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The theory of dissipativity is well developed for controllable systems. A more appropriate definition of dissipativity in the
context of uncontrollable systems is in terms of the existence of a storage function, namely a function such that, along every
system trajectory, its rate of change at each time instant is at most the power supplied to the system at that time. However, even
when the supplied power is expressible in terms of just the external variables, the dissipativity property for uncontrollable
systems crucially hinges on whether or not the storage function depends on variables unobservable/hidden from the external
variables: this paper investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity.
These three definitions are compared: we show that drawbacks of one definition are addressed by another.

Dealing first with observable storage functions, under the conditions that no two uncontrollable poles add to zero and
that dissipativity is strict as frequency tends to infinity, we prove that the dissipativities of a system and its controllable part
are equivalent. We use the behavioural approach for formalising key notions: a system behaviour is the set of all system
trajectories. We prove that storage functions have to be unobservable for ‘lossless’ uncontrollable systems. It is known,
however, that unobservable storage functions result in certain ‘fallacious’ examples of lossless systems. We propose an
intuitive definition of dissipativity: a system/behaviour is called dissipative if it can be embedded in a controllable dissipative
superbehaviour. We prove embeddability results and use them to resolve the fallacy in the example termed ‘lossless’ due
to unobservable storage functions. We next show that, quite unreasonably, the embeddability definition admits behaviours
that are both strictly dissipative and strictly antidissipative. Drawbacks of the embeddability definition in the context of RLC
circuits are finally related to the inability to realise/synthesise the special one-port electrical network, called the nullator,
using only passive electrical components.

Keywords: algebraic Riccati equation; indefinite linear algebra; Lyapunov equation; storage function; Hamiltonian matrix;
behavioural approach

1. Introduction

The theory of dissipativity for linear dynamical systems
helps in the analysis and design of control systems for
several control problems, for example, linear quadratic reg-
ulator/linear quadratic Gaussian control, H∞ control, syn-
thesis of passive systems and optimal estimation problems.
When dealing with linear time-invariant (LTI) controllable
systems, it is easy to define dissipativity since controllabil-
ity ensures that, loosely speaking, the compactly supported
system trajectories are ‘dense’ in the set of all allowed tra-
jectories. However, this is not the case for uncontrollable
systems; alternative dissipativity definitions and their inter-
relationships are the central focus of this paper.

In this paper, we first investigate a less-often-used defi-
nition of dissipativity for systems, possibly uncontrollable,
and generalise key results using techniques from indefinite
linear algebra (see Gohberg, Lancaster, & Rodman, 2005)
for solving algebraic Riccati equalities. Like in Çamlıbel,
Willems, and Belur (2003) and Pal and Belur (2008), we
first define a system as dissipative if there exists a storage

∗Corresponding author. Email: belur@ee.iitb.ac.in.

function that satisfies the dissipation inequality for all
system trajectories. The inequality states that the rate of
increase of the stored energy cannot exceed the power sup-
plied to the system. The power supplied, called the supply
rate, is a function of only the external variables of the sys-
tem. Important here is the issue whether the storage func-
tion is allowed to depend only on the external variables and
their derivatives, or also on ‘unobservable’/hidden variables
(see Willems, 2004, for a detailed exposition). We investi-
gate both the definitions: observable storage function and
unobservable storage function. We next propose another in-
tuitive definition of dissipativity: existence of a controllable
dissipative superbehaviour. This brings us to embeddabil-
ity of a possibly uncontrollable behaviour in a dissipative
controllable behaviour.

A summary of the main results and the organisation of
the paper is as follows. Section 2 contains preliminaries
of behavioural systems theory, quadratic differential forms
and indefinite linear algebra. Section 2 also contains the
definition of a storage function, with a distinction between

C© 2013 Taylor & Francis
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observable storage functions, unobservable storage func-
tions and state functions: this distinction is central to this
paper. Section 3 contains our first main result (Theorem
3.1): sufficient conditions for the existence of an observ-
able storage function. Auxiliary results and the proof of
Theorem 3.1 are in Sections 3 and 4. Section 5 studies in-
evitability of unobservable storage functions when some
uncontrollable poles are on the imaginary axis. We study
orthogonality of systems in Section 6 where we propose
the embeddability definition for orthogonality/losslessness
and dissipativity. This section contains key results on the
smallest controllable ‘superbehaviour’ and a count on the
number of inputs of the superbehaviour: here we resolve
how certain (intuitively fallacious) systems that are orthog-
onal by the existence of an unobservable storage function
definition are not orthogonal by the embeddability defini-
tion. The results on smallest controllable superbehaviours
of Section 6 are used in Section 7 where we show that,
when using the embeddability definition of dissipativity,
there exist systems that are both strictly dissipative and
strictly antidissipative. A summary of main results and an
examination of the inter-relations of the three definitions of
dissipativity finally follow in Section 8.

2. Preliminaries

In this section, we include various definitions about the be-
havioural framework for studying dynamical systems (Sec-
tion 2.1) and then introduce quadratic differential forms
(QDFs) (Section 2.2). Section 2.3 reviews the definition of
a state of a system and Section 2.4 contains a brief notation
about indefinite linear algebra from Gohberg et al. (2005).
Section 2.5 contains the definition of a storage function.

We use R for the set of all real numbers and R[ξ ] for
the set of polynomials in the indeterminate ξ and real co-
efficients; matrices and polynomial matrices are denoted
the standard way. When unnecessary or when it follows
from the context, we use • to leave the row dimension
unspecified, for example, R

•×w[ξ ]. The space of infinitely
often differentiable functions from R to, say, R

n is denoted
by C∞(R, R

n), and D(R, R
n) denotes the set of all com-

pactly supported functions within C∞(R, R
n). The number

of components in a vector w is denoted by w, for example,
w ∈ C∞(R, R

w) or w(t) ∈ R
w: this helps to avoid too many

letters when denoting dimensions.

2.1 The behavioural approach

When dealing with linear differential systems, it is conve-
nient to use polynomial matrices for describing the differen-
tial equations. Suppose R0, R1, . . ., RN ∈ R

•×w are constant
matrices of the same size such that

R0w + R1
d
dt

w + R2
d2

dt2 w + · · · + RN
dN

dtN
w = 0

is a system of linear, constant-coefficient ordinary differ-
ential equations in the variable w. Define the polynomial
matrix R ∈ R

•×w[ξ ] by R(ξ ) : R0 + R1ξ + ··· + RNξN,
and represent the above differential equation conveniently
as R( d

dt
)w = 0.

A linear differential behaviour, denoted by B, is defined
as the set of all infinitely often differentiable trajectories
that satisfy such a system of differential equations, i.e. for
R(ξ ) ∈ R

•×w[ξ ],

B := {w ∈ C∞(R, R
w) | R( d

dt
)w = 0},

and R( d
dt

)w = 0 is called a kernel representation for B.
We also write B = ker R( d

dt
). We denote the set of all such

linear differential behaviours, with w being the number of
dependent variables, by Lw. (The independent variable is
time t for the trajectories.) The matrix R is not unique and
one can use elementary row operations to modify R and
this does not change the set of solutions B: this thus allows
assuming, without loss of generality, that R has full row rank
(see Polderman & Willems, 1998, Section 2.5). Out of the
w variables in w, some of the variables (say, inputs) can be
chosen as arbitrary C∞ functions and the system equations
then determine the rest of the variables (say, outputs): this
defines an input/output (i/o) partition of the variables w.
Though there are several choices of i/o classifications, the
maximum number of inputs depends only on B: we call this
number the input cardinality, and denote it by m(B). The
number of outputs, the output cardinality of B, is denoted
by p(B): this is equal to w − m(B). The number of outputs
is the number of independent system equations, i.e. p(B) =
rank (R), where R( d

dt
)w = 0 is any kernel representation

of B. See also Note 1.
A fundamental concept is controllability of a system. A

behaviour B = ker R( d
dt

) is said to be controllable, if for
every w1 and w2 ∈ B, there exist w3 ∈ B and τ > 0 such
that

w3(t) =
{

w1(t) for all t � 0,

w2(t) for all t � τ .

The set of all controllable behaviours with w variables is de-
noted by Lw

cont. It is shown in Polderman and Willems (1998,
Section 5.2.1) that this patchability definition of controlla-
bility yields the traditional Kalman state-space definition of
controllability for the state-space case. Further, it is shown
there that B = ker R( d

dt
) is controllable if and only if R(λ)

has constant rank for all λ ∈ C. Another important equiva-
lence of controllability of a behaviour B is that, for some
M(ξ ) ∈ R

w×m[ξ ],

B = {w ∈ C∞(R, R
w) | there exists � ∈ C∞(R, R

m)

such that w = M( d
dt

)� }.
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This representation of B ∈ Lw
cont is known as an image rep-

resentation and we also write B = im M( d
dt

). The variable
� is called a latent variable: these are auxiliary variables
used to describe the behaviour; we distinguish the variable
w as the manifest variable, the variable of interest. In such
situations where we deal with the manifest variables and
some more variables, say, �, we often need to consider the
full behaviour Bfull ∈ Lw+�: this is the behaviour with vari-
ables (w, �), all those that arise in the equations. Thus, a
general form of a latent variable representation of a lin-
ear differential behaviour is R( d

dt
)w = M( d

dt
)�, with R and

M polynomial matrices of appropriate sizes. The manifest
behaviour B ∈ Lw defined through such a latent variable
representation is defined as

B := {w ∈ C∞(R, R
w)| there exists �

such that (w, �) ∈ Bfull }.

Consider again the image representation w = M( d
dt

)�:
it is known that B ∈ Lw

cont always allows an image repre-
sentation with M(ξ ) such that M(λ) has full column rank for
every λ ∈ C. This kind of image representation is known
as an observable image representation. In this paper, unless
otherwise stated explicitly, we assume1 the image represen-
tations are observable. The use of the term ‘observable’ is
motivated by the fact that the variable � is observable from
the variable w. This notion is defined as follows. For a be-
haviour B ∈ Lw+� with variables w and �, the variable � is
said to be observable from w in B if whenever (w, �1) and
(w, �2) both are in B, we have �1 = �2. Observability of �

from w in a behaviour B ∈ Lw+� is equivalent to the exis-
tence2 of a polynomial matrix F(ξ ) such that � = F ( d

dt
)w

for all (w, �) in B.
We next define relevant notions in the context of un-

controllable behaviours. For a behaviour B, possibly un-
controllable, the largest controllable behaviour contained
in B is called the controllable part of B, and denoted by
Bcont. The controllable part of B satisfies m(Bcont) = m(B).
The set of complex numbers λ for which R(λ) loses rank
is called the set of uncontrollable poles and is denoted by
�un. The notion of uncontrollable poles is motivated by the
poles of an autonomous behaviour. A behaviour B is called
autonomous if m(B) = 0. Thus, any minimal kernel repre-
sentation R( d

dt
)w = 0 of an autonomous B is such that R

is square and det R �= 0. The roots of det R depend only on
B and not on R: the poles of B are defined as the roots of
det R counted with multiplicity. For a recent exposition on
behaviours, controllability and observability, we refer the
reader to Willems (2007).

