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In this paper we assume dynamical systems are represented by
linear differential-algebraic equations (DAEs) of order possibly
higher than one. We consider a structured system of DAEs for
both the to-be-controlled plant and the controller. We model the
structure of the plant and the controller as an undirected and
bipartite graph and formulate necessary and sufficient conditions
on this graph for the structured controller to generically achieve
arbitrary pole placement. A special case of this problem also gives
new equivalent conditions for structural controllability of a plant.
Use of results in matching theory, and in particular, ‘admissibility’
of edges and ‘elementary bipartite graphs’, make the problem
and the solution very intuitive. Further, our approach requires
standard graph algorithms to check the required conditions for
generic arbitrary pole placement, thus helping in easily obtaining
running time estimates for checking this. When applied to the state
space case, for which the literature has running time estimates, our
algorithm is faster for sparse state space systems and comparable
for general state space systems.
The solution to the above problem also provides a necessary and
sufficient condition for the following matrix completion problem.
Given a structured rectangular polynomial matrix, when can it be
completed to a unimodular matrix such that the additional rows
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that are added during the completion process are constrained to
have zeros at certain locations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

When dealing with large dynamical systems, numerical computation is often not feasible. Further,
the precise values of the parameters arising in system equations are rarely known. Due to these rea-
sons, many standard control problems are analyzed in the framework of ‘structured’ systems. The
survey paper Dion et al. [7] gives a detailed account of how various properties of such systems like
generic rank of the transfer matrix of the system, generic structure at infinity and disturbance de-
coupling have been analyzed under the assumption of genericity of parameters. These problems have
been addressed primarily for descriptor/regular state space systems, where the structure of the state
space system is modeled by a directed graph, and the graph is used further to characterize system
properties. A related context where structural control has been investigated is that of sensor network
design and decentralized control; here one deals with constraints on the variables that can occur
in controller equations. The notion of ‘decentralized fixed modes’ is considered in Wang and Davi-
son [22]; Corfmat and Morse [5]; Anderson and Clements [2]. As a generalization of decentralized
control, Sezer and Šiljak [19] defined and characterized structurally fixed modes for arbitrary feedback
patterns. Existence of structurally fixed modes, which rules out the possibility of arbitrary pole place-
ment, has been characterized in terms of directed graphs. In Murota [13] a matroid theoretic approach
is used to characterize the structurally fixed modes of a system in descriptor state space form. Algo-
rithmic running times of checking graph properties in the context of structural control problems have
been investigated in Papadimitriou and Tsitsiklis [16], and Murota [12,13].

In this paper we address the question: under what conditions on the plant structure can one
achieve arbitrary pole placement using a controller that has structural constraints. Thus we assume
the controller equations are constrained by a structure that specifies which system variables occur
in each controller equation. While existing techniques to address structural aspects of control and
pole placement using structured controllers start from a state space representation of the plant, the
results in this paper apply to more general models of dynamical systems: linear differential-algebraic
equations of order possibly higher than one.

After characterizing arbitrary pole placement with structured controllers in Theorem 2.6, we for-
mulate and prove new results (Theorem 2.7) for structural controllability of higher order dynamical
systems governed by DAEs. Use of behavioral theory of systems (see Polderman and Willems [17])
allows relating controllability properties of such a dynamical system directly in terms of the Smith
normal form (SNF) of P (s), an associated polynomial matrix. System controllability is equivalent to
all the invariant polynomials of P , i.e. the diagonals in SNF, being equal to one. In a generic/struc-
tural context, whether all the invariant polynomials are ones or not has been of interest primarily
for matrix pencils, see Iwata and Shimizu [9] and van der Woude [26]. Higher degree polynomial
matrices have been studied in the context of the generic SNF in Murota [14]. Structured matrices
where certain nonzero numbers are fixed, while certain other nonzero entries are generic, have been
considered in Murota [14] with the constraint that the fixed part of the polynomial matrix satisfies
certain ‘homogeneity conditions’ on its invariant factors: the factors are assumed to be monomi-
als. Using matroid theoretic methods, Murota [14] computes the degrees of the invariant factors
of the SNF through a so-called ‘combinatorial canonical form’. An absence of separation between
nonzero entries into fixed and generic simplifies the problem and allows us to use techniques from
matching theory of bipartite graphs. Such techniques have been utilized in van der Woude [25]
in the context of generic dimension of the state space of a dynamical system, where the generic
degree of the gcd of all maximal minors has been obtained under a more general formulation.
Statements 3 and 4 of Theorem 2.7 below provide new equivalent conditions for structural controlla-
bility.
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Finally, this paper also solves the problem of completion1 to a unimodular polynomial matrix U (s),
i.e. determinant of U (s) is a nonzero constant. Given a sparse, generic polynomial matrix P (s) with
n rows and m columns, n < m, and just locations of unspecified entries in C(s) that has (m − n)

rows and m columns, we provide necessary and sufficient conditions on the locations of the spec-
ified entries in P (s) and unspecified entries in C(s) such that by a suitable choice of polynomials

in the allowed locations in C(s), the matrix
[

P (s)
C(s)

]
has determinant equal to a nonzero constant. In

the literature on matrix completion problems, a separation of nonzero entries into specified and un-
specified entries, and the investigation into the associated graph of specified, unspecified and zero
entries’ locations, has been primarily in the context of constant matrices with additional properties,
like positive definiteness, M-matrix: see Hogben [8]. In the context of polynomial matrix completion,
the structural/generic aspects have not received any interest: for example, the focus in Amidou and
Yengui [1] is on constructing the precise values of the unspecified entries (from a multivariate Laurent
polynomial ring) for unimodular completion.

We summarize the contribution in this paper.

(a) We obtain equivalent graph-theoretic conditions on the plant and controller structures for generic
arbitrary pole placement. Equivalently, we obtain conditions for checking whether a rectangular
polynomial matrix can be completed to a unimodular matrix with nonzero entries chosen during
completion only at prespecified locations. See Theorem 2.6.

(b) We obtain new graph conditions for structural controllability of a plant, see Theorem 2.7.
(c) We specialize the above situation for the state space case (see Theorem 2.9).
(d) We provide algorithms that check conditions listed in Theorems 2.6 and 2.7 and also obtain their

running time estimates (Lemmas 6.2 and 6.4). Our algorithmic running time is lower than existing
algorithms for sparse system equations, and comparable for general systems.

(e) Inadmissible edges, removal of which is very central to all the graph conditions above, are shown
to never occur when building a large system from SISO (Single Input Single Output) subsystems
using just the series, parallel and feedback interconnection (see Theorem 2.8).

The paper is organized as follows. Section 2 contains brief preliminaries, our formulation of the
problem and our main results. Section 3 explains the remaining preliminaries: polynomial matrices,
genericity and bipartite graphs. The results on structural controllability of a plant are proved in Sec-
tion 4. Section 5 is concerned with proving Theorem 2.6 on conditions on the plant and controller
structures for arbitrary pole placement. The running time of the algorithms involved in checking the
graph conditions is addressed in Section 6. Section 7 summarizes some concluding remarks of this
paper.

2. Problem formulation and main results

Section 2.1 has preliminaries essential for just this section. An unfamiliar reader is urged to read
more details in Section 3 in case some terms in Theorems 2.6–2.9 are unclear. The sets R and C

stand for the sets of real numbers and complex numbers respectively, while R
n is the vector space of

n-tuples having entries from R. The set of polynomials in the indeterminate s with real coefficients
is denoted by R[s]. Matrices with n rows and m columns having entries from R[s] are denoted by
R

n×m[s]. A polynomial matrix P (s) ∈ R
n×m[s] is called left-prime if P (λ) has full row rank for each

λ ∈ C. The set of infinitely differentiable functions from R to R
m is denoted by C∞(R,Rm).

