Inst. Inst. Inst. Inst.

ST – – – 6.79 – – 6.10 5.06 Inst. Inst. Inst. Inst.

EE 5.8E-2 0.122 0.104 5.8E-2 0.122 0.104 5.8E-2 0.122 0.104 5.8E-2 0.122 0.104
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literature [12], IPCA has been implemented only for cases

where the model order is sufficiently high. However, in our

work, despite the low model order, we obtained conver-

gence of exactly the last m eigenvalues to unity.

Overall, we conclude the following for the SPND data

analyzed in this work: between IPCA and PCA model of

the same order, IPCA generally does better for gross error

related criteria. Overall however, the full PCA model does

much better than IPCA model or the reduced PCA model.

This is an unexpected result since for the case when the

model and measurement noise covariances are unknown,

IPCA is a theoretically rigorous procedure for estimating

the unknown model as opposed to PCA which involves ad

hoc decision making. The factors that may be responsible

for this behaviour as well as some other interesting

observations are listed below:

(1) Both PCA and IPCA give algebraic equations relating

the measurements at a given instant of time and

assume that the reactor is operating under steady state

conditions. Thus assuming the true data and mea-

surement noise to be serially independent, we expect

the residuals to be white. To test this, we considered

the autocorrelation values of the residuals obtained

Table 9 continued

1 % (Bias 0.822) 3 % (Bias 2.467) 5 % (Bias 4.111) 7 % (Bias 5.756)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 32

Det. rate 96.82 64.54 41.62 100. 100. 99.99 100. 100. 100. 100. 100. 100.

CIT 7.40 99.82 – Inst. Inst. 2.1E-2 Inst. Inst. Inst. Inst. Inst. Inst.

RT 7.42 7.10 – 6.88 6.64 0.60 6.49 5.93 3.5E-2 Inst. Inst. Inst.

ST – – – – – – – – – 5.87 5.43 –

EE 0.232 0.254 – 0.232 0.254 0.689 0.232 0.254 0.689 0.232 0.254 0.689

1 % (Bias 0.580) 3 % (Bias 1.740) 5 % (Bias 2.900) 7 % (Bias 4.061)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 39

Det. rate 81.00 20.94 35.47 91.24 22.86 44.73 96.61 24.17 76.67 96.81 24.83 92.21

CIT 52.31 – – 21.98 – – 7.45 – – 6.43 – –

RT 52.31 – – 24.08 – – 23.66 – 23.33 23.34 – 22.97

ST – – – – – – – – – – – –

EE 0.374 – – 0.374 – – 0.374 – – 0.374 – –

1 % (Bias 0.534) 3 % (Bias 1.603) 5 % (Bias 2.671) 7 % (Bias 3.740)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 49

Det. rate 89.82 22.49 38.55 96.59 24.83 62.99 97.20 27.15 82.53 99.95 38.62 96.79

CIT 44.04 – – 6.89 – 52.90 2.81 99.56 21.13 5.7E-2 66.64 6.51

RT 23.42 – – 22.74 – 52.90 22.08 – 23.10 21.48 8.06 22.74

ST – – – – – – 78.56 – – 34.17 – –

EE 0.123 – – 0.123 – 0.315 0.123 2.175 0.315 0.123 2.175 0.315

1 % (Bias 0.554) 3 % (Bias 1.663) 5 % (Bias 2.772) 7 % (Bias 3.881)

PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4 PCAm7 PCAm4 IPCAm4

Detector 139

Det. rate 99.44 52.51 57.77 100. 100. 100. 100. 100. 100. 100. 100. 100.

CIT 0.57 59.17 – Inst. Inst. Inst. Inst. Inst. Inst. Inst. Inst. Inst.

RT 23.03 11.66 54.10 14.09 7.13 13.40 11.75 6.79 10.67 10.30 6.41 8.84

ST 95.70 98.19 – 30.65 7.13 13.40 11.75 6.79 10.67 10.30 6.41 8.84

EE 2.8E-2 1.9E-3 – 2.8E-2 1.9E-3 3.0E-2 2.8E-2 1.9E-3 3.0E-2 2.8E-2 1.9E-3 3.0E-2
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for various lags and subjected them to whiteness tests

as given in [9]. While the corresponding plots are not

shown here, we concluded from this test that the

residuals are strictly not white. In literature, while

IPCA has been applied to simulated data containing

serial correlations [12] and was found to obtain a

model close to the true model, extensive testing for

other data sets has not been performed. Further,

techniques such as adding lagged data as an addi-

tional variable can also be tried.

(2) We feel that a key issue in IPCA is the nonlinear

optimization that is required at each step of the iterative

procedure. During the course of implementation we

experienced several cases (model orders and initial

guess of R�) where IPCA did not converge (we used the

fmincon function in Matlab for performing the required

optimization). Even when it converges, there is no

guarantee of the global optima [12].

(3) As mentioned in Sect. 2, measurements from vana-

dium detectors are most likely corrupted by quanti-

zation effects. Effect of such phenomena on the

ability of PCA or IPCA to estimate models needs to

be systematically investigated.

(4) Another interesting observation is the estimation of

widely different measurements noise variances by the

two approaches for the mixed cluster data. As

discussed in the results section, the estimates of the

variances obtained by IPCA were generally lower

than those obtained by PCA. We feel that IPCA

estimates may be better since there is an explicit

incorporation of measurement noise variances in the

iterative procedure. However, an extensive study on

several datasets with known variances is required to

validate this.

6 Conclusions

In this paper, we used the measurement data to identify

models on two groups of SPNDs. PCA and IPCA [12] were

used to estimate the models (including model order) from

the available data. It was found that model order obtained

by IPCA was consistently lower than model order obtained

by PCA. Comparison of these models showed that PCA

based model performs better overall than IPCA based

model for data reconciliation and gross error analysis

related criteria. Possible reasons for the same were dis-

cussed as well. Currently, we are working on developing a

suite of such models which can capture relationships

between SPNDs for a wide range of reactor operations.
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