2.2 Quadratic differential forms

The concept of quadratic differential forms (QDFs) is cen-
tral to this paper. See Willems and Trentelman (1998) for

a detailed exposition. Consider a two-variable polynomial
matrix with real coefficients, �(ζ, η) := ∑

j,k �jkζ
jηk ∈

R
w×w[ζ, η], where �jk ∈ R

w×w. The QDF Q� induced by
� is a map Q� : C∞(R, R

w) −→ C∞(R, R) defined as

Q�(w) :=
∑
j,k

(
dj

dt j
w

)T

�jk
dk

dtk
w. (1)

When dealing with quadratic forms in w and its deriva-
tives, we can assume without loss of generality that �(ζ ,
η) = �(η, ζ )T: such a � is called a symmetric two-variable
polynomial matrix. A quadratic form induced by a real
symmetric constant matrix S ∈ R

w×w is a special QDF. We
frequently need the number of positive and negative eigen-
values (counted with multiplicity) of a non-singular and
symmetric matrix S: they are denoted by σ + (S) and σ−(S),
respectively. For a symmetric and positive-definite matrix S,
we define S1/2 to be the unique symmetric positive-definite
matrix P that satisfies P2 = S. See Note 11 for our definition
of S1/2 when S is indefinite.

2.3 States

The state variable formalises the intuitive requirement of
concatenability. A variable x is said to satisfy the property
of state if the following holds: whenever (w1, x1), (w2, x2) ∈
Bfull ∈ Lw+x and x1(0) = x2(0), then the new trajectory (w,
x) formed by concatenating (w1, x1) to (w2, x2) at t = 0,
defined as follows:

(w, x)(t) =
{

(w1, x1)(t) for all t � 0,

(w2, x2)(t) for all t > 0,

also satisfies the system equations of Bfull in a distribu-
tional3 sense. In the context when we are given a behaviour
B ∈ Lw and we seek a latent variable representation in
which the latent variable x satisfies the state property and
also x has the least number of components, one can ensure
that x is observable from w and also that (w, x) satisfies
the familiar input/state/output (i/s/o) representation below.4

The i/o partition (after a permutation of components, if
necessary) w = (wi, wo) then results in properness of the
transfer matrix from input wi to output wo (see Willems &
Trentelman, 1998, p. 1706):

d
dt

x = Ax + Bwi, wo = Cx + Dwi,

with (C,A) observable. (2)

In this case, behavioural controllability of the system B
is equivalent to the conventional controllability of the
pair (A, B).
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4 S. Karikalan et al.

2.4 Indefinite linear algebra

In this paper, we use certain properties of matrices that
are self-adjoint with respect to an indefinite inner product.
We briefly review self-adjoint matrices and neutral sub-
spaces (see Gohberg et al., 2005, Section 2.1). For a com-
plex number λ ∈ C, its complex conjugate is denoted by λ,
while x∗ and A∗, respectively, denote the complex-conjugate
transpose of the vector x ∈ C

n and complex matrix A. Let
P ∈ C

n×n be a non-singular and Hermitian matrix. The ma-
trix P defines an indefinite inner product on C

n by [x, y]P

: x∗Py. The term ‘indefinite’ is motivated by the possible
indefiniteness of the Hermitian matrix P. If all the eigen-
values of P are non-negative or non-positive, P is said to be
sign-definite.

Consider matrices A and P ∈ C
n×n with P invertible

and Hermitian. The P-adjoint of the matrix A, denoted by
A[∗], is defined as A[∗]: =P−1A∗P. A matrix A ∈ C

n×n is
said to be P-self-adjoint if A = A[∗], i.e. A = P−1A∗P.

When a non-singular matrix P is not sign-definite, de-
pending on the vector x, the value of [x, x]P can be zero,
positive or negative. A subspace M ⊆ C

n is said to be
P-neutral if the indefinite inner product [x, x]P = 0 for all
x ∈ M.

The set of all eigenvalues (counted with multiplicity,
for this paper) of a matrix A is denoted by σ (A). The partial
multiplicities of an eigenvalue λ are the sizes of the Jordan
blocks corresponding to λ in the Jordan canonical form of
A (see Gohberg et al., 2005, p. 326). Thus, the number of
integers in the partial multiplicities of λ is exactly the geo-
metric multiplicity of λ and these integers themselves, all
positive, add up to the algebraic multiplicity of λ. When all
the partial multiplicities of λ are one, i.e. when algebraic
and geometric multiplicities of λ are equal, then λ is said
to be a semisimple eigenvalue. When the algebraic multi-
plicity is one, then λ is called a simple eigenvalue. Since
the Jordan blocks of a matrix A are unique only up to their
order, the partial multiplicities too require to be ordered,
say, ascending, while comparing partial multiplicities of a
common eigenvalue λ of two matrices, say, A and B.

2.5 Storage functions: observable
and unobservable

In this paper, we deal with systems that satisfy the dissipa-
tivity property, i.e. energy is absorbed by the system along
every system trajectory, perhaps not necessarily at every
time instant, but ‘totally’ when integrated over time. The
total aspect of the energy involves an integral, thus bringing
in the initial and final conditions of the concerned trajec-
tory. The convenience of considering just those trajectories
that start-from-rest and end-at-rest applies to only control-
lable systems since the compactly supported trajectories in
a behaviour are dense in the behaviour only for controllable
behaviours (see Pillai & Shankar, 1998, p. 398). The notion

of a storage function helps in formulating the dissipation
property as an inequality to be satisfied at each time-instant.
A central issue in this paper is what variables should the
storage function be allowed to depend on. We explore the
dependence on the following:

• On a latent variable � [the most general, since �

could include5 w, with (w, �) ∈ B�
full described by

R( d
dt

)w = M( d
dt

)�], or
• On a state variable x (very intuitive, since storage

requires ‘memory’), or
• On the manifest variable w and its derivatives (ob-

servability from the manifest variables w, since the
supplied power is expressed in w, see Note 2).

This dependence is explicitly indicated in the storage
function subscript within the following definition. See also
Willems and Trentelman (1998, Remark 5.9) and Willems
(2004, 2007) for earlier remarks about the use of the storage
function’s existence as a definition of dissipativity and the
link with controllability/observability.

Definition 2.1: Storage function: Let � ∈ R
w×w be a non-

singular and symmetric matrix that induces the supply rate
wT�w. Consider a behaviour B ∈ Lw with a manifest vari-
able w and latent variable �, with the corresponding full
behaviour B�

full, and � possibly unobservable from w. For
the behaviour B, let x be a state variable with the corre-
sponding full behaviour Bx

full, and x possibly unobservable
from w. With respect to the supply rate � and the behaviour
B, the QDF Q��

is said to be a storage function if the dis-
sipation inequality

d
dt

Q��
(�) � wT �w (3)

is satisfied for all (w, �) ∈ B�
full.

(i) A storage function Q��
is said to be an observable

storage function if the latent variable � is observable
from the manifest variable w. In this case (see Note
2), there exists a storage function Q�w

such that
d
dt

Q�w
(w) � wT �w for all w ∈ B.

(ii) A storage function Q�x
(x) is said to be a state func-

tion if Q�x
(x) is equal to xTKx for some constant

matrix K.
(iii) A storage function xTKx, with K ∈ R

n×n a constant
matrix, is called observable if the state x is observ-
able from w.

As mentioned above, the question of whether the stor-
age function is observable from w is relevant since the
instantaneous power, i.e. the supply rate, is specified using
the manifest variable w by wT�w. We adopt the con-
vention that the power wT�w is absorbed by the sys-
tem when wT�w is positive. Observability of the storage
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International Journal of Control 5

function [Property (i) above] from the manifest variable w

is motivated6 by the fact that the power is expressed in terms
of w. While at certain instants along a system trajectory,
power absorbed can be negative, this can happen only due
to a decrease of internal stored energy: this ‘instantaneous
energy auditing’ is the meaning of the dissipation inequal-
ity (3). Since energy storage intuitively appears to be linked
with ‘memory’, Property (ii) above relates the storage func-
tion to a static-state function (see Willems and Trentelman,
1998, Theorem 5.5). This paper studies situations when
the storage function is a state function, but unobservable.
The question whether there are situations that force stor-
age functions to depend on derivatives of the state remains
unaddressed.

This paper deals with uncontrollable dissipative LTI
systems, and investigates observability properties and state-
function properties of the storage function. The controllable
case was resolved in Willems and Trentelman (1998, The-
orem 5.5). We state this below for easy reference.

Proposition 2.1: Consider B ∈ Lw
cont and let w = M( d

dt
)�

be an observable image representation. Let x be a state
variable for B such that x is observable from w. Suppose
� ∈ R

w×w is symmetric and non-singular. Then, the follow-
ing are equivalent:

(1)
∫

R
wT �wdt � 0 for all w ∈ B ∩ D, the compactly

supported trajectories in B.
(2) M( − jω)T�M(jω) ≥ 0 for all ω ∈ R.
(3) There exists a QDF Q�w

such that d
dt

Q�(w) �
wT �w for all w ∈ B.

(4) There exists a constant and symmetric matrix K
such that xTKx is a storage function.

The significance of the above theorem is that, for
controllable systems, it is possible to verify dissipativity,
in principle, by checking non-negativity of the integral∫

R
wT �w dt over all compactly supported trajectories: the

compact support signifying that we calculate the ‘net power’
transferred when the system ‘starts from rest’ and ‘ends at
rest’. The term ‘rest’ is suggestive that all variables and their
derivatives are zero and hence the internal/stored energy is
also zero: this crucially helps in ruling out the storage func-
tion from playing a role in the dissipativity definition. In
fact, the integral inequality property [Statement (1)] is used
as the definition of dissipativity for controllable systems.
The same cannot be done for uncontrollable systems due
to the compactly supported trajectories not7 being ‘dense’
in the behaviour (see Pillai & Shankar, 1998, p. 398, and
Willems and Trentelman, 2002, p. 55).

As noted in Willems and Trentelman (1998, Remark
5.9), for uncontrollable systems, the existence of a storage
function is the most natural definition of a dissipative
system. Notwithstanding the existential aspect of the
storage function, we show in this paper that whether or not
the storage function should be assumed to be observable

and/or a state function crucially affects the conclusion of
dissipativity of a system. We propose a new definition of
dissipativity: embeddability in a controllable dissipative
behaviour, which resolves this drawback. This is dealt with
in Section 6.

In order to focus on the issues raised above, and not on
the variety8 of notions of power, for the rest of this paper,
we consider a coordinate transformation that simplifies all
the main results and proofs, and further without loss of
generality. When studying dissipativity with respect to a
constant, non-singular and symmetric S ∈ R

w×w, one can
transform the coordinates of the variable w by using a non-
singular matrix V such that VT�V = S with � a diagonal
matrix consisting of only + 1 and −1 along the diagonal.
We hence assume throughout this paper that the supply rate
is wT�w, with � given in Equation (4). It is known (see
Willems & Trentelman, 1998, Remark 5.11, and Willems
and Trentelman, 2002, p. 56) that �-dissipativity of a
behaviour B implies that m(B), the input cardinality of B,
cannot exceed σ + (�), i.e. m(B) � σ+(�). Moreover, there
exists an i/o partition such that all the inputs correspond to
+ 1 only and such that the transfer function matrix from
these inputs to all other remaining variables is proper (see
Willems & Trentelman, 1998, Remark 5.11). In view of
these facts and the inequality m(B) � σ+(�), we assume
without loss of generality

� =
⎡⎣ Im 0 0

0 Iq 0
0 0 −Ir

⎤⎦ and also define Jq,r :=
[

Iq 0
0 −Ir

]
.

(4)
Recall that p(B) denotes the number of outputs, i.e.
w − m(B). The above partition is made noting that
m(B) � σ+(�), and using r := σ−(�), which gives
q = p − σ−(�) and also q = σ+(�) − m(B). The partition
of w corresponds to an i/o partition of B: the first
m components of w are inputs, while the remaining
p = (q + r) components are outputs, and further with the
transfer function matrix from the input to the output being
proper. The case when m(B) = σ+(�) plays a key role in
the results of this paper: we call this the maximum input
cardinality condition. In this case Jq,r is negative definite
and of size r. The matrices � and Jq,r have also been
called ‘signature matrices’ in the literature.