2.1. Preliminaries in brief

We consider systems which are described by a set of ordinary linear differential equations with
constant coefficients. The system behavior B is defined to be the subspace of C∞(R,Rm) consisting
of all solutions to the system equations: let P (s) ∈R

n×m[s].

1 We deal with a specialized case where the specified entries are in the top few rows and the unspecified entries in the
remaining rows.
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B :=
{

w ∈ C∞(
R,Rm) ∣∣∣ P

(
d

dt

)
w = 0

}
. (1)

This representation is called a kernel representation of B.
Since we seek only ‘generic’ results, we consider just the structural aspects of the system. In this

context, we associate a weighted bipartite graph to the given system. A graph G = (V , E) with vertex
set V and edge set E is said to be bipartite if V can be partitioned into two subsets R and C such that
no two vertices from the same subset have an edge between them. We associate an edge-weighted
bipartite graph G(R,C; E) to a polynomial matrix P (s) ∈R

n×m[s] as follows. The sets R and C denote
the rows and columns of the polynomial matrix and are the two disjoint vertex sets of the bipartite
graph G , i.e. |R| = n, |C| = m. By definition of G , an edge exists in the bipartite graph between vertex
ui ∈ R and v j ∈ C if the (i, j)th entry of the matrix P is nonzero. We will see that all nonconstant
polynomial entries in P (s) contribute to the results in the same manner irrespective of the degree.
The constant polynomial entries are different since their roots are an empty set, and therefore these
entries need to satisfy milder conditions compared to the nonconstant polynomial entries. Hence we
distinguish only between constant and nonconstant entries of the matrix. In this regard the edge set
is classified into two types.

• Constant edge: if the entry in P (s) corresponding to this edge is a nonzero constant.
• Nonconstant edge: if the entry in P (s) corresponding to this edge is a polynomial of degree one

or more.

This classification is analogous to having weights on the edges except that there are only two types
of weights: a) zero-weight (the constant entries, i.e. degree zero), and b) weight of one or more
(nonconstant polynomial entries, i.e. degree � 1). Note that there is no edge between two vertices ui
and v j if and only if the (i, j)th entry of P (s) is 0; this is different from an edge of weight zero. An
edge of weight zero is an entry which is a nonzero constant. We will not use degree of the polynomial
entry anymore, but rather refer to the entries as ‘constant’ and ‘nonconstant’. The degree of a vertex v
in the graph is the number of edges incident on v , equivalently, the number of neighbors of v .

For a bipartite graph G(R,C; E), and a subset of edges E1 ⊆ E , define the bipartite graph G[E1]
induced by E1 as the subgraph of G consisting of edges from E1 and their endpoint vertices. A set
of edges M in a graph G is called a matching if every vertex of the subgraph of G induced by M
has degree at most 1. The cardinality of a matching M , denoted by |M|, is defined as the number of
edges in M . A maximum matching is a matching with maximum number of edges. A graph can have
more than one maximum matching. An edge e in G is called admissible if e occurs in some maximum
matching of G and an inadmissible edge is one which occurs in none of the maximum matchings: see
Asratian et al. [3, Section 10.3]. In this paper, we consider polynomial matrices P (s) ∈ R

n×m[s] with
n � m, i.e. the graph G satisfies |R| � |C|. A matching M is said to be R-saturating if |M| = |R|. In
the special case when G satisfies |R| = |C|, an R-saturating matching is also called a perfect matching.
A detailed exposition of matching theory can be found in Lovász and Plummer [11].

A path in a graph G is a sequence of distinct vertices and distinct edges, v0e1 v1 . . . en vn , where
edge ei connects vertices vi−1 and vi , for each 1 � i � n. We rule out n = 1, i.e. a path cannot be
a single edge. A cycle in a graph G is a path with the exception that v0 = vn and all other vertices
and edges remain distinct. Our formulation results in simple graphs, i.e. graphs with no parallel edges
between any pair of nodes, and no self-loops.

Since every system of linear time-invariant (LTI) ODEs can be written as a kernel representation,
and hence can be associated to a polynomial matrix P (s) we use the zero/nonzero structure of the
polynomial matrix P (s) and the constant/nonconstant property of the nonzero entries to define a
‘structured system’.

Definition 2.1. Consider a system of LTI ODEs P ( d
dt )w = 0 with P ∈ R

n×m[s]. Classify the nonzero en-
tries in P (s) as constant and nonconstant and then associate the graph G(R,C; E) to the polynomial
matrix P (s). Such association partitions the set of all polynomial matrices into equivalence classes
and each class is identified by its corresponding graph. Further, we say the graph G(R,C; E) captures
the structure of the LTI system.
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For a given structure G(R,C; E), with |R| < |C|, the set of left-prime polynomial matrices in this
equivalence class is a generic set. See Definition 3.3 for a formal definition of genericity. If almost
all polynomial matrices in this equivalence class are left-prime, we say the polynomial matrices are
‘generically’ left-prime: it is well known that left-primeness of almost all polynomial matrices in this
class follows from existence of one left-prime element in this class, see text after Definition 3.3. The
following definition of structural controllability is justified since left-primeness of a polynomial matrix
P (s) is equivalent to behavioral controllability of the system defined by P ( d

dt )w = 0 (see Proposi-
tion 3.1 below).

Definition 2.2. A structured system G(R,C; E) is said to be structurally controllable if the polynomial
matrices in the equivalence class represented by G are generically left-prime.

Example 2.3. Consider a system described by the three differential equations in the variables w1, w2,
w3 and w4 presented in Fig. 1. The corresponding polynomial matrix P (s) ∈ R

3×4[s] and the associ-
ated bipartite graph are shown in Fig. 1. System parameters aij and bij are arbitrary real numbers.

a11 ẇ1 + b11 w1 + a12 ẇ2 + b12 w2 = 0

a21 ẇ1 + b21 w1 + b22 w2 = 0

b31 w1 + a32 ẇ2 + b32 w2 + a33 ẇ3 + b33 w3

+ a34 ẇ4 + b34 w4 = 0

P (s) =
⎡
⎣a11s + b11 a12s + b12 0 0

a21s + b21 b22 0 0

b31 a32s + b32 a33s + b33 a34s + b34

⎤
⎦

Fig. 1. Graph for P (s).

We show later after Theorem 2.7 that the above system is structurally uncontrollable, i.e. P (s) is
not generically left-prime. This means that for almost every value of aij and bij ∈ R, there exists λ ∈ C

such that P (λ) loses rank at λ.

2.2. Problem formulation and main results

The first important problem we address is whether one can generically place the poles of a given
structured system using some controller with a prespecified controller structure. In the behavioral
framework, when a plant P ( d

dt )w = 0 is interconnected with a controller K ( d
dt )w = 0, the system

variables w have to satisfy[
P ( d

dt )

K ( d
dt )

]
w = 0.

Autonomy of the interconnected/controlled system, together with so-called regularity of the controller,

translates to the property that the polynomial matrix
[

P (s)
K (s)

]
is square and has determinant not iden-

tically zero; see Willems [24, Sections 7 and 8] and an elaboration in Footnote 7 in Section 3.2 below.
The roots of the determinant polynomial are the closed loop poles. Ability to achieve arbitrary pole
placement of the closed loop is just the ability of choosing K to obtain any desired polynomial as this
determinant.
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In the framework of structured equations, let G K (RK ,C; E K ) denote the specified controller struc-
ture, i.e. G K (RK ,C; E K ) captures the zero/nonzero structure of K . Note that the vertex set C re-
mains the same as the variables in the plant and controller equations are the same. The edges of
G K (RK ,C; E K ) are termed as controller edges and they are not classified into constant/nonconstant,
unlike the plant edges: this is because the controller is to be designed and entries are to be chosen to
meet a control objective, for example, arbitrary pole placement.

Problem 2.4. Consider a plant structure G P (RP ,C; E P ) and a controller structure G K (RK ,C; E K ).
Find necessary and sufficient conditions on graphs G P and G K under which for almost any plant with
structure G P there exists a controller with structure G K that achieves arbitrarily specified poles for
the interconnected system. Develop an algorithm to check these conditions and estimate its running
time.

A special case of the above problem is when there is no structure specified for the controller, i.e.
each controller equation can access all system variables. It is well known that controllability of a
plant is a necessary and sufficient condition for arbitrary pole placement (see Willems [24] and also
Proposition 3.2 below). This brings us to the next main problem of this paper.

Problem 2.5. Consider the plant structure G P (RP ,C; E P ). Find necessary and sufficient conditions
on G P such that the system is structurally controllable. Develop an algorithm to check these condi-
tions and estimate its running time.

Two of the main results are stated below; they are solutions to the above problems. The following
theorem is about pole placement for structured system with constraints on controller structure.

Theorem 2.6. Let G P (RP ,C; E P ) represent the structure of the plant and assume G P contains an RP -satu-
rating matching.2 Consider a controller structure G K (RK ,C; E K ). Suppose LP and LK denote the equivalence
classes of polynomial matrices with graphs G P and G K respectively. Define R :=RP ∪RK and E := E P ∪ E K

and construct Gaut(R,C; E), the graph of the interconnection of the plant and the controller. Remove the in-

admissible edges from Gaut to get Gaut
a . Let χP K (s) refer to the determinant of A(s) :=

[
P (s)
K (s)

]
, for P ∈ LP and

K ∈ LK . Then the following are equivalent.

1. Arbitrary pole placement is possible generically using controllers having structure G K .
2. LP generically satisfies the following property:

for each P ∈ LP ,
⋂

K∈LK
roots of χP K = φ.

3. There do not exist subsets r ⊆RP and c ⊂ C that satisfy the following three conditions:
(a) |r| = |c|,
(b) there is a nonconstant plant edge in Gaut

a incident on r,
(c) every perfect matching M of Gaut

a matches r and c.
4. Every nonconstant plant edge in Gaut

a is in some cycle containing controller edges in Gaut
a .

The proof of the above theorem requires development of other results. See Section 5 for its proof.
Arbitrary pole placement with a specified controller structure which is in output feedback has been
addressed for state space systems in Šiljak [21]. The inability to achieve arbitrary pole placement has
been shown there to be related to so-called ‘structurally fixed modes’. Condition 2 of Theorem 2.6
is about non-existence of structurally fixed modes. Statement 4 explains that a nonconstant plant
edge ep that is admissible in Gaut but not in any cycle involving edges from G K contributes to a
factor in the characteristic polynomial which is independent of the controller. The inadmissible plant
edges do not contribute to any term in the determinant expansion anyway. Notice that Statement 3 in

2 This corresponds to the kernel representation of the plant being minimal, i.e. the associated structured polynomial matrix
is generically full row rank.
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Fig. 2. Bipartite graph for P (s) with and without inadmissible edges.

our result above involves a check over all subsets, thus suggesting a potentially non-efficient algorithm
to verify Statement 1. A key aspect of our paper is the equivalence of Statements 3 and 4, the latter
can be checked more efficiently: see Algorithm 6.3 and Lemma 6.4 below for the algorithm and its
running time estimate.

The next theorem solves Problem 2.5 on structural controllability.

Theorem 2.7. Let G P (RP ,C; E P ), |RP | < |C| represent the structure of the plant and assume G P contains an
RP -saturating matching. Suppose all inadmissible edges in G P are removed to obtain G P

a . Let g1, g2, . . . , gt

be the connected components of G P
a . Then the following are equivalent.

1. The plant is structurally controllable.
2. The graph G P represents an equivalence class of generically left-prime polynomial matrices.
3. Each component gi that contains a nonconstant plant edge satisfies |RP (gi)| < |C(gi)|.
4. For each nonconstant plant edge ep in G P

a , there exist RP -saturating matchings M and N such that ep is
in a path3 in G P

a [M�N], the subgraph of G P
a on the symmetric difference4 between M and N.

The proof of this theorem also requires more preliminaries and hence is given in Section 4. The
fourth condition requires a check on nonconstant and admissible plant edges while the third condition
involves checking the sizes of various components of G P

a . According to Condition 3, lack of structural
controllability is equivalent to the existence of a component, say g , in the bipartite graph G P

a being
such that g contains a nonconstant edge and also contains a perfect matching.

Consider the system in Example 2.3 above and Fig. 1. The determinant of the top 2×2 block in the
polynomial matrix P (s) is generically a polynomial of degree 2 and rank of P (λ) falls when λ is a root
of this polynomial. This verifies generic non-left-primeness of P , equivalently, the structural uncon-
trollability of the corresponding system. Consider Fig. 2 that shows G(R,C; E) and also the one after
removal5 of inadmissible edges. Condition 3 of Theorem 2.7 is not satisfied, thus verifying generic
non-left-primeness of P (s). The significance of removal of inadmissible edges can be seen by noting
that polynomials b31 and a32s + b32 do not affect any 3 × 3 minors of P (s), but result in connect-
edness of G . Theorem 2.7 is essentially about permuting the rows and columns and first bringing a

3 Note that, by definition (see Section 2.1), a path has length at least two. In fact, the proof of Theorem 2.7 below concludes
that this path is of even length.

4 The symmetric difference between two sets A and B , denoted as A�B , is defined as (A ∪ B)\(A ∩ B).
5 There exists a maximum matching of size 3, but none of the two edges corresponding to polynomials b31 and a32s + b32

occur in any matching of size three: these are both inadmissible.
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polynomial matrix P (s) into block lower triangular form. The diagonal blocks are the connected com-
ponents after removal of inadmissible edges. Square blocks, if any, are required to generically evaluate
to a constant polynomial as their determinants: this forces square blocks to have all admissible edges
as constant.

2.3. Series, parallel and feedback interconnections

In this subsection we bring out a control-theoretic significance of the notion of admissibility of
an edge. The following theorem states that each of series, parallel and feedback interconnection of
two systems retains structural controllability, and moreover, there are no inadmissible edges in the
resulting bipartite graph.

Theorem 2.8. Let S1 and S2 be two Single Input Single Output (SISO) systems. Consider the system S3 obtained
by any one of the following interconnection procedures:

1) series, 2) parallel, 3) feedback.
Then S3 is structurally controllable and the bipartite graph constructed from the equations describing S3 has
no inadmissible edges.

Proof. Let systems S1 and S2 have transfer functions q1(s)
p1(s) and q2(s)

p2(s) respectively. Consider first their
interconnection in the feedback configuration. Denote respectively the input and output variables
of S1 by e and y and those of S2 by y and v . The differential equations describing systems S1
and S2 are p1(

d
dt )y = q1(

d
dt )e and p2(

d
dt )v = q2(

d
dt )y. Feedback interconnection results in the addi-

tional equation: e = r − v . These three equations constitute matrix Mfdb:

Mfdb =
[ 1 1 −1

p1 −q1
q2 −p2

]
and wfdb =

⎡
⎢⎣

y
e
v
r

⎤
⎥⎦ ,

with Mfdb w fdb = 0 as the system equations. The blank entries in the polynomial matrix Mfdb are all
zero. It is straightforward to see that each nonzero entry in Mfdb(s) occurs in some term of a suitable
3 × 3 minor of Mfdb. This means that the bipartite graph constructed from Mfdb has no inadmissible
edges, thus proving the theorem for this interconnection configuration.

For S1 and S2 connected in series and in parallel, write the two systems of equations in matrix
form as follows:

Mser =
[

q1 −p1
q2 −p2

]
, wser =

[ r
v
y

]
and

Mpar =
[ p1 −q1

−p2 q2
1 1 −1

]
, wpar =

⎡
⎢⎣

u
v
r
y

⎤
⎥⎦ .