3. Observable storage functions: main results

In this section, we state our first main result: assuming the
so-called unmixing condition on the uncontrollable poles
and assuming a strictness of dissipativity asymptotically
as frequency tends to ∞, we show that the existence of
an observable storage function for a given uncontrollable
behaviour is equivalent to the controllable subsystem’s dis-
sipativity. We use the existence of an observable storage
function as the definition of dissipativity in this section.
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6 S. Karikalan et al.

We call the assumption that no pair of uncontrollable
poles are symmetric with respect to the imaginary axis as
the ‘unmixing assumption’ on the uncontrollable poles9 of
the behaviour. This is the same as no two uncontrollable
poles adding to zero. Stabilisability of the system, for ex-
ample, ensures this condition: see Polderman and Willems
(1998, Section 5.2).

Theorem 3.1: Consider a behaviour B ∈ Lw and � ∈
R
w×w as in Equation (4). Assume that the uncontrollable

poles �un are such that �un∩ − �un = ∅. Let Bcont have
an observable image representation w = M( d

dt
)� and con-

sider an i/o partition of Bcont such that the corresponding
partition of M(s) into

M(s) =
[

W1(s)
W2(s)

]
, W1 ∈ R

m×m[s],W2 ∈ R
p×m[s], (5)

results in a proper W2(s)W1(s)−1. Define G(s) :
W2(s)W1(s)−1 and D : lims → ∞G(s). Assume Bcont such
that (Im + DT Jq,rD) > 0. Then, the following are equiva-
lent:

(1) B is �-dissipative, i.e. there exists an observ-
able storage function Q�(w) satisfying d

dt
Q�(w) �

wT �w for all w ∈ B.
(2) The controllable part Bcont is �-dissipative, i.e.∫

R
wT �wdt � 0 for all w ∈ B ∩ D, the compactly

supported trajectories in B.

Theorem 3.1 is proved in the next section. The above
result gives conditions under which the autonomous part of
a behaviour poses no hindrance to dissipativity of the entire
behaviour once the controllable subsystem is dissipative.
One of the conditions for this is that the uncontrollable
poles are not ‘mixed’. For autonomous LTI systems, this
condition is a necessary and sufficient condition for solv-
ability of the Lyapunov equation: see Rosenblum (1956).
Also see Peeters and Rapisarda (2001) for an extension of
the solvability condition for the polynomial Lyapunov equa-
tion. Of course, storage functions are just generalisations
of Lyapunov functions to non-autonomous systems. The
other condition: (Im + DT Jq,rD) > 0 on the controllable
part is a kind of strictness of dissipativity ‘at the infinity10

frequency’. This is elaborated in the remark below.

Remark 3.1: The matrix I + DT Jq,rD being non-
negative is a necessary condition for dissipativity of Bcont,
and the non-negativity denotes dissipativity at very high
frequencies, i.e. as ω → ∞: see Statement (2) of Propo-
sition 2.1. Positive definiteness of I + DT Jq,rD is noth-
ing but strict dissipativity at frequency tending to infinity.
This assumption helps in the existence of a Hamiltonian
matrix. Our proofs use the Hamiltonian matrix properties
and techniques from indefinite linear algebra, in particu-
lar, from Gohberg et al. (2005). Positive definiteness of

I + DT Jq,rD is guaranteed, for example, by strict dissipa-
tivity of a behaviour (see Pal & Belur, 2008); on the other
hand, the matrix I + DT Jq,rD is zero for lossless control-
lable behaviours.

Though most of the main results in this paper are
formulated in terms of the system behaviour, the proofs
use many known results about algebraic Riccati equations
(AREs), Hamiltonian matrices and indefinite linear alge-
bra: the availability of these results in the literature and the
intuition built using them make it relatively difficult and
less worthwhile to prove using just kernel representations
and/or general latent variable representations. We now re-
view some existing results and formulate/prove new results
about Hamiltonian matrices in the context of dissipativity
of controllable and uncontrollable systems. The rest of this
section contains results about ARE solvability for the case
of an uncontrollable pair (A, B) when some of the uncon-
trollable eigenvalues are on the imaginary axis.

The proposition below relates the existence of a sym-
metric solution to the dissipation LMI and a storage func-
tion xTKx for �-dissipativity. The following result is well
known (refer to Trentelman & Willlems, 1991). See also
Boyd, Ghaoui, Feron, and Balakrishnan (1994) for an elab-
orate treatment on LMIs.

Proposition 3.1 (Trentelman & Willlems, 1991, Theorem
8.4.2): Consider a behaviour B ∈ Lw with an i/s/o repre-
sentation and A, B, C, D as state space matrices: with (C,
A) observable and (A, B) possibly uncontrollable. Suppose
K ∈ R

n×n is symmetric. Then xTKx is a storage function for
�-dissipativity of B if and only if K solves the LMI[

(KA + AT K − CT Jq,rC) (KB − CT Jq,rD)
(KB − CT Jq,rD)T −(Im + DT Jq,rD)

]
� 0.

(6)

As (Im + DT Jq,rD) is invertible, the Schur complement
of (Im + DT Jq,rD) in the above LMI gives11 the algebraic
Riccati inequality (ARI)

K(A − B(Im + DT Jq,rD)−1DT Jq,rC)
+(A − B(Im + DT Jq,rD)−1DT Jq,rC)T K

+KB(Im + DT Jq,rD)−1BT K

−CT (Jq,r + DDT )−1C

� 0. (7)

The corresponding equation is an ARE and we use
properties of this ARE in proving Theorem 3.1. De-
fine Ã := (A − B(Im + DT Jq,rD)−1DT Jq,rC),D̃ :=
B(Im + DT Jq,rD)−1BT and C̃ := CT (Jq,r + DDT )−1C,

and rewrite the ARE as

KÃ + ÃT K + KD̃K − C̃ = 0. (8)

Corresponding to this ARE, define the Hamiltonian ma-
trix H and also the matrices M, P and P̂ as done in
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Gohberg et al. (2005, Section 14.5):

H :=
[

Ã D̃

C̃ −Ã∗

]
, M := jH, P :=

[−C̃ Ã∗

Ã D̃

]
and P̂ := j

[
0 I

−I 0

]
. (9)

It is well known that a symmetric solution to an ARE
can be obtained from an n-dimensional, M-invariant and
P-neutral subspace and we state this in the proposition be-
low. (Non-singularity of the P above is not a concern due
to Gohberg et al., 2005, Lemma 14.5.1.) Let K ∈ C

n×n

be a Hermitian matrix. The graph subspace G(K) ⊂ C
2n

corresponding to the matrix K is defined as

G(K) := im

[
I

K

]
.

The following result, a restatement combining Proposi-
tions 14.4.1 and 14.5.2 of Gohberg et al. (2005), relates
solvability of the ARE in terms of P-neutrality with P de-
fined in (9).

Proposition 3.2 (Gohberg et al., 2005, Propositions 14.4.1
and 14.5.2): Consider the ARE (8) with (Ã, D̃) possibly
uncontrollable. Then K ∈ C

n×n is a Hermitian solution of
the ARE if and only if G(K) is M-invariant and P-neutral.

The following decomposition of the state space is stan-
dard (see e.g. Kailath, 1980, p. 133): this simplifies the
matrices we deal with.

Proposition 3.3: Consider the behaviour B ∈ Lw with an
i/s/o representation d

dt
x = Ax + Bw1, w2 = Cx + Dw1,

where w = (w1, w2). Then there exists a non-singular ma-
trix T ∈ R

n×n such that

T −1AT =
[

Ac Acp

0 Au

]
, T −1B =

[
Bc

0

]
and CT =[

Cc Cu

]
with the pair (Ac,Bc) controllable. (10)

Further, an i/s/o representation for the controllable sub-
system Bcont is given by

d

dt
z = Acz + Bcw1, w2 = Ccz + Dw1. (11)

In the context of the controllable part Bcont of an un-
controllable behaviour B, we need the Hc and Mc matrices
analogous to those in Equation (9) for B. Let nc be the
size of Ac above: recall that we began with an observable
state-space realisation in (2). Define Ãc := (Ac − Bc(Im +
DT Jq,rD)−1DT Jq,rCc), D̃c := Bc(Im + DT Jq,rD)−1BT

c

and C̃c := CT
c (Jq,r + DDT )−1Cc. Use these to define

Hc ∈ R
2nc×2nc :

Hc :=
[

Ãc D̃c

C̃c −Ã∗
c

]
and Mc := jHc. (12)

Lemma 3.1: Suppose Bcont ∈ Lw
cont satisfies the assump-

tion that (Im + DT Jq,rD) > 0. If Bcont is �-dissipative,
then the partial multiplicities corresponding to the real
eigenvalues of Mc, if any, are all even.

In order to prove Lemma 3.1, we use a result from
Gohberg et al. (2005) concerning the partial multiplicities
of real eigenvalues of Mc. We use Rλ0 (A) to denote the
generalised12 eigenspace corresponding to an eigenvalue
λ0 in the spectrum σ (A). Denote the controllable subspace
of the pair (Ã, D̃) by CÃ,D̃ .

Proposition 3.4 (Gohberg et al., 2005, Theorem 14.7.2):
Consider the state-space description as in Equation (11)
with (Ac, Bc) controllable and (Cc, Ac) observable. Con-
struct the Hamiltonian matrix Hc ∈ R

2nc×2nc as in Equation
(12). Assume D̃c � 0, C̃∗

c = C̃c and there exists a Hermitian
solution K ∈ C

nc×nc to the ARE (8). Suppose every purely
imaginary eigenvalue λ0 of (Ãc + D̃cK), if any exists on the
imaginary axis, satisfies Rλ0 (Ãc + D̃cK) ⊆ CÃc,D̃c

. Then,
the partial multiplicities of corresponding real eigenvalues
of Mc are all even and are twice the partial multiplici-
ties of the corresponding purely imaginary eigenvalues of
(Ãc + D̃cK).

Proof of Lemma 3.1: As the controllable part is �-
dissipative, due to Proposition 2.1, there exists a storage
function xTKx such that K is real and symmetric. By Propo-
sition 3.1, the matrix K is a solution of the ARE. Since
the system is controllable, the controllability subspace
CAc,Bc

= C
nc and hence CÃc,D̃c

= C
nc too.13 This proves

that Rλ0 (Ãc + D̃cK) ⊆ CÃc,D̃c
for every purely imaginary

eigenvalue λ0 of (Ãc + D̃cK), if any exists on the imaginary
axis. Thus, using Proposition 3.4, the partial multiplicities
of every real eigenvalue of Mc, if any, are all even. This
completes the proof of Lemma 3.1. �

For a complex matrix M ∈ C
n×n, we define14 a set

called the c-set as in Gohberg et al. (2005, Section 5.12).
The existence of such a c-set guarantees the existence of
a unique P-neutral, M-invariant subspace N under suitable
conditions on the partial multiplicities assumption. This is
made precise in the proposition given below. We use C to
denote the set of complex conjugates of the elements in
C ⊂ C.

Definition 3.1 (Gohberg et al., 2005, Section 5.12): Let
M ∈ C

n×n and let C be a finite set of non-real complex
numbers. The set C is called a c-set of M if C satisfies the
following properties:

(1) C ∩ C = ∅
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8 S. Karikalan et al.

(2) C ∪ C = σ (M) \ R, the set of all non-real eigenval-
ues of M.

We use this set in this and the following sections. We de-
note the restriction of a matrix M to a subspace N by M|N .
When N is M-invariant, the eigenvalues of the restriction
M|N are denoted by σ (M|N ).