Like the feedback interconnection case, admissibility of every edge is verified in these interconnec-
tions too. Finally, the structural controllability claim is verified using Theorem 2.7 for Mfdb, Mser
and Mpar. �

The significance of the above result is in the following sense as far as larger interconnections
are concerned. If a connected bipartite graph G(R,C; E) comprises of only admissible edges, and
contains a perfect matching, then further arbitrary ‘addition’ of new edges ensures admissibility of
both the old and new edges (see text following Definition 3.5 in Section 3.4). Addition of edges,
without adding vertices, means that an existing equation now involves additional existing variables.
Due to guaranteed admissibility of the new edges, these newly introduced entries generically do
affect the closed loop characteristic polynomial. This modification of equations however involves
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more complex/meshed interconnection, and not necessarily within the series/parallel/feedback build-
ing blocks.

An algorithmic significance of the absence of inadmissible edges is that there is a significant im-
provement in the running time estimates of our algorithms to solve Problems 2.4 and 2.5: we revisit
this in Section 6 below.

2.4. State space systems

In this subsection we assume the plant is in a regular state space form and we formulate con-
ditions for structural controllability. Though the state space case is well studied, the results in the
literature involve, unlike our approach, directed and non-bipartite graphs. Let G P (RP ,C; E P ) be the
graph corresponding to P (s) = [ sI − A B ] ∈ R

n×(n+m)[s]. Since the column indices of P (s) corre-
spond to variables xi and u j , call the vertices v1, . . . , vn ∈ C as state vertices and vn+1, . . . , vm ∈ C as
input vertices. The following theorem states that structural controllability of (A, B) is equivalent to
each state in G P

a being connected to some input vertex and an additional condition that is relevant to
only the state space case.

Theorem 2.9. Let G P (RP ,C; E P ) denote the structure of the state space system (A, B) with A ∈ R
n×n and

B ∈ R
n×m. Obtain G P

a by removal of all inadmissible edges. The system (A, B) is generically controllable if and
only if the following two conditions are satisfied.

1. Each state is connected to some input vertex in the graph G P
a .

2. The bipartite graph constructed from the constant matrix [A | B] contains an RP -saturating matching.

Proof.

To ease the proof, we introduce some notation. We index

the RP -vertex set of the graph by
•
xi for i = 1, . . . ,n, while

the C-vertex is indexed by xi for i = 1, . . . ,n and u j for
j = 1, . . . ,m (see Fig. 3). The only nonconstant edges are

those that connect
•
xi to xi and the remaining edges are con-

stant. There are exactly n nonconstant edges, and these form
one RP -saturating matching in G P , and hence all the non-
constant edges are also in G P

a . Due to all nonconstant edges

being admissible, and due to each
•
xi being connected to xi ,

we first infer that vertices
•
xi and xi lie in the same connected

component g . Hence, for each connected component g of G P
a ,

the condition |R(g)| = |C(g)| is equivalent to the absence of
any input vertex u in C(g).

Fig. 3. State space system.

(Only if part): We first assume that there exists a state xi such that xi is not connected to any
input vertex in G P

a , and show that (A, B) is not controllable. Consider g , the connected component

of G P
a which contains xi . Due to the fact that each

•
x j of RP (G P

a ) is connected to x j (of C(G P
a )),

the assumption on xi implies that there is no input vertex in C(g). This implies that for g , we have
|R(g)| = |C(g)|. This means every RP -saturating matching in G P

a matches RP (g) and C(g). Since
g has at least one nonconstant edge, Condition 3 in Theorem 2.7 is not satisfied. Thus (A, B) is
structurally uncontrollable. This proves necessity of Condition 1 of Theorem 2.9.
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We next assume that Condition 2 of Theorem 2.9 is not satisfied, and show that the system is not
controllable. Suppose the bipartite graph corresponding to [A | B] does not have an RP -saturating
matching. This implies that at λ = 0, the matrix [λI − A | B] does not have full row rank. Using the
Popov–Belevitch–Hautus (PBH) test, it follows that the system is uncontrollable.

(If part): We now show that if every state xi in G P
a is connected to some input vertex u j , then ev-

ery connected component g of G P
a satisfies the condition |RP (g)| < |C(g)|; from Theorem 2.7 above,

it then follows that the system (A, B) is generically controllable for all nonzero complex numbers
λ ∈ C. Condition 2, which concerns controllability at λ = 0, is used while inferring structural control-
lability: this is addressed within Footnote 6.

Consider the connected components of G P
a . We noted above that since the n nonconstant edges

in G P
a that connect each state x j and

•
x j form an RP -saturating matching, each nonconstant edge is

admissible in G P , and hence that edge is retained in G P
a . Further, this also causes |RP (g)| � |C(g)| for

each component g of G P
a . Note that |C(g)| − |RP (g)| is precisely the number of input vertices in g .

Thus a state xi is connected to some input vertex if and only if |RP (g)| < |C(g)| for the component g
that contains xi . Hence each state being connected to some input vertex G P

a is equivalent to |RP (g)| <
|C(g)| for every connected component of G P

a . Using6 Theorem 2.7 above, we conclude that the system
is structurally controllable. �
Remark 2.10. Conditions 1 and 2 of Theorem 2.9 can be easily seen to be related to respectively
ruling out uncontrollability of Form I and Form II: see Šiljak [21, p. 23]. See also Murota [15,
Theorem 6.4.7], for example, about the interpretation of Condition 2 as generic controllability at
λ = 0.

Example 2.11. Consider A =
[ 0 α 0

0 β 0
0 γ 0

]
and B =

[
0
δ

0

]
, for real numbers α, β , γ and δ. This example has

been shown to be structurally uncontrollable in Reinschke [18] using the method developed there.
The bipartite graph constructed from [A | B] (shown in Fig. 4) does not contain a perfect matching
(see Condition 2 of Theorem 2.9). Due to loss of controllability at λ = 0, this system is not structurally
controllable.

Example 2.12. Consider A =
[ 0 α 0

0 β 0
γ 0 0

]
and B =

[
0
δ

0

]
, for real numbers α, β , δ and γ : a slightly modified

version of the previous example. The corresponding graph G P
a is now such that each state is connected

to the input vertex. See Fig. 5. Moreover, [A | B] too has full row rank generically. Hence the pair
(A, B) is structurally controllable.

Example 2.13. Consider A =
[

α1 0 0
α2 α3 α4
0 0 α5

]
and B =

[ 0
0
α6

]
, for real numbers αi . This system is structurally

uncontrollable, in particular, has Form I (see Šiljak [21, p. 22]). Check that in the corresponding bi-
partite graph, there exists a path between the input and every state vertex, however, after removal of
inadmissible edges, the state x1 is no longer connected. This makes α1 an uncontrollable pole of the
system. The system is structurally uncontrollable using Condition 1 of Theorem 2.9 above.

6 Strictly speaking, Theorem 2.7 refers to the case when, once a polynomial is nonconstant, all the coefficients are arbitrary
real numbers, and hence generically nonzero, while [sI − A | B] has its degree-one coefficients equal to one and diagonal con-
stant entries possibly zero: this is where Condition 2 plays a crucial role as follows. Since scaling of each row by a nonzero
real number has no effect on the zero set of the polynomial matrix, the diagonal entries having their degree-one coefficients
each equal to one is not the issue. However, the constant along the diagonals being assumed to be nonzero due to the formu-
lation of Theorem 2.7 causes A to be generically nonsingular and hence [A | B] is generically controllable at the origin. Since
this may not be the actual case for structured matrices A and B , Condition 2 of Theorem 2.9 is required to conclude generic
controllability at the origin too.



JID:LAA AID:12394 /FLA [m1G; v 1.114; Prn:24/10/2013; 15:12] P.11 (1-20)

R.K. Kalaimani et al. / Linear Algebra and its Applications ••• (••••) •••–••• 11
Fig. 4. Graph for Example 2.11. Fig. 5. Graph for Example 2.12.

3. Preliminaries

In this section we elaborate on the preliminaries required in this paper. Section 3.1 contains essen-
tials of the behavioral approach and Section 3.2 describes pole placement in this approach. Genericity
of parameters and properties of polynomial matrices in the generic context are covered in Section 3.3,
while Section 3.4 elaborates on the notion of an admissible edge: this notion plays a central role in
the results and the proofs.

3.1. Behavioral approach

In Section 2.1, the concept of system behavior and its kernel representation was introduced.
A behavior B is called controllable if for any two trajectories w1, w2 ∈ B there exists T � 0 and
a trajectory w ∈B with the property

w(t) =
{

w1(t) for t � 0,

w2(t) for t � T .
(2)

In other words, if B is controllable it is possible to patch from any past trajectory to any other
desired trajectory using a suitable w that satisfies the system laws, perhaps with some finite delay.
A behavior B is called autonomous if w1 = w2 whenever w1, w2 ∈ B satisfy w1(t) = w2(t) for all
t � 0. We state the required results from behavioral literature in the following proposition for easy
reference: see Polderman and Willems [17, Theorems 2.5.23, 3.2.16 and 5.2.5].

Proposition 3.1. Consider P ∈ R
n×m[s] and let behavior B be described by the kernel representation

P ( d
dt )w = 0. Then:

1. B is autonomous if and only if the polynomial matrix P has full column rank.
2. B is controllable if and only if P (λ) has constant row rank for every complex number λ ∈ C.

A kernel representation P ( d
dt )w = 0 is called minimal if the polynomial matrix P has full row rank.

Without loss of generality, a kernel representation can be assumed to be minimal: see Polderman and
Willems [17, Theorem 2.5.23]. Consider a polynomial matrix P ∈ R

n×m[s]. Define the zeros of P to be
the set of complex numbers where P loses its rank:

zeros(P ) := {
λ ∈C

∣∣ rank
(

P (λ)
)
< rank

(
P (s)

)}
. (3)

Note that ‘rank’ has slightly different meanings on the two sides of inequality in (3): in one case
rank is of a constant matrix P (λ) and in the other case rank is of a polynomial matrix P (s). The
polynomial matrix P (s) is said to be full rank if rank(P ) = min(n,m). If P is a full rank polynomial
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matrix, zeros(P ) are the roots of the gcd of all the maximal minors of P . For a detailed exposi-
tion of these notions, we refer to Kailath [10, Section 6.3]. A square polynomial matrix U is called
unimodular if det(U ) is a nonzero constant. These are precisely the square nonsingular polynomial
matrices whose zero set is empty. In the context of controllability and completion to a unimodular
matrix, we need coprimeness of polynomials and Bézout’s identity. Polynomials p1, . . . , pn ∈ R[s] are
said to be coprime if their gcd is 1. Polynomials p1, . . . , pn ∈ R[s] are coprime if and only if there
exist polynomials c1, . . . , cn ∈ R[s] such that c1 p1 + · · · + cn pn = 1: see Polderman and Willems [17,
Corollary 2.5.12], for example.

Using the definition of zeros(P ) as in (3) above, we see that a behavior described by P ( d
dt )w = 0

is controllable if and only if the zero set of P is empty. We use this characterization of controllability
and give equivalent graph-theoretic conditions under the assumption of genericity of parameters.

3.2. Pole placement

Let A( d
dt )w = 0 be a kernel representation of an autonomous behavior B. The determinant of A

is called the characteristic polynomial (assumed monic, without loss of generality) of the system,
and is denoted by χ(B). The roots of χ(B) counted with multiplicities are called the poles of the
behavior B. The following proposition gives a necessary and sufficient condition for pole placement
using the behavioral approach.

Proposition 3.2. (See Willems [24, Theorem 7].) Let P ( d
dt )w = 0, P (s) ∈ R

n×m[s] denote a minimal kernel
representation of the plant. Then the following are equivalent.

• For any monic d(s) ∈ R[s], there exists a regular7 controller K ( d
dt )w = 0 such that the corresponding

closed system has characteristic polynomial d(s), i.e. det
[

P (s)
K (s)

]
= d(s).

• The plant is controllable.

In particular, if we choose d as 1, the matrix
[

P
K

]
is unimodular thus relating controllability, left-

primeness and unimodular completion. Since we focus on generic arbitrary pole placement, which is
nothing but assigning the roots of χ counted with multiplicity, we ignore the ‘monic’ aspect of χ for
the rest of this paper.

3.3. Generic properties of polynomial matrices

This paper concerns studying controllability property in a structural sense, i.e. for almost all values
of system parameters. This brings us to the notion of genericity.

Definition 3.3. A property P in terms of variables a1, . . . ,an is said to be satisfied generically if the
set A ⊆ R

n of values that do not satisfy property P is contained in the zero set of some nonzero
polynomial in a1, . . . ,an .

A property P is true generically in R
n if and only if P is satisfied for almost all values in R

n .
A generic set is measure exhausting, i.e. the complement of the set has Lebesgue measure zero: see
Willems [23, p. 344], for example. When n is clear from the context, we skip specifying it explic-
itly. For example, one can check that two nonzero polynomials a(s) and b(s) ∈ R[s] are generically
coprime; this is verified as follows. In this case, n := deg a(s)+ deg b(s)+ 2 is the number of real coef-
ficients. Generic coprimeness follows since the set of coefficients have to satisfy a nontrivial algebraic

7 The interconnection is said to be regular if rank
[

P (s)

K (s)

]
= rank P (s) + rank K (s). Regularity of interconnection is closely

related to implementation of the controller in the feedback configuration: see Willems [24]. In this paper, we consider only
regular interconnections. Given a plant system, a controller is called regular if the interconnection between the plant and that
controller is regular.
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relation for the two polynomials to have a common factor: the algebraic relation is nothing but the
resultant of a(s) and b(s): see Kailath [10, Section 2.4.4].

For a square polynomial matrix P , we review the relation between the determinant of P and the
perfect matchings of the bipartite graph G(R,C; E) associated to P . Let M be a perfect matching
in G . Then M corresponds to a nonzero term in the determinant expansion of P : the term consists
of the product of all entries corresponding to the edges in M . The determinant of P is just the
sum of the terms over all perfect matchings in G , with suitable signs. P is nonsingular generically
if and only if G contains a perfect matching (see Murota [15]; Babai and Frankl [4]). In addition
to generic nonsingularity, the determinant being generically a nonzero constant, i.e. unimodularity
of P , is important too. The following proposition (specialized from van der Woude [25, Theorem 5.2])
formulates equivalent graph conditions for this.

Proposition 3.4. Consider the edge-weighted bipartite graph G(R,C; E) corresponding to a structured poly-
nomial matrix P ∈ R

n×n[s]. Then P is generically unimodular if and only if there exists a perfect matching and
every perfect matching in G comprises of only constant edges.

The above proposition is easier to state using the notion of an admissible edge: a necessary and
sufficient condition for generic unimodularity is that there exists a perfect matching and all admissible
edges are constant. The following subsection delves further into this notion and graphs comprising of
just admissible edges.

3.4. Inadmissible edges

In the graph G(R,C; E) constructed from P ∈ R
n×m[s] an edge e which does not occur in any

maximum matching is called an inadmissible edge of G . Consequently, the entry in P corresponding
to this edge e does not play a role in any maximal minor of P ; this means e does not affect the zero
set of the polynomial matrix P . After removing the inadmissible edges from G the resulting subgraph,
denoted as Ga , is such that every edge is admissible.8 Clearly, G has an R-saturating matching if and
only if Ga has one. Due to the genericity assumption on P , and since the nonzero entries in Pa

corresponding to Ga are also in P , we have the genericity property for entries in Pa also.

Definition 3.5. A bipartite graph G(R,C; E) with |R| = |C| is called elementary if its admissible edges
form a connected subgraph of G .

An interesting property is that a bipartite graph G(R,C; E) with |R| = |C| is elementary if and
only if G is connected, contains a perfect matching and has no inadmissible edges. Very relevant to
our paper is the following proposition dealing with cycles.