Proposition 3.5 (Gohberg et al., 2005, Theorem 5.12.3):
Let M ∈ C

2n×2n be a P-self-adjoint matrix such that the
sizes of the Jordan blocks of M, say, m1, m2, . . ., mr, cor-
responding to all real eigenvalues of M, are even. Then for
every c-set C there exists a unique P-neutral, M-invariant
subspace N of dimension n and σ (M|N ) \ R = C. Further,
the sizes of the Jordan blocks of M|N corresponding to the
real eigenvalues are 1

2 m1,
1
2 m2, . . . ,

1
2 mr , respectively.

It is easy to verify that M and P defined in Equation (9)
satisfy PM = M∗P, i.e. M is P-self-adjoint. This allows the
use of Proposition 3.5 when we need P-neutral, M-invariant
subspaces corresponding to a suitable c-set.

The following proposition, which is a reformulation
and combination of Theorems A.6.1, A.6.2 and A.6.3 in
Gohberg et al. (2005), states that the partial multiplicities
of an eigenvalue are unaffected by pre-multiplying and/or
post-multiplying by a non-singular matrix. More gener-
ally, the multiplicity of the roots of the invariant polyno-
mials remains unaffected too. [The invariant polynomials
of a polynomial matrix P(s) are the diagonal entries of the
Smith form of P(s).] This result is used in the proof of
Theorem 3.1.

Proposition 3.6 (Gohberg et al., 2005, Section A.6):
Consider S1(ξ ) and S2(ξ ) ∈ R

w×w[ξ ] and let pj, 1(ξ ) and
pj,2(ξ ) ∈ R[ξ ] for j = 1, . . . , w be the invariant polyno-
mials of S1(ξ ) and S2(ξ ), respectively. Suppose S1(ξ ) =
T1S2(ξ )T2, for invertible T1, T2 ∈ R

w×w. Let λ ∈ C and
β1,i , . . . , βw,i be the maximum integers such that, for each
of i = 1 and 2, the factor (ξ − λ)βj,i divides pj, i(ξ ) for all
j = 1, . . . , w. Then, β j, 1 = β j, 2 for j = 1, . . . , w. In par-
ticular, if

S1(ξ ) =
[

ξI1 − P1 0
0 I2

]
and S2(ξ ) =

[
ξI1 − P2 0

0 Q(ξ )

]
with det Q(λ) �= 0 and P1 and P2 square constant matrices
of appropriate size, then the partial multiplicities of S1(ξ )
and S2(ξ ) corresponding to λ are equal.

We state and prove another lemma that is useful for
proving Theorem 3.1. The following lemma relates the par-
tial multiplicities of purely imaginary eigenvalues of the
Hamiltonian matrix corresponding to the controllable part
and those of the uncontrollable behaviour.

Lemma 3.2: Consider the behaviour B ∈ Lw with the set
of uncontrollable poles �un satisfying �un∩ − �un = ∅.
Suppose d

dt
x = Ax + Bw1, w2 = Cx + Dw1, induced

by w = (w1, w2), is an observable i/s/o representation
of B. Assume B satisfies strict dissipativity at infinity, i.e.
(Im + DT Jq,rD) > 0. Construct the Hamiltonian matrix H
as in (9). Let Bcont = im M( d

dt
) be an observable image

representation. Then, the following hold:

(1) σ (H )=�un ∪ −�un ∪ roots : det M(−ξ )T �M(ξ ),
counted with multiplicity.

(2) If the controllable part Bcont is �-dissipative,
then the partial multiplicities corresponding to the
purely imaginary eigenvalues of H, if any, are all
even.

Proof of Lemma 3.2: Statement 1: See Pal and Belur
(2008, Theorem 5.4).

Statement 2: Consider the following i/s/o representation
for B:

d

dt

[
xc

xu

]
=

[
Âc Âcp

0 Âu

][
xc

xu

]
+

[
B̂c

0

]
w1 and w2 = [

Ĉc Ĉu

][ xc

xu

]
+ D̂w1

(13)

with (Âc, B̂c) controllable. Then, the Hamiltonian matrix
gets the form

H =

⎡⎢⎢⎢⎣
Ac Acp BcB

T
c 0

0 Au 0 0

CT
c Cc CT

c Cu −AT
c 0

CT
u Cc CT

u Cu −AT
cp −AT

u

⎤⎥⎥⎥⎦

with

Au := Âu,

Ac := Âc − B̂c(Im + D̂T Jq,rD̂)−1D̂T Jq,rĈc,

Acp := Âcp − B̂c(Im + D̂T Jq,rD̂)−1D̂T Jq,rĈu,

Bc := B̂c(Im + D̂T Jq,rD̂)−
1
2 ,

Cc := (Jq,r + D̂D̂T )−
1
2 Ĉc,

Cu := (Jq,r + D̂D̂T )−
1
2 Ĉu.

(14)

The Hamiltonian matrix Hc for Bcont is

Hc =
[

Ac BcB
T
c

CT
c Cc −AT

c

]
.

In order to deduce Statement (2), we use Proposition 3.6
to relate the partial multiplicities of the jR eigenvalues of H
and Hc. To achieve this, we multiply the polynomial matrix
ξ I2n − H to its left and right by constant matrices Ei defined
below to obtain the modified ξ I2n − H in a convenient form.
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Consider

ξI2n − H

=

⎡⎢⎢⎢⎣
ξInc

− Ac −Acp −BcB
T
c 0

0 ξInu
− Au 0 0

−CT
c Cc −CT

c Cu ξInc
+ AT

c 0

−CT
u Cc −CT

u Cu AT
cp ξInu

+ AT
u

⎤⎥⎥⎥⎦ .

Pre- and post-multiplication by E1 of ξ I2n − H gives
E1(ξ I2n − H)E1 =⎡⎢⎢⎣

ξInc
− Ac −BcB

T
c −Acp 0

−CT
c Cc ξInc

+ AT
c −CT

c Cu 0
0 0 ξInu

− Au 0
−CT

u Cc AT
cp −CT

u Cu ξInu
+ AT

u

⎤⎥⎥⎦

with E1 :=

⎡⎢⎢⎣
Inc

0 0 0
0 0 Inc

0
0 Inu

0 0
0 0 0 Inu

⎤⎥⎥⎦ .

Since �un ∩ jR = ∅, for λ ∈ σ (Hc) ∩ jR, the matrix
blocks λInu

− Au and λInu
+ AT

u are invertible. Pre-
multiplying E1(ξ I2n − H)E1 by E2 and post-multiplying
by E3, we get

E2E1(ξI2n − H )E1E3

=

⎡⎢⎢⎣
ξInc

− Ac −BcB
T
c 0 0

−CT
c Cc ξInc

+ AT
c 0 0

0 0 ξInu
− Au 0

0 0 −CT
u Cu ξInu

+ AT
u

⎤⎥⎥⎦
(15)

with

E2 :=

⎡⎢⎢⎣
Inc

0 −T3T
−1

1 0
0 Inc

−T4T
−1

1 0
0 0 Inu

0
0 0 0 Inu

⎤⎥⎥⎦ ,

E3 :=

⎡⎢⎢⎣
Inc

0 0 0
0 Inc

0 0
0 0 Inu

0
−T −1

2 T T
4 T −1

2 T T
3 0 Inu

⎤⎥⎥⎦
and T1 := λInu

− Au, T2 := λInu
+ AT

u , T3 := −Acp and
T4 := −CT

c Cu. Thus,

E2E1(ξI2n − H )E1E2 =
[

ξI2nc
− Hc 0

0 Qu

]
,

where Qu =
[

T1 0
−CT

u Cu T2

]
.

Recall that �un ∩ jR = ∅ and hence Qu is invertible for
all λ ∈ jR. Finally, use Proposition 3.6 to conclude that
the partial multiplicities of purely imaginary eigenvalues
of H and Hc are both even. This completes the proof of
Lemma 3.2. �

Of course, notwithstanding the manipulations involved,
Statement (2) of Lemma 3.2 is fairly expected: since there
are no uncontrollable poles on the imaginary axis, the prop-
erty that the partial multiplicities of jR eigenvalues are even
holds for Hc and hence for H too.

4. Observable storage function:
proof of Theorem 3.1 and examples

In this section, we prove our first main result, namely, as-
suming no two uncontrollable poles of a behaviour B add
to zero, and assuming strict dissipativity on the control-
lable part Bcont at the infinity frequency, the dissipativity of
Bcont is equivalent to the existence of an observable storage
function for the whole behaviour B. This section also has
a corollary showing that the storage function constructed
within the proof is, in fact, a state function. We then apply
these results to two examples.

4.1 Proof of Theorem 3.1

Proof of Theorem 3.1: (2)⇒(1): Assume that the con-
trollable part Bcont is �-dissipative and the assumptions
in the theorem are satisfied. The proof outline is as fol-
lows. By Propositions 3.1 and 3.2, in order to prove that
the behaviour B is dissipative, it suffices to show the ex-
istence of a matrix K ∈ C

n×n such that the correspond-
ing graph subspace is an n-dimensional, M-invariant, P-
neutral subspace. To show the existence, we use Propo-
sition 3.5 to construct a c-set such that the correspond-
ing n-dimensional M-invariant, P-neutral subspace is a
graph subspace. This gives a matrix K which is a solu-
tion to the ARE, and a storage function for the whole be-
haviour would then be defined as xTKx, thus completing the
proof.

Since the unmixing assumption on uncontrollable poles
�un holds, λ ∈ jR ∩ σ (H ) means that λ �∈ �un and hence
λ ∈ σ (Hc). Due to the assumption that the controllable
part is �-dissipative, from Lemma 3.2, the partial mul-
tiplicities of real eigenvalues of M(:= iH) are all even.
Using this fact, Proposition 3.5 can be used to infer that
there exists a unique n-dimensional, M-invariant, P-neutral
subspace for every c-set. It remains to show the exis-
tence of a c-set such that the corresponding n-dimensional,
M-invariant, P-neutral subspace is also a graph
subspace.

Choose a c-set C for M. Let L be the n-dimensional,
P-neutral, M-invariant subspace of C

2n corresponding to C
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10 S. Karikalan et al.

and suppose

L = im

[
X1

X2

]
for matrices X1 and X2 ∈ C

n×n. In order to prove that L is a
graph subspace, it is required to show that X1 is invertible.
This is proved by contradiction: we assume X1 is singular
and show that we get a contradiction to the unmixing as-
sumption on �un. This constitutes the rest of the proof of
the ‘(2)⇒(1) part’. We prove this exactly along the lines of
Gohberg et al. (2005, Proof of Lemma 14.6.1) and Pal and
Belur (2008, Proof of Theorem 5.5).

M-invariance of L implies that

j

[
Ã D̃

C̃ −Ã∗

] [
X1

X2

]
=

[
X1

X2

]
T

for some T ∈ C
n×n. In other words,

j (ÃX1 + D̃X2) = X1T and j (C̃X1 − Ã∗X2) = X2T .

(16)
Since L is also P-neutral,

[
X∗

1 X∗
2

][−C̃ Ã∗

Ã D̃

][
X1

X2

]
= X∗

2D̃X2 + X∗
1Ã

∗X2 + X∗
2ÃX1 − X∗

1C̃X1 = 0. (17)

Suppose X1 is singular. Define K := ker X1 �= {0}. From
(17), for every x ∈ K we have

x∗X∗
2D̃X2x + x∗X∗

1Ã
∗X2x + x∗X∗

2ÃX1x

− x∗X∗
1C̃X1x = 0, (18)

which implies x∗X∗
2D̃X2x = 0. Since D̃ � 0, X2x ∈

ker D̃, i.e. X2K ⊆ ker D̃. Now, for every x ∈ K, from
the first equation in (16) we have X1T x = jÃX1x +
jD̃X2x = 0, that is, TK ⊆ K. This implies K is T-
invariant. Due to K �= {0}, there exists an eigenvector v

of T with v ∈ K corresponding to an eigenvalue, say, λ, of
T and of M. We first claim and prove that λ cannot be a real
eigenvalue.

Post-multiplying the second equation of (16) by v, we
get

jC̃X1v − jÃ∗X2v = X2T v

and hence − jÃ∗X2v = λX2v. (19)

Since X1v = 0, and due to L being n-dimensional, X2v �=
0. Equation (19) implies that X2v is a left eigenvector of
Ã with eigenvalue −j λ. We also had shown (immediately
following Equation (18)) that X2v ∈ ker D̃: this implies
BTX2v = 0. This means that −j λ is an uncontrollable
eigenvalue of Ã and −j λ ∈ �un, i.e. λ ∈ j�un. Now, if λ

were real, then −j λ and j λ both belong to �un and thus
contradicts the unmixing assumption �un ∩ �un = ∅. This
proves the claim that λ cannot be real. It remains to show the
contradiction on the unmixing assumption �un when λ is
non-real.

By definition of a c-set and Proposition 3.5, it follows
that σ (T ) \ R = C and hence λ ∈ C. We already showed
that λ ∈ j�un and we had started with j�un ⊂ C. This
gives λ ∈ C and hence the contradiction to C being a c-set.
This contradiction proves that X1 has to be non-singular.
Define K := X2X

−1
1 and this K solves the LMI and hence

xTKx is a storage function. This completes the proof of
(2)⇒(1).

(1)⇒(2): Assume B is �-dissipative. Then, there exists
a storage function Qψ (w) such that

d

dt
Qψ (w) � wT �w for all w ∈ B. (20)

Integrating both sides, we get that for every w ∈ B ∩ D,∫
R

wT �wdt � 0. This implies that Bcont is �-dissipative.
This completes the proof of Theorem 3.1. �

The above proof is constructive in the sense that if a be-
haviour B ∈ Lw satisfies the following three conditions:

(1) Uncontrollable poles are unmixed, i.e. no two of
them add to zero;

(2) The controllable part Bcont is �-dissipative;
(3) The controllable part Bcont is strictly dissipative at

infinity, i.e. (Im + DT Jq,rD) > 0, where D is the
feed-through term of the transfer function matrix
for any choice of i/o partition that results in a proper
transfer matrix;

then we construct a storage function xTKx that satisfies the
dissipation inequality for the whole behaviour B. Further,
the state x was assumed to be observable. These facts lead
to the following corollary.

Corollary 4.1: Consider � as in Equation (4) and let
B ∈ Lw be an uncontrollable behaviour that satisfies as-
sumptions (1), (2) and (3) above. Then, the following are
equivalent:

(1) Bcont is dissipative.
(2) There exists a � ∈ R

w×w[ζ, η] such that Q�(w) is
a storage function, i.e. d

dt
Qψ (w) � wT �w for all

w ∈ B.
(3) There exists a matrix K ∈ R

n×n and an observable
state variable x such that d

dt
xT Kx � wT �w for all

w ∈ B.

Statement (3) formalises that the storage of energy
requires no more memory of past evolution of trajec-
tories than that required for arbitrary concatenation of
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any two system trajectories. See Willems and Trentelman
(1998, Theorem 5.5) for the controllable case and related
discussion.

4.2 Examples

In this section, we discuss two examples of uncontrollable
systems that are dissipative. The AREs encountered in these
cases are solved using the methods proposed in this paper;
we also give explicit solutions.

The first example is of an uncontrollable system with
uncontrollable poles satisfying the unmixing assumption,
i.e. no two of the uncontrollable poles add to zero. However,
the Hamiltonian matrix has eigenvalues on the imaginary
axis.

Example 4.2: Consider the behaviour B whose i/s/o rep-
resentation is given by the following A, B, C and D
matrices:

A =
[

0 −0.5
1 −1.5

]
, B =

[−0.5
−0.5

]
,

C = [
0 −0.5

]
, D = 0.5

with σ (A) = {− 1
2 ,−1}. Here �un = { − 1} which satisfies

the unmixing assumption. A kernel representation of the
behaviour is given by[(

d2

dt2
+ 2 d

dt
+ 1

)
−

(
2

d2

dt2
+ 3 d

dt
+ 1

)][
w1

w2

]
= 0.

In this case � = diag(1, −1) and hence σ+(�) = m(B),
it can be checked that the controllable part Bcont =
ker

[
( d

dt
+ 1) −(2 d

dt
+ 1)

]
is �-dissipative. Further (Im −

DT D) = 0.75 > 0. Thus, from Theorem 3.1, B is �-
dissipative. A two-dimensional, M-invariant, P-neutral sub-
space, say, L, which gives a solution K, and the correspond-
ing real symmetric matrix K that induces a storage function
are

L = im

⎡⎢⎢⎣
1 2
1 8
1 1
0 1

⎤⎥⎥⎦ and K = 1

6

[
7 −1

−1 1

]
.

Example 4.3: Consider the RLC circuit in Fig. 1, for which
the supply rate is vi, and due to only passive elements, we
expect dissipativity. Assume RL = RC =: R. One can check
that the system becomes uncontrollable when L = R2C2. A
kernel representation of the uncontrollable system is given

by F ( d
dt

)
[

i
v

]
= 0 with

F (ξ ) =
[(

Rξ 3 +
(

1

C1
+ 2R2

C1L

)
ξ 2 +

(
2R

C1L
+ R

C1LC2

)
ξ + 1

C1LC2

)
−

(
ξ 3 + 2R

C1L
ξ 2 + 1

C1LC2
ξ

)]
.

Let R = 0.5, C1 = C2 = 1 and L = 0.25. The uncontrollable
pole is at −2 with multiplicity 2. In order to use our main
results, we need the supply rate to be u2 − y2 instead of the
supply rate vi: that this is always possible is explained in the
text before Equation (4). We use the coordinate transforma-

tion
[

1 −1
1 1

]
on the variables (v, i) to obtain the transformed

system variables (u, y), and for the transformed system, we
obtain an observable state-space realisation:

A =
⎡⎣− 14

3 1 0
− 20

3 0 1
− 8

3 0 0

⎤⎦, B = 1

3

⎡⎣ 2
8
8

⎤⎦,

C = [− 4
3 0 0

]
, D = 1

3
. (21)

Poles of the system are −2, −2 and − 2
3 and two of

them, −2 and −2, are uncontrollable. (The uncontrollable
poles remain unchanged by the manifest variable coordi-
nate transformation.) The transfer function G from u to y
is G(s) = s−2

3s+2 ; the controllable part is not strictly dissipa-
tive with respect to u2 − y2, since the H∞ norm15 of G(s)
equals 1. Further (Im − DT D) > 0, i.e. the controllable part
is strictly dissipative at frequency tending to infinity: though
the H∞ norm is equal to 1, the supremum is attained at ω

= 0 and not asymptotically as ω → ∞. Check that the un-
controllable poles are unmixed. Thus, from Theorem 3.1,
the system is dissipative. A solution to the ARE is given by
the following symmetric matrix:

K = 1

64

⎡⎣ 16 0 −4
0 4 −4

−4 −4 13

⎤⎦. (22)

Note that the state x, with respect to which the above K
gives the storage function xTKx, does not relate physically
to the capacitor voltages and inductor current: these phys-
ical states are unobservable from the port variables (v, i)
for the uncontrollable case. Equation (21) is an observable
realisation of the uncontrollable system, after the above-
mentioned coordinate transformation in the port variables
(v, i). We will revisit this example later in the context of the
embeddability definition of dissipativity and conclude that,
quite unreasonably, this RLC system cannot be dissipative
by that definition!
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12 S. Karikalan et al.

Fig. 1. An RLC circuit (Example 4.3).

5. Unobservable storage functions:
lossless trajectories

One of the two key assumptions in the previous sections was
that no two uncontrollable poles add to zero: the necessity of
this is investigated in this section. We address the situation
when the uncontrollable poles are on the imaginary axis. We
first consider the case when the behaviour is autonomous
and ‘lossless’ and later relax autonomy to some extent. In
both cases, we show observable imaginary-axis poles rule
out symmetric ARE solutions; with the intuitive expectation
that storage functions are state functions. Thus, this section
rules16 out observable state functions as storage functions
when there are some purely-imaginary-axis uncontrollable
poles. We note that the case of imaginary-axis poles is
just one converse to the unmixing assumption, the other
– when two non-zero real poles add to zero – requires
further investigation and is not pursued in this paper. We
note, however, that Lyapunov equation solvability studies
are closely linked with the unmixing assumption on the
uncontrollable poles: the case of autonomous systems when
two non-zero real poles add to zero has been related to
‘the presence of time-reversible non-periodic solutions’ in
Willems (1998, p. 6). In a different context, it has been noted
in Pal and Belur (2008, Theorem 8.3) that the single-output
case, loosely speaking, couples the mixed uncontrollable
poles due to which it has been shown there that unmixing
of �un is necessary for the existence of an ARE solution
for the single-output case.

The following lemma shows that the existence of a
storage function xTKx which is a state function forces
imaginary-axis eigenvalues to be unobservable. The link
with losslessness is elaborated below in Remark 5.1.

Lemma 5.1: Consider an autonomous behaviour Baut de-
scribed by d

dt
x = Ax and w = Cx, with σ (A) ∩ jR �= ∅.

Let the supply rate be −wTw. Suppose there exists a storage
function xTKx satisfying the inequality d

dt
xT Kx � −wT w

for all w ∈ Baut. Then, every λ ∈ σ (A) ∩ jR is unobserv-
able.

Proof: Suppose there exists a storage function xTKx satis-
fying the dissipation LMI (6). In this case, the LMI boils
down to the Lyapunov inequality KA + A∗K + C∗C ≤
0. Notice that every eigenvector x of A corresponding to

eigenvalue λ ∈ jR gives x∗(KA + A∗K + C∗C)x ≤ 0, and
hence

λx∗Kx + λx∗Kx + x∗C∗Cx � 0

which yields x∗C∗Cx � 0. (23)

However, since x∗C∗Cx ≥ 0, we have Cx = 0 for every eigen-
vector of A corresponding to λ ∈ σ (A) ∩ jR. This implies
that any λ ∈ σ (A) ∩ jR is unobservable. This completes
the proof.

The above result shows that for dissipativity of au-
tonomous systems having eigenvalues on the imaginary
axis, it is necessary to allow storage functions to depend
on unobservable variables also. Note that this has been
proved only for the special case when the supply rate satis-
fies σ + (�) = 0, the maximum input cardinality condition
for the case of an autonomous B. The condition σ + (�)
= 0 means that along every non-zero trajectory the power
extracted out by the system is positive at every time instant.

Remark 5.1: It is reasonable to use the term ‘lossless’ for
autonomous dynamical systems whose trajectories are pe-
riodic trajectories; more precisely, d

dt
x = Ax with σ (A) ⊂

jR and all eigenvalues semisimple. Such systems are just
linear oscillatory systems without damping (see Rapisarda
& Willems, 2005). In Sections 6 and 7, we touch upon
‘losslessness’ of non-autonomous systems, although in a
different sense.