Proposition 3.6. (See Lovász and Plummer [11, Corollary 4.2.10].) Any two edges of an elementary bipartite
graph are contained in a cycle.

Next we review the Dulmage and Mendelsohn (DM) decomposition of a bipartite graph G , where
G is decomposed into edge disjoint subgraphs, called its DM components. Each of the subgraphs has
its edges either all admissible in G or all inadmissible in G . In this paper, we deal with a simpler
situation: the case when all inadmissible edges have been removed to get Ga and further Ga has a
perfect matching. We review the DM decomposition for just this case: it turns out that the connected
components of Ga are its DM components. We use this decomposition in Proposition 5.1 while fac-
torizing the determinant of matrix A in the proof of Theorem 2.6. The following proposition is about
an important property of the DM components in this special case.

8 An admissible edge e has also been referred to as ‘allowed’ and ‘maximally-matchable’ in the literature: see Lovász and
Plummer [11] and Tassa [20], for example. There are minor differences depending on whether the maximum matching contain-
ing e should also be perfect.
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Proposition 3.7. (See Asratian et al. [3, p. 187].) Let G(R,C; E) with |R| = |C| be a bipartite graph with a
perfect matching. Assume Ga is the subgraph induced by the admissible edges of G. Then each component of Ga

is an elementary bipartite graph.

In the situation under consideration, the DM decomposition is said to be nontrivial if Ga is con-
nected, i.e. Ga is an elementary bipartite graph.

4. Proof of Theorem 2.7: structural controllability

In this section we prove the equivalence between the conditions listed in Theorem 2.7 for struc-
tural controllability. We state some definitions and preliminary lemmas that are required to prove this
main result. The following two propositions relate cycles and paths to the components of G obtained
from the symmetric difference of two matchings in G .

Proposition 4.1. (See Asratian et al. [3, p. 57].) Let M and N be matchings in a graph G. Then each component
of G[M�N] is exactly one of the following:

1. an even cycle with edges alternating in M\N and N\M, or
2. a path whose edges are alternating in M\N and N\M.

Proposition 4.2. (See Asratian et al. [3, p. 58].) If a graph G has two perfect matchings M and N then all
components of G[M�N] are even cycles.

The following lemma relates components in the symmetric difference of two R-saturating match-
ings in a graph to being a path/cycle.

Lemma 4.3. Consider a bipartite graph G(R,C; E), with |R| < |C|. Let M and N be two R-saturating match-
ings in G and let CM , CN ⊂ C denote the vertices in C of the edges in the matchings M and N respectively. Then
the following are true.

1. As sets, CM = CN ⇔ each component of G[M�N] is a cycle.
2. As sets, CM 
= CN ⇔ there exists a component of G[M�N] which is a path of even length.

Proof. Using Propositions 4.1 and 4.2 we note that Statements 1 and 2 are the same. Hence it is
enough to prove just the ‘⇒ part’ of each statement.

1. (⇒): Since the two R-saturating matchings M and N satisfy CM = CN , they are two perfect
matchings on a set of 2|R| vertices. Hence from Proposition 4.2 we have that each component of
G[M�N] is a cycle.

2. (⇒): In the graph G[M�N], let rMN ⊆ R, cMN ⊆ C denote the set of vertices on which the
edges of G[M�N] are incident. If CM 
= CN , then |rMN | < |cMN |, which implies all the components of
G[M�N] cannot be cycles. Hence from Proposition 4.1 there exists a path in G[M�N]. Since both M
and N are R-saturating matchings, in G[M�N], the incidence degree of each vertex in R is either
two or zero. Hence a path in G[M�N] has its start and end vertex only in C . This implies that the
path is of even length. �

Using the above results, we prove Theorem 2.7: our main result on structural controllability.

Proof of Theorem 2.7. Some simplifications are helpful for proving the implications. We remove the
inadmissible edges in G P to get G P

a . Let Pa be the corresponding structured matrix. We permute
the rows and columns of Pa such that each connected component of G P

a corresponds to consecutive
rows/columns. Suppose the components of G P

a are g1, . . . , gc . Thus Pa is now in the form:
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Pa =

⎡
⎢⎢⎣

P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...

0 0 · · · Pc

⎤
⎥⎥⎦

with Pi the submatrices of Pa corresponding to the connected components gi . Moreover, Pi is square
if and only if |RP (gi)| = |C(gi)|. Since there exists an RP -saturating matching in G P , and therefore
in G P

a , each gi satisfies |RP (gi)| � |C(gi)|, and there exists at least one row-saturating matching for
each component gi . Further,

zeros(Pa) =
⋃

i=1,...,c

zeros(Pi).

With this simplification, we proceed to the proof. Statements 1 and 2 are equivalent by Definition 2.2.
We prove 2 ⇔ 3 and then 3 ⇔ 4.

(2 ⇒ 3): Suppose the polynomial matrices represented by G P are generically left-prime, i.e. the
zero set of P is empty generically. We show that for every component gi of G P

a satisfying |RP (gi)| =
|C(gi)|, all edges in gi are constant edges. On the contrary, suppose gi is such that |RP (gi)| = |C(gi)|,
and gi contains a nonconstant edge. Since each edge is admissible, the determinant of Pi is generically
a nonconstant polynomial. Hence the zero set of P has to be non-empty, thus proving the necessity
of Condition 3.

(3 ⇒ 2): For this part, we need to show that each of the Pi is such that its zero set is empty. There
are two cases.

Case 1: Pi is such that |R P (gi)| = |C(gi)| in G P
a , or

Case 2: Pi is such that |R P (gi)| < |C(gi)| in G P
a .

In Case 1, by assumption, all edges in gi are constant edges, and hence determinant of Pi is generically
a nonzero constant: see van der Woude [25, Theorem 5.2] and also Proposition 3.4. This proves that
the zero set of that Pi is empty. For Case 2, connectedness of gi and admissibility of all its edges make
the zero set of the corresponding Pi empty. This is proved exactly along the lines of the proofs of
Murota [15, Theorems 6.3.8 and 6.3.4]: such a component gi has been termed there as the ‘horizontal
tail’ of the DM decomposition.

(3 ⇒ 4): We assume a nonconstant plant edge ep in G P
a belongs to a connected component, say gi ,

satisfying |RP (gi)| < |C(gi)|. We prove that there exist two RP -saturating matchings M and N such
that ep is in a path in a component of G P

a [M�N]. Using the absence of inadmissible edges, the
connectedness of gi and |RP (gi)| < |C(gi)| together, we construct two RP (gi)-saturating matchings
m and n in gi as follows. Choose an RP (gi)-saturating matching, say m, which contains ep . Let Cm ⊂
C(gi) denote the vertices of the edges in the matching m. The other matching n is chosen to construct
the required path. Let vc(ep) denote the vertex of ep in C(gi). Consider a vertex v , such that v ∈
C(gi)\Cm . Such a vertex v exists because |RP (gi)| < |C(gi)|. Since gi is connected there exists a
path p between vc(ep) and v . Moreover, edges in p alternate between m and E P (gi)\m. Obtain a
matching n by “transferring9 from m along p”. Further, n does not contain ep . Notice that G P

a [m�n]
is exactly p. Use matchings m and n in gi to conclude that there exist two RP -saturating matchings
M and N in G such that the edge ep ∈ M and ep /∈ N . This proves that ep is in a path in G P

a [M�N].
Finally, since both the end vertices of p are in C(gi), it follows that length of p is even. This proves
Condition 4.

(4 ⇒ 3): We assume that every nonconstant plant edge ep is in a path in a component of
G P

a [M�N]. We show that any component gi of G P
a containing a nonconstant plant edge satisfies

|RP (gi)| < |C(gi)|. Consider a nonconstant plant edge ep which belongs to a connected component gi

of G P
a . Our assumption implies that there are two RP (gi)-saturating matchings m ⊂ M and n ⊂ N

9 Refer Asratian et al. [3, Theorem 5.1.7] which explains that it is possible to obtain a new maximum matching from an
existing maximum matching by a “sequence of transfers along alternating paths”.
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such that the edge ep ∈ G P
a [m�n] and is in a path. Then from Lemma 4.3 we have that Cm 
= Cn . This

implies that the connected component, gi which contains ep satisfies |RP (gi)| < |C(gi)|. This proves
Condition 3 and completes the proof of Theorem 2.7. �
5. Pole placement with constraints on controller structure

In this section we prove Theorem 2.6. The key idea in the proof is to ensure that there are no
structurally fixed modes, and the cycle condition for each nonconstant and admissible plant edge
then guarantees absence of common factors generically: thus allowing the use of Bézout’s identity.

The following proposition plays an important role in the proof. This is about factorizing the deter-
minant of a nonsingular matrix in accordance with a canonical decomposition (DM decomposition)
of an associated graph. Note that the factorization is defined over a specific ring which we explain
as follows. Assume we have a nonsingular matrix A whose nonzero entries are replaced by distinct
indeterminates from the set X := {x1, . . . , xp}. Let R[X] denote R[x1, x2, . . . , xp], i.e. the ring of poly-
nomials with indeterminates from X and coefficients from the field R. The subgraphs in the DM
decomposition play a role in the proper10 factorization of det(A) in R[X].

Proposition 5.1. (See Yamada [27].) Let A be a nonsingular matrix whose nonzero entries are distinct elements
from X. Assume G is the bipartite graph corresponding to A. Then det(A) has a proper factorization in R[X] if
and only if the DM decomposition of G is nontrivial. Furthermore, the irreducible factors of det(A) correspond
to the components in the DM decomposition.

Thus the determinant of the submatrix corresponding to each component does not admit a proper
factorization in R[X]. Further, if G is an elementary bipartite graph, then det(A) does not admit a
proper factorization in R[X]. A graph G whose DM decomposition is trivial is called DM-irreducible.

Proof of Theorem 2.6. Assume the DM decomposition (Proposition 3.7) on Gaut
a results in components

H1, . . . , Hk . Let Aa be the structured polynomial matrix corresponding to Gaut
a . Using Proposition 5.1,

each irreducible factor of det(Aa) corresponds to a component Hi . Corresponding to this decomposi-
tion of Gaut

a , decompose Aa as

Aa =

⎡
⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Ak

⎤
⎥⎥⎦ . (4)

Block Ai corresponds to the graph Hi and Ai is square, as each Hi is an elementary bipartite graph.
Note that determinant of Aa is

∏k
i=1 det(Ai). We use this to prove Theorem 2.6: we show 1 ⇒ 2 ⇒

3 ⇒ 4 ⇒ 1.
(1 ⇒ 2): Since arbitrary pole placement is possible, the intersection of closed loop poles obtained

using different controllers is empty. This proves Statement 2.
(2 ⇒ 3): We prove this by contradiction. We assume there exist subsets r ⊆ RP and c ⊆ C in

Gaut
a such that |r| = |c| and every perfect matching matches r to c with at least one nonconstant

plant edge incident on r. We prove that for each P ∈ LP , the intersection
⋂

K∈LK
roots of χP K 
= φ.

Subsets r ⊆ R and c ⊂ C with |r| = |c| such that every perfect matching of Gaut
a that matches r to c

corresponds to components Hi in Gaut
a . Since the subset in our case has r ⊆ RP , the component Hi

does not have any vertex from RK . Hence for a given P ∈ LP , the determinant of the corresponding
block Ai is a polynomial that is independent of K ∈ LK . Therefore the det(Aa) also has det(Ai) as
a factor which cannot be modified by the entries corresponding to controller edges. Since there is a

10 A factorization of a polynomial p in the ring R[X] into factors q and r is called proper if neither q nor r is invertible
in R[X]. In such a case, we say p is properly factorizable. If p is not properly factorizable, then p is called irreducible.
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nonconstant plant edge incident on r, det(Ai) generically has degree at least one. This proves that for
each P ∈ LP , the intersection

⋂
K∈LK

roots of χP K 
= φ.

(3 ⇒ 4): A component Hi in Gaut
a corresponds to subsets r ⊆ R and c ⊆ C with |r| = |c| such

that every perfect matching of Gaut
a matches r to c. Condition 3 implies that if there is at least one

nonconstant plant edge in a component Hi then there exists also one RK vertex in this Hi . Since
each Hi is an elementary bipartite graph, each edge in Hi is in a cycle with some controller edges.
(Refer Proposition 3.6.) Hence every admissible nonconstant plant edge in Gaut is in a cycle with
controller edges.

(4 ⇒ 1): Assume that every nonconstant plant edge which is admissible in Gaut
a is in a cycle

involving controller edges in Gaut
a . Let Hi be a component in Gaut

a with a nonconstant plant edge and
let Ai be the block in Aa corresponding to this Hi . This means Hi is an elementary bipartite graph and
det(Ai) is not properly factorizable in R[X]: see text after Proposition 5.1. Factorize the determinant
of Aa into

∏k
i=1 det(Ai). From our assumption, Hi has a controller vertex. Analogously for a given

P ∈ LP , the coefficients of the determinant polynomial of Ai depend nontrivially on entries of both P
and K . We need to prove that det(Ai) can be assigned arbitrary by appropriately choosing the entries
corresponding to the controller edges.

Consider a component Hi with nonconstant plant edges and choose a vertex rk ∈ RK . Suppose n
controller edges are incident on rk . Since Hi is elementary, using Proposition 3.6, we first infer that
n � 2. Corresponding to these edges a row of Ai has the entries c1, . . . , cn at the appropriate positions.
In case there is more than one controller vertex, then some more rows of Ai have controller edge
entries. Choose these entries generically from R. Expand the determinant along the row rk to get

det(Ai) =
n∑

i=1

ci pi

where polynomials pi are defined appropriately for each term in the determinant expansion.
The next claim is that at least two polynomials pi are nonzero and that all the nonzero polynomi-

als are generically coprime for all P ∈ LP and the generically chosen real numbers for the controller
edges incident on other controller vertices in Hi . We prove this claim by contradiction. Suppose they
are not generically coprime, then there exists a factor f (s), of degree at least one, which divides
each pi generically for all P ∈ LP . Hence det(Ai) = f (s)

∑n
i=1 ci p̃i . Since this is true for all polyno-

mials pi allowed by the plant structure, Proposition 5.1 helps conclude that det(Ai), viewed now in
the notation of that proposition, admits a proper factorization. This contradicts the irreducibility of
det(Ai) and hence contradicts that Hi is an elementary bipartite graph. This proves that the poly-
nomials pi ’s are generically coprime. Admissibility of all edges in Hi , along with the existence of a
nonconstant plant edge, implies that at least one polynomial pi is generically nonconstant. The co-
primeness of all pi ’s ensures that there exists one more polynomial p j which is nonzero. Finally, using
Bézout’s identity, we conclude that ci ’s can be chosen such that det(Ai) is any desired polynomial.
Hence det(Aa) can also be assigned arbitrarily, thus proving Statement 1. This completes the proof of
Theorem 2.6. �
6. Algorithm and running time estimates

In this section we provide algorithms comprising of standard graph tests to solve Problems 2.4
and 2.5. We also estimate the running time of these algorithms.

6.1. Structural controllability: algorithm and running time

This subsection focuses on structural controllability.

Algorithm 6.1. The algorithm is based on Statement 3 of Theorem 2.7.
Input: A bipartite graph G P (RP ,C; E P ), |RP | < |C| with each edge of E P classified as constant/non-
constant.
Output: “Structurally controllable” if so, and “Structurally uncontrollable” otherwise.
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1: Remove the inadmissible edges of G P to get G P
a .

2: Let A1, A2, . . . , At be the connected components of G P
a .