The autonomous aspect of the above result can be re-
laxed to some extent by allowing a ‘static controllable part’:
the following state-space system makes this concrete. Con-
sider d

dt
x = Ax and y = Cx + Du. Thus, all the states are

uncontrollable. The lemma below states that imaginary-axis
eigenvalues of A, together with observability, rule out real
and symmetric solutions to the ARE, and hence rule out
observable state functions as storage functions.

Lemma 5.2: Consider a behaviour B having a state-space
representation d

dt
x = Ax and y = Cx + Du with (C, A)

observable. Consider the supply rate uTu − yTy. Suppose
I − DTD > 0 and, further, suppose �un ⊂ jR. Then, there
does not exist a symmetric solution to the corresponding
ARE.

The proof follows closely along the lines of that of
Lemma 5.1; hence, we give only an outline. For this case
too, the ARI boils down to a Lyapunov inequality KA +
A∗K + C∗(I − DDT)−1C ≤ 0. If a solution K exists, then the
contradiction in (C, A) observability is obtained by noting
that positive semi-definiteness of C∗(I − DDT)−1C causes
right eigenvectors of A corresponding to imaginary-axis
eigenvalues of A to be in the nullspace of C. This proves that
there does not exist an ARE/Lyapunov equation solution.

The assumptions in Lemma 5.2 can be understood
as follows. Notice that the maximum input cardinality
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condition holds here and Jq,r = −I . Further, relevant to
this case, positive definiteness of I − DTD and I − DDT

is equivalent. This helps to obtain the contradiction on the
observability of (C, A) through Equation (23). When D = 0,
the above lemma ‘decouples’ the input and output to yield
Lemma 5.1.

6. Orthogonality and uncontrollable behaviours

In this section, we investigate the property of orthogonality
of two behaviours in the absence of controllability. Note that
orthogonality is a special case of losslessness (see Proposi-
tion 6.1 below); while we do not delve much into lossless-
ness, the drawbacks we raise in the context of uncontrollable
orthogonal behaviours are applicable to lossless behaviours
too. We first review a result about orthogonality of control-
lable behaviours. The result is a combination of Willems
and Trentelman (2002, Proposition 4, p. 57) and Willems
and Trentelman (1998, Theorem 3.1).

Proposition 6.1 (Willems & Trentelman, 2002, Proposi-
tion 4, Part I): Let � ∈ R

w×w be non-singular, and suppose
B1,B2 ∈ Lw

cont. The following are equivalent:

(1)
∫

R
wT

1 �w2dt = 0 for all w1 ∈ B1 ∩ D and for all
w2 ∈ B2 ∩ D.

(2) B1 × B2 is lossless with respect to
[

0 �

�T 0

]
.

(3) There exists a bilinear17 differential form
L� , induced by � ∈ R

w×w[ζ, η], such that
d
dt

L�(w1, w2) = wT
1 �w2.

Statement (1) above is taken as the definition of orthog-
onality between two controllable behaviours B1 and B2 in
Willems and Trentelman (2002, Part 1, Section V-B) (see
also Willems & Trentelman, 1998, Section 10). The bilin-
ear differential form (BDF) L� , called the adapted BDF in
the situation of Statement (3), may be viewed as a variant
of a storage function. Keeping in line with Definition 2.1
for dissipativity, Statement (3) could have been considered
as the definition of orthogonality for behaviours not neces-
sarily controllable. The drawback of using such a definition
is elaborated below in this section (in Example 6.1). We
pursue a different definition as follows. Notice that if B1

and B2 satisfy the integral condition in Statement (1), then
this integral condition is satisfied for each respective sub-
behaviour B′

1 and B′
2 also. The following definition builds

on this property.

Definition 6.1: Consider a non-singular � ∈ R
w×w and let

B1 and B2 ∈ Lw. Behaviours B1 and B2 are said to be
�-orthogonal (and denoted by B1 ⊥� B2) if there exist
Bc

1 and Bc
2 ∈ Lw

cont such that

•
∫

R
wT

1 �w2 dt = 0 for all w1 ∈ Bc
1 ∩ D and for all

w2 ∈ Bc
2 ∩ D,

• B1 ⊆ Bc
1 and B2 ⊆ Bc

2.

When � = I, we denote B1 ⊥� B2 by B1 ⊥ B2.
Instead of the definition being existential in the storage
function (Section 3 and the results there), Definition 6.1
is existential in Bc

1 and Bc
2, raising new questions about

how to check orthogonality. We show in the following sub-
section (in Theorem 6.1) that when B is uncontrollable,
any controllable Bc ∈ Lw

cont such that B ⊆ Bc satisfies
m(B) < m(Bc) and we also obtain a precise count of the
minimum difference m(Bc) − m(B).

6.1 Smallest controllable superbehaviour

Consider the following problem of ‘embedding’ a be-
haviour, possibly uncontrollable, in a controllable behaviour
that is smallest in the sense of input cardinality.

Problem 6.1: Let B1 ∈ Lw. Find a controllable B2 ∈ Lw
cont

such that B2 ⊇ B1 and B2 has the smallest input cardinal-
ity amongst all controllable behaviours containing B1.

Existence of such a smallest superbehaviour, its input
cardinality and its uniqueness is addressed in the following
result.

Theorem 6.1: Let R1( d
dt

)w = 0 be a minimal kernel repre-
sentation of B1 ∈ Lw. The following statements are true:

(1) There exists B2 ∈ Lw
cont satisfying the requirements

in Problem 6.1.
(2) Assume B1 is uncontrollable. The input cardinal-

ity m(B2) satisfies m(B2) > m(B1). More precisely,
m(B2) = m(B1) + k where k := max

λ∈C

rank R1(λ) −
min
λ∈C

rank R1(λ).

(3) The behaviour B2 is unique in and only in the
following trivial cases:
(i) B1 is controllable, and then B1 = B2.

(ii) B2 = C∞(R, R
w): this is when

min
λ∈C

rank R1(λ) = 0.

Proof: (1): This is shown by constructing a B2 as required
in Problem 6.1. Consider the minimal kernel representation
R1( d

dt
)w = 0 of B1 and suppose R1 ∈ R

p1×w[ξ ]. For any
B2 ∈ Lw, with kernel representation, say, R2( d

dt
)w = 0 and

R2 ∈ R
p2×w[ξ ], the behaviour B2 satisfies B2 ⊇ B1 if and

only if FR1 = R2 for some F ∈ R
p2×p1 [ξ ]. Thus, we need

to find a suitable F such that the resulting B2 satisfies the
requirements in Problem 6.1. Without loss of generality, F
can be assumed to be a full row rank polynomial matrix.
Controllability of B2 is equivalent to F(λ)R1(λ) being full
row rank for every λ ∈ C. The minimality of the input
cardinality of B2 is equivalent to requiring F to have the
largest number of rows among all F such that F(λ)R1(λ)
has full row rank for all λ ∈ C.
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14 S. Karikalan et al.

Let �un be the set of uncontrollable poles of B1. With-
out loss18 of generality, we assume R1 to be in its Smith

form: R1 = [ S 0 ], and further, S partitioned as S =
[

I 0
0 D

]
such that the identity matrix I ∈ R

(p1−k)×(p1−k) and D
∈ R

k×k[ξ ] is a diagonal matrix with its non-constant di-
agonal entries d1, d2, . . . , dk ∈ R[ξ ]\R satisfying the di-
visibility property: d1|d2, d2|d3,. . . and dk−1|dk. Thus, k
satisfies

k = max
λ∈C

rank (R1(λ)) − min
λ∈C

rank (R1(λ)).

Partitioning F =: [ F1 F2 ] conforming to the partition of
S, we have

R2 = [ F1 F2 ]

[
I 0 0
0 D 0

]
= [ F1 F2D 0 ]. (24)

Notice that F2(λ)D(λ) loses rank for λ ∈ �un. In fact, due
to the divisibility property among the di, F2D is the zero
matrix when evaluated at the one or more roots of d1, thus
forcing F1 also to be wide. The required minimality in
Problem 6.1 results in F1 to be not just a wide full row rank
polynomial matrix, but in fact square and non-singular too.
Any F1 such that R2(ξ ) := [

F1(ξ ) F2(ξ )D(ξ ) 0
]

is full row
rank for every complex number results in B2 satisfying the
requirements in Problem 6.1: the identity matrix of size
(p1 − k) is a valid choice for F1. For this choice of F1, one
can choose F2 arbitrarily.

(2): The input cardinality of B2 constructed above is
given by

m(B2) = w − p2 = w − (p1 − k) = m(B1) + k,

where, as calculated above, k := max
λ∈C

rank (R1(λ)) −
min
λ∈C

rank (R1(λ)). When B1 is uncontrollable, k � 1, and

hence m(B2) > m(B1).
(3): We first show that the two cases (i) and (ii) each

results in a unique B2. Suppose B1 be controllable. Then, in
the proof of Statement (1) above, S = I and D has zero rows
and columns. Thus, any kernel representation matrix of B2

is given by [F1 0] where F1 has to be not just non-singular,
but also unimodular. Since the kernel representations

[
I 0

]
and

[
F1 0

]
with F1 unimodular correspond to the same

behaviour, B2 = B1, thus making B2 unique.
Consider case (ii): B2 = C∞(R, R

w) is the same as
m(B2) = w, and this, together with the formula in Statement
(2), results in min

λ∈C

rank R1(λ) = 0. In this case all diagonal

entries in the Smith form S are non-constant, and hence F1

is absent. Since F2D evaluates to the zero matrix at the one
or more roots of d1, the smallest B2 is B2 = C∞(R, R

w);
in this case also, B2 is unique.

We next show non-uniqueness of B2 when B1 be un-
controllable and when min

λ∈C

rank (R1(λ)) � 1. In this case,

the square and non-singular matrix D is of size at least
1 and at most (p1 − 1), i.e. D ∈ R

k×k[ξ ] and 1 � k �
(p1 − 1). This allows a non-trivial choice of a square, non-
singular F1 ∈ R

(p1−k)×(p1−k)[ξ ] and F2 ∈ R
(p1−k)×k[ξ ] such

that [F1(λ)F2(λ)D(λ)] has full row rank for all λ ∈ C. It
is easy to see that any non-singular polynomial matrix
F1(ξ ) which is non-singular at each λ ∈ �un guarantees
controllability of B2 and since �un is finite, the result-
ing B2 can be ensured to be different by different choices
of F1. This completes the proof of Statement (3), and of
Theorem 6.1. �

The above result has consequences on orthogonality of
two uncontrollable behaviours: we see this in the following
subsection.

6.2 Superbehaviours and orthogonality

We saw earlier in this section that orthogonality of two un-
controllable behaviours is defined by requiring these uncon-
trollable behaviours to be subbehaviours of two orthogonal
controllable behaviours. Using the result on the existence of
smallest controllable superbehaviours that are controllable,
and their input cardinality, we reformulate the question of
whether two uncontrollable behaviours are orthogonal as a
question of finding a pair of smallest controllable superbe-
haviours that are mutually orthogonal. The requirement of
them being smallest is motivated by the fact that orthog-
onality of two controllable behaviours imposes an upper
bound on their input cardinalities: this is reviewed below
for controllable behaviours and then formulated and proved
for uncontrollable orthogonal behaviours.

For a behaviour B ∈ Lw and a non-singular matrix �,
the set �B is defined as

�B := {w ∈ C∞(R, R
w) | there exists v ∈ B

such that w = �v}.

It is straightforward to see that �B is also a behaviour,
its controllability is equivalent to that of B, and the input
cardinalities are equal. The statements and proofs of the
following proposition can be found in Willems and Trentel-
man (2002, p. 57) and Belur, Pillai and Trentelman (2007,
p. 752).

Proposition 6.2: Let B1 and B2 ∈ Lw
cont and suppose � ∈

R
w×w is non-singular. Then,

(1) B1 ⊥� B2 ⇔ B1 ⊥ (�B2),
(2) B1 ⊥� B2 ⇒ m(B1) + m(B2) � w.

Due to the above inequality constraint on the input car-
dinalities of orthogonal controllable behaviours, the un-
controllable behaviours too have a necessary condition to
satisfy for mutual orthogonality.
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Lemma 6.1: Suppose B1 and B2 ∈ Lw with at least one
of them uncontrollable and let � ∈ R

w×w be non-singular.
Assume B1 ⊥� B2 (according to Definition 6.1). Then,
m(B1) + m(B2) < w.

Proof: Since at least one of the two behaviours is uncon-
trollable, say, B1, embedding B1 in a smallest controllable
superbehaviour Bc

1 results in a strict inequality in the in-
put cardinalities of B1 and Bc

1 [by Theorem 6.1, Statement
(2)]. This combined with Proposition 6.2, Statement (2),
gives the required inequality m(B1) + m(B2) < w. �

The above result resolves an anomalous example of
‘orthogonal’ behaviours.

Example 6.1: Consider the pair of seemingly orthogonal
behaviours B1 and B2 ∈ Lw studied in Willems (2004,
p. 360). Define an autonomous B1 by choosing any A ∈
R
n×n and C ∈ R

w×n, with C �= 0, and let

B1 := {w1 ∈ C∞(R, R
w) | there exists x such that d

dt
x

= Ax, w1 = Cx}.

Define B2 := C∞(R, R
w), with w2 defined by, for example,

d
dt

z = −AT z + CT w2 for some z ∈ C∞(R, R
n). Consider

the supply rate wT
1 w2, i.e. � = I. It can be checked that

the ‘storage function’ xTz (also called the adapted BDF, as
mentioned after Proposition 6.1) satisfies d

dt
xT z = wT

1 w2.
In fact, the existence of such a storage function would
be reasonable for a different definition of orthogonality
of the two behaviours B1 and B2. (See Proposition 6.1,
Statement (3), and the text that follows.) In other words,
any autonomous behaviour B1 ∈ Lw is then19 ‘orthogonal’
to B2 = C∞(R, R

w)! However, the necessary condition of
Lemma 6.1 is not satisfied for this pair. Hence, there does
not exist a controllable behaviour Bc

1 such that Bc
1 ⊆ B1

and Bc
1 ⊥� B2 and thus B1 and B2 are not orthogonal by

Definition 6.1.

An obvious implication of Lemma 6.1 is as follows.

Corollary 6.1: Suppose B1 and B2 ∈ Lw and assume
B1 ⊥ B2 according to Definition 6.1. Let m(B1) +
m(B2) = w. Then, both B1 and B2 are controllable.

As mentioned in the beginning of this section, �-
orthogonality of B1 and B2 is equivalent to losslessness

of B1 × B2 with respect to the supply rate: S :=
[

0 �

�T 0

]
.

The matrix S ∈ R
2w×2w is special in the sense that, for

any non-singular � ∈ R
w×w, σ+(S) = σ−(S) = w. The con-

dition m(B1 × B2) = m(B1) + m(B2) = w assumed in the
above corollary is just the maximal input cardinality con-
dition. Though this section focussed on embeddability in
the context of orthogonality, one can define dissipativity
(losslessness) as embeddability of a behaviour in a dissipa-
tive (lossless) controllable superbehaviour. In the context
of losslessness, the question of how input cardinality being

maximum rules out uncontrollability has been addressed
and resolved in Rao (2012, Theorem 10): this turns out to
follow from Corollary 6.1, albeit by a different definition.

Corollary 6.2: Suppose B1 and B2 ∈ Lw and consider

� ∈ R
2w×2w with � :=

[
0 I
I 0

]
. Assume B1 × B2 is �-

lossless: there exists Bcont
12 ∈ L2w

cont such that Bcont
12 is �-

lossless and B1 × B2 ⊆ Bcont
12 . Suppose m(B1) + m(B2) =

w. Then, B1 × B2 is controllable, i.e. both B1 and B2 are
controllable.

While the above corollary follows from embeddability
arguments of Lemma 6.1 and Corollary 6.1, in Rao (2012)
the existence of an observable storage function has been
used as the definition of losslessness. Interestingly, at least
as far as lossless and maximum input cardinality behaviours
are concerned, Rao (2012, Theorem 10) and Corollary 6.2
here bring out the common aspects of the two definitions:
embeddability in controllable superbehaviours and exis-
tence of observable storage functions. Also common to
both results is the existential aspect of either the observ-
able storage function or the controllable superbehaviour. In
fact, the embeddability definition also yields the conclusion
that for a behaviour B ∈ Lw satisfying σ+(�) = m(B), if
there exists a controllable �-dissipative behaviour Bcont

containing B, then B is controllable. See also Theorem
7.2: Statements (2) and (3).

7. Dissipative subbehaviours/superbehaviours

In this section, we look into the input cardinality condition
for dissipative behaviours, and revisit the embeddability
definition for orthogonal and dissipative behaviours. Recall
that a behaviour B ∈ Lw which is dissipative with respect
to the supply rate � (a general constant, symmetric, non-
singular matrix) satisfies the condition m(B) � σ+(�). We
now look into the possibility of embedding a behaviour B
in a controllable superbehaviour that is �-dissipative, and
into a drawback of using this as a definition of dissipativity.

Problem 7.1: Given a non-singular, symmetric and indef-
inite � ∈ R

w×w, find conditions for the existence of a be-
haviour B ∈ Lw such that

• There exist B+ and B− ∈ Lw
cont with B = B+ ∩

B−;
• B+ is strictly �-dissipative and B− is strictly −�-

dissipative.

The significance of the above problem is that if a non-
zero behaviour B satisfying the above conditions exists,
then clearly such a behaviour would be both strictly �-
and strictly −�-dissipative, raising concerns about whether
embeddability in a dissipative controllable superbehaviour
is a reasonable definition of dissipativity. The following
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theorem states that non-zero autonomous behaviours can
indeed exist satisfying the above conditions.

Theorem 7.1: Let � ∈ R
w×w be non-singular, symmetric

and indefinite. Then, there exist non-zero behaviours B ∈
Lw such that requirements in Problem 7.1 are satisfied.
Further, any such B is autonomous, i.e. m(B) = 0.

Proof: We first show that given any non-singular, symmet-
ric and indefinite � ∈ R

w×w, a behaviour B satisfying the
above properties exists. Without loss of generality, let

� =
[

I+ 0
0 −I−

]

with sizes of the identity matrices I+ and I− equal to
σ + and σ−, respectively. Due to indefiniteness of �,
σ + , σ− � 1 and, due to the non-singularity, they sum
up to w. Choose any20 non-zero and non-constant poly-
nomial matrix M+ ∈ R

w×σ+[ξ ] such that for some ε +
> 0, M+(−jω)T �M+(jω) � ε+Iw for all ω ∈ R. Simi-
larly, choose M− ∈ R

w×σ−[ξ ] such that for some ε− > 0,
M−(−jω)T �M−(jω) � −ε−Iw for all ω ∈ R. Now define
B+ and B− by image representations w = M+( d

dt
)� and

w = M−( d
dt

)�, respectively. Define B := B+ ∩ B−, thus
proving the existence of a non-zero21B as stated in the
theorem.

We now show that B is autonomous. Let R+ (ξ ) and
R−(ξ ) induce the minimal kernel representations for B+
and B−, respectively. Then, B = B+ ∩ B− is described
by the kernel representation matrix R ∈ R

•×w[ξ ] with

R :=
[

R+
R−

]
. Clearly, rank R � w. Autonomy of B is the

same as rank R = w. This is proved by contradiction. Sup-
pose rank (R) < w. Then, there exists p ∈ R

w[ξ ] and p �= 0
such that R+ p = 0 and R−p = 0. This implies im p( d

dt
) ⊆

B+ and im p( d
dt

) ⊆ B−. Defining w := p( d
dt

)� with � ∈
D(R, R) and � �= 0, it follows that w ∈ D(R, R

w). Further,
p �= 0, hence w �= 0 because � is non-zero and of compact
support. Moreover, we have ε + , ε− > 0 such that

∫ ∞

−∞
wT �w dt � ε+‖w‖2

L2

and
∫ ∞

−∞
wT �w dt � −ε−‖w‖2

L2
.

Both the above conditions cannot be satisfied simultane-
ously for w �= 0. Thus, rank (R) < w gives a contradiction.
This proves rank (R) = w and hence autonomy of B.

We illustrate the above theorem using an example.

Example 7.1: Let � = diag (1, −1). Define B+ and B−
by image representations w = M+( d

dt
)� and w = M−( d

dt
)�,

respectively, with

M+(ξ ) =
[

ξ + 4
3

]
and M−(ξ ) =

[
2

ξ + 5

]
.

Strict dissipativities are easily verified. Calculating the
kernel representations, we get a kernel representation for
B := B+ ∩ B− as R( d

dt
)w = 0 with

R(ξ ) =
[ −3 ξ + 4

ξ + 5 −2

]
.

Clearly, R is non-singular and hence B is autonomous.
Moreover, det R has degree 2 and hence B is non-zero. This
is an example of a non-zero behaviour that can be embedded
in a strictly � dissipative controllable behaviour B+ and
also in a strictly −� dissipative controllable behaviour B−.

For the non-strict dissipativity case, we have the follow-
ing problem and the solution.

Problem 7.2: Given a non-singular, symmetric and indef-
inite � ∈ R

w×w, find conditions for the existence of a be-
haviour B ∈ Lw such that:

• There exist B+ and B− ∈ Lw
cont with B = B+ ∩

B−,
• B+ is � dissipative and B− is −� dissipative.

Unlike Theorem 7.1, for the non-strict dissipativity
case, non-autonomous behaviours can be embedded too:
this is stated and proved below.

Theorem 7.2: Let � ∈ R
w×w be non-singular, symmetric

and indefinite. Then, the following hold:

(1) There exists B ∈ Lw such that requirements in
Problem 7.2 are satisfied.

(2) Any such B satisfies m(B) � min(σ+(�), σ−(�)).
(3) In case B is uncontrollable, m(B) <

min(σ+(�), σ−(�)).
(4) Ifm(B) � 1, then neither B+ nor B− can be strictly

dissipative.

Proof: (1): Except for the strictness of the dissipativities,
the proof proceeds in the same way as the proof for Theorem
7.1. Construct B+ and B− as in the previous proof, but with
ε + and ε− equal to zero. We have∫ ∞

−∞
wT �w dt � 0 for all w ∈ B+ ∩ D

and
∫ ∞

−∞
wT �w dt � 0 for all w ∈ B− ∩ D.

The above two equations imply
∫ ∞
−∞ wT �w dt = 0 for all

w ∈ B ∩ D.
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(2): Dissipativity with respect to � implies m(B) �
σ+(�). Similarly, dissipativity with respect to −� implies
m(B) � σ−(�). This implies m(B) � min(σ+, σ−).

(3): If B is uncontrollable, then using Theorem 6.1, the
input cardinality of B has to be strictly less than that of
both B+ and B−. This proves m(B) < min(σ+, σ−).

(4): If m(B) � 1, then from Theorem 7.1, B+ and B−
cannot be strictly dissipative with respect to � and −�,
respectively. This completes the proof. �

As one of the consequences of the above theorem,
if the maximum input cardinality condition is satisfied
for an uncontrollable behaviour, i.e. m(B) = σ+(�) or
m(B) = σ−(�), then such a behaviour can be embedded
into neither a �-dissipative controllable behaviour nor a
−�-dissipative controllable behaviour. However, an ob-
servable storage function for such a situation exists when
the controllable part is strictly dissipative at ∞ and when
the uncontrollable modes satisfy the unmixing condition
(see Theorem 3.1). More concretely, the RLC circuit in
Example 4.3 is a system which cannot be embedded in a
controllable dissipative system.

On the other hand, dissipative behaviours satisfying
m(B) < σ+(�), controllable or uncontrollable, are not dif-
ficult to envision: these are subbehaviours of dissipative
controllable behaviours. Do these exist physically, and, if
so, can they be realised without using ‘active’ devices?
The following remark deals with RLC realisability and the
maximum input cardinality condition.

Remark 7.1: It is well known that a transfer func-
tion matrix being positive real is a necessary and suffi-
cient condition for that transfer function matrix to be an
impedance/admittance of a network comprising of only re-
sistors, capacitors and inductors (see Brune, 1931, and also
Bott & Duffin, 1949, for the case with transformers). Note
that the ‘transfer function matrix’ captures only the control-
lable part of the behaviour, and the non-minimality aspect
of the realisations has been well addressed too (see e.g.
Willems, 2007, p. 150). Implicit to the definition of posi-
tive realness is the ‘square’ aspect of the transfer function
matrix, i.e. the number of inputs is equal to the positive sig-
nature of the supply rate: vTi, where v and i are the vectors
of port voltages and port currents, respectively (in the load
reference). Also see Rao (2012) for a discussion on this.
We now consider an extreme example of the ‘non-square’
case.

Consider the single port network with v = 0 and i
= 0. This port, called a nullator, behaves simultaneously
as the open circuit and short circuit: see Belevitch (1968,
p. 75) and Carlin (1964). Clearly, the nullator is a system
that is controllable, dissipative, in fact, lossless, and further,
it is a subbehaviour of every other behaviour, dissipative or
otherwise. Further, the number of inputs (zero, here) is
strictly less than the positive signature of the supply rate vi.
While the nullator can be realised22 using active elements,

it is known that there cannot be a realisation using only
passive elements (RLCT elements) (see Carlin, 1964, p. 68).
This raises the more general question whether an externally
dissipative system, say, B, satisfyingm(B) < σ+(�) is truly
dissipative in the sense that they can be realised/synthesised
physically without using active elements internally or does
B have to contain active internal devices.

8. Concluding remarks

We briefly review the main results in this paper. The def-
inition of dissipativity involving the integral over all com-
pactly supported trajectories was unsuitable for uncontrol-
lable systems and hence we investigated three definitions
of dissipativity regarding uncontrollable systems:

(1) Existence of an observable storage function;
(2) Existence of state functions that are storage func-

tions but possibly unobservable; and
(3) Embeddability in a controllable dissipative super-

behaviour.

We first used the existence of an observable storage
function as the definition of a system’s dissipativity and
proved in Theorem 3.1 that, assuming the uncontrollable
poles are unmixed and assuming the dissipativity at the in-
finity frequency is strict, the dissipativities of a behaviour
and its controllable part are equivalent. This main result’s
proof used indefinite linear algebra techniques and also
required formulation and proof of new results in the solv-
ability of the ARE. These results also strengthened past
results about the existence of observable storage functions.
In this context, we also showed that the storage function is
a static state function.

The need for unobservable storage functions was vis-
ible when relaxing the unmixing assumption by allowing
imaginary-axis uncontrollable poles: we showed that for
lossless autonomous dissipative systems, the storage func-
tion, if assumed a state function, cannot be observable, thus
motivating the need for unobservability.

It has been noted in Willems (2004) about how by al-
lowing unobservable storage functions in the definition of
dissipativity/losslessness any autonomous system turns out
to be ‘orthogonal’ to the whole space C∞ (see Example 6.1
above). This anomaly was resolved by our investigation into
the third definition of dissipativity: embeddability of a be-
haviour into a controllable dissipative superbehaviour. We
proved certain input cardinality necessary conditions: these
conditions were not satisfied by Example 6.1. In the con-
text of embeddability of an uncontrollable behaviour, we
proved the existence and showed construction of a small-
est controllable superbehaviour. However, the constraints
on the number of inputs caused the situation that when
an uncontrollable system has the number of inputs equal
to the positive signature of the supply rate (the maximum
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input cardinality condition), no uncontrollable behaviour
can be dissipative according to the embeddability defini-
tion. Note that the very physical and intuitively dissipative
RLC circuit of Example 4.3 is precisely such a case. It is
straightforward to construct many other RLC circuit exam-
ples that satisfy uncontrollability. We also saw Corollary
6.2 of how losslessness (by the embeddability definition)
and maximum input cardinality rule out uncontrollability:
a result from the literature that used the existence of an
observable storage function for defining losslessness.

In the context of embeddability as a definition of dissi-
pativity, we showed that one can construct non-zero be-
haviours that can be embedded in two controllable be-
haviours: one strictly dissipative and the other strictly ‘an-
tidissipative’. Key input cardinality constraints were proved
in this embeddability result. This brought us to the question
whether there exist physical dissipative systems in which
the number of inputs is strictly less than the positive sig-
nature. We noted in Remark 7.1 that the one-port network
called nullator is such a circuit example: its number of
inputs is strictly less than the positive signature, and, more-
over, it is not RLC realisable but requires active components
for physical realisation.
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Notes

1. An observable image representation w = M( d
dt

)� is helpful
for an i/o partition and transfer matrix too: associated with

any partition M(ξ ) =
[

M1(ξ )
M2(ξ )

]
, with M2(ξ ) being square

and non-singular, the corresponding partition of w into w =
(w1, w2) results in w1 as the output and w2 as the input. This
is analogous to the partition of the matrix R (conformably
to that of w) in a minimal kernel representation R( d

dt
)w =

0 into R(ξ ) = [P(ξ )Q(ξ )], with P being square and non-
singular. For a controllable system, the transfer matrix G
from w2 to w1 is G = −P −1Q = M1M

−1
2 .

2. When dealing with a function, say, Q(w, �) with (w, �) ∈ B,
the map F helps crucially in expressing Q(w, �) in terms of
just w by Q(w, F ( d

dt
)w). We use this later when dealing with

observable storage functions.
3. Note that elements of Lw+x are subsets of C∞(R, R

w+x) and
the concatenated trajectory is, in general, not C∞: see Rapis-
arda and Willems (1997, p. 1055) and Willems and Trentel-
man (2002, p. 59). Hence, we require satisfaction of the
differential equations in only a weak sense.

4. One might have a state-space representation of the corre-
sponding Bfull:

d
dt

x = Ax + Bu, y = Cx + Du, with (C,
A) unobservable. For example, at the parameter values caus-
ing uncontrollability, the capacitor voltages and the inductor
currents in Example 4.3 are unobservable from the port vari-
ables (v, i). We address unobservability in Section 5.

5. The latent variable � is not to be mistaken for that in an
image representation w = M( d

dt
)�.

6. Though similarly motivated, the definition of observability
of QDFs is slightly different in Willems and Trentelman
(1998, Section 7).

7. In fact, a system is controllable if and only if the compactly
supported trajectories are dense in the behaviour. While the
‘denseness’ aspect requires a more thorough elaboration of
the topology used, it is not hard to expect that compactly
supported trajectories are not ‘representative’ enough for
the uncontrollable case. An extreme case is a non-trivial
autonomous behaviour: while the zero trajectory is the only
compactly supported trajectory, the behaviour consists of
exponentials corresponding to the poles of B.

8. For a MIMO system with input u and output y, two key
notions of power are uTy in passivity studies and uTu − yTy
in H∞ control.

9. The term ‘unmixing’ has been used with almost the same
meaning in Shayman (1983) and Scherer (1991). These pa-
pers also allow imaginary-axis uncontrollable poles and re-
quire non-symmetry of only the non-imaginary uncontrol-
lable poles; our definition rules out imaginary-axis uncon-
trollable poles.

10. The feed-through term D is finite, since the transfer func-
tion is proper: see text before Equation (4). Once the
transfer function is proper, then positive definiteness of
(Im + DT Jq,rD) is a property of just Bcont and of neither B
nor the particular i/o partition. This independence is proved
easily using arguments similar to those used in Willems and
Trentelman (1998, p. 1739, proof of Theorem 5.7) while
relating strict dissipativity and biproperness.

11. The constant term within the ARE, i.e. the term independent
of K, simplifies by the use of the Matrix Inverse Lemma: (J
+ DDT)−1 = J − JD(I + DTJD)−1DTJ. Note that invertibil-
ities of I + DTJD and J + DDT are equivalent. However,
while I + DTJD is positive definite, J + DDT need not be
sign-definite. In spite of this, in Equation (14), we use (J
+ DDT)1/2. With a slight abuse of the definition of S1/2 of
a symmetric and positive-definite matrix S (see Section 2.2

above), we define J 1/2
q,r :=

[
Iq 0
0 jIr

]
for Jq,r =

[
Iq 0
0 −Ir

]
.

For a symmetric non-singular S, we define S1/2 as V T J 1/2
q,r V

using any factorisation S = V T Jq,rV , with V non-singular.
As far as our use of S1/2 for indefinite S (only in Equation
(14)) is concerned, this definition is fine.

12. This is also called the root subspace of the matrix A cor-
responding to the eigenvalue λ (in, for example, Gohberg
et al., 2005, Section 14.7), Rλ = ker(A − λI )n, where n is
the size of the matrix A.

13. We use the property that the controllability subspaces of (A1,
B1) and (A2, B2) are equal when A2 = A1 + B1K and B2 =
B1T for any K and any non-singular T of suitable dimensions.
See also Gohberg et al. (2005, Proposition 14.1.8).

14. In our paper, the Hamiltonian matrix H of Equation (9) above
can have jR eigenvalues. In the absence of such eigenvalues,
the notion of c-set relates very closely with the co-primeness
and unmixedness discussed in Trentelman and Rapisarda
(2001, p. 984).

15. We define the H∞ norm of a transfer function G(s) with
no poles in the closed right-half plane as ‖G‖H∞ :=
supω∈R

|G(jω)|.
16. Strictly speaking, we rule out ARE solutions, while state

functions which satisfy the dissipation inequality are ARI
solutions. See Pal and Belur (2008, Remark 8.4) for more
discussion on this.

17. A BDF is defined along the same lines as a QDF was defined
in Equation (1). Consider � ∈ R

w×w[ζ, η] with �(ζ , η) =
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∑
j, k� jkζ

jηk, where �jk ∈ R
w×w. The BDF L� induced by

� is a map L� : C∞(R, R
w) × C∞(R, R

w) −→ C∞(R, R)
defined as L� (w, v) := ∑

j,k( dj

dtj
w)T �jk

dk

dtk
v.

18. This amounts to a so-called module isomorphism on
C∞(R, R

w) using a unimodular matrix, a kind of change
of coordinates in C∞(R, R

w).
19. Though B1 is, loosely speaking, a ‘thin’ set, notice that 0 �=

B1 ⊂ B2: this is the anomalous aspect of the ‘orthogonality’
between B1 and B2.

20. There are ample such matrices due to the existence of many
controllable strictly dissipative behaviours for every indef-
inite supply rate �. Non-constant here means at least one
entry of M+ has degree 1 or more.

21. It is not difficult to show that if M+ and M− are non-constant
polynomial matrices, then B is not the zero behaviour. Ex-
ample 7.1 following the proof of Theorem 7.1 makes this
easier to see.

22. As noted in Carlin (1964), the realisation of a nullator is
combined with that of a so-called norator: a one-port net-
work in which both the voltage and current have no laws to
satisfy.
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