{Comment: Let Ai be a graph with vertex set V (Ai) and edge set E P (Ai).}
{Comment: Let RP (Ai) =RP ∩ V (Ai) and C(Ai) = C ∩ V (Ai).}

3: if every component Ai with |RP (Ai)| = |C(Ai)| has each edge in E P (Ai) as constant edge then
4: print “System structurally controllable”
5: else
6: print “System structurally uncontrollable”
7: end if
8: if no component Ai satisfies |RP (Ai)| = |C(Ai)| then
9: print “System structurally controllable”

10: end if

We estimate the running time of each step of the above algorithm.
Step 1: Removal of inadmissible edges: Using recent results from Tassa [20], the running time for

classifying the edges in G P as admissible or inadmissible is O (|E P |√|V | ). Removal of inadmissible
edges takes as much time too.

Step 2: Decomposition of G P
a into its connected components: Once all inadmissible edges in G P have

been removed, the algorithm for decomposing G P
a (with edges Ea

P and V =RP ∪C) into its connected
components can be done in O (|Ea

P | log∗(|RP | + |C|)) and is again standard, see Cormen et al. [6,
p. 522].

Steps 3–7: Connected component checking: For each connected component Ai satisfying |RP (Ai)| =
|C(Ai)|, it takes |Ea

P (Ai)| operations to check if all edges are constant edges. In other words, in at
most |Ea

P (Ai)| operations, one can determine whether Ai corresponds generically to a unimodular
submatrix or not. (The components Ai satisfying |RP (Ai)| 
= |C(Ai)| require no further check.)

Lemma 6.2. Consider a plant structure G P (RP ,C; E P ). Let V := RP ∪ C . Then, Algorithm 6.1 takes
O (|E P |√|V | ) time to check if the plant is structurally controllable or not.

Proof. Using the steps listed above and the running time involved for each step, the total
running time of the algorithm is at most O (|E P |√|V | ) + O (|Ea

P | log∗(|V |)) + O (|Ea
P |) which is

O (|E P |√|V | ). �
6.2. Arbitrary pole placement with structured controller: algorithm and running time

This subsection focuses on arbitrary pole placement using structured controllers.

Algorithm 6.3. This algorithm is based on Statement 4 of Theorem 2.6.
Input: The structure of plant G P (RP ,C; E P ) with edges classified as constant/nonconstant and struc-
ture of controller; G K (RK ,C; E K ).
Output: “Arbitrary pole placement feasible” if so, and “Arbitrary pole placement infeasible” otherwise.
Let Gaut(R,C; E); R :=RP ∪RK , E := E P ∪ E K denote the combined graph of plant and controller.

1: Remove the inadmissible edges of Gaut to get Gaut
a .

{Let A1, A2, . . . , At be the connected components of Gaut
a .}

2: if each component Ai containing a nonconstant plant edge contains an edge from G K then
3: print “Arbitrary pole placement feasible”
4: else
5: print “Arbitrary pole placement infeasible”
6: end if

Here V =RP ∪RK ∪ C .
Step 1: Removal of inadmissible edges in Gaut

a : This step requires O (|E|√|V | ) time as explained in
Step 1 of Algorithm 6.1.
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Step 2: Decomposition of Gaut
a into its connected components: This requires O (|Ea| log∗(|R| + |C|)).

This is explained in Step 2 of Algorithm 6.1.
Steps 3–6: Check within each connected component: By Proposition 3.7, each Ai is an elementary

bipartite graph. If the number of edges in Ai is more than one, then any two edges in Ai are contained
in a cycle: see Proposition 3.6. Checking Condition 4, Theorem 2.6 boils down to checking if each
component Ai containing a nonconstant plant edge has a controller edge, equivalently, a vertex in RK .
For each component this requires at most |Ea(Ai)| operations.

Lemma 6.4. Let G P (RP ,C; E P ) and G K (RK ,C; E K ) denote the plant and controller structures respectively.
Define V :=RP ∪RK ∪C and E := E P ∪ E K . Then, Algorithm 6.3 takes O (|E|√|V | ) time to check if arbitrary
pole placement is possible with the controller structure or not.

Proof. Proceeding as before, it follows that the running time of the algorithm is at most O (|E|√|V | )+
O (|Ea| log∗(|V |)) + O (|Ea|) which is O (|E|√|V | ). �

Note that the classification of edges into admissible and inadmissible is the most intensive of
the operations within the two algorithms above. The classification (and the removal) operations are
inessential for the construction of a large system by interconnection of SISO subsystems using one or
more of series/parallel and/or feedback interconnections. This was described above in Section 2.3 and
stated in Theorem 2.8.

We compare the above running time estimates with that of similar algorithms in the literature. In
order to compare, we deal with the state space case, though our approach applies to the higher order
case and also to the unimodular completion problem. Consider a state space system with n states,
m inputs and p outputs and with output feedback. The running time of the algorithm in Murota [12]
that checks structural controllability is O (n2(n + m) log n). Similarly, in Papadimitriou and Tsitsik-
lis [16], an O (n2.5) running time algorithm for checking structurally fixed modes has been described,
while Murota [13, p. 1394] describes one that is O (d3 log d), with d := n + m + p. Of course, both [12]
and [13] deal with more general so-called ‘mixed’ representations. In our case the algorithms for both
structural controllability and arbitrary pole placement require at most O (|E|√|V | ) running time as
removal of inadmissible edges is the dominant term among all the steps. Assuming |E| = O (|V |2), our
algorithm takes O (|V |2.5) time and is thus comparable to those in Papadimitriou and Tsitsiklis [16].
Of course, both structural controllability and generic pole assignability are more relevant for sparse
systems for which it is reasonable to assume |E| = o(|V |2) (for example, |E| could be O (|V | log(|V |))
or O (|V |1.5)). In the case when |E| = o(|V |2), our algorithm requires at most o(|V |2.5).

7. Concluding remarks

We considered the problem where the plant equations structure is given, i.e. which variable occurs
in which equation is specified. This structure was translated to an equivalence class of polynomial
matrices, with the zero and nonzero entries’ locations specified. Amongst the nonzero entries, we
distinguished between entries that are constant, and polynomials of degree at least one. Considering
‘open’ plants meant considering an under-determined system of plant equations, i.e. a rectangular
polynomial matrix. We studied structural controllability of the plant as ability to generically complete
a polynomial matrix from this equivalence class to a unimodular matrix. This amounts to potentially
using nonzero entries everywhere during the completion (Theorem 2.7). Instead of using nonzero
entries everywhere, a more refined problem is that of generic controllability using a controller with
structural constraints, i.e. controller equations having prespecified constraints about which variable
can occur in which equation. This is of obvious practical relevance to sensor network design problems.
We obtained necessary and sufficient conditions for such generic arbitrary pole placement using a
structured controller (Theorem 2.6).

Our solutions used techniques from matching theory, in particular, admissibility of edges and re-
sults from elementary bipartite graphs. Recall that an edge is called admissible if it occurs in some
maximum matching. We showed that arbitrary pole placement using a structured controller was pos-
sible if and only if every nonconstant admissible plant edge occurs in some cycle involving admissible
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controller edges. The conditions we obtained for the absence of structurally fixed modes is a natural
extension of the notion of such modes from the state space case to higher order systems.

The problem formulation and solution became easy by getting rid of inadmissible edges. This omis-
sion was justified since they do not occur in any maximum matching, equivalently, these entries do
not contribute to the zero set. Absence of inadmissible edges allowed use of results about elementary
bipartite graphs for solving the problems. In addition to playing a central role in our results, admis-
sibility of an edge turned out to also be guaranteed by the three basic interconnection procedures of
SISO systems: series, parallel and feedback.

We developed algorithms and obtained its running time estimates for solving Problems 2.4 and 2.5.
This was easily possible due to the necessary and sufficient conditions being stated in terms of
standard graph algorithms. Comparing with the state space case, for which algorithms have been
estimated for their running time in the literature, our algorithm is comparable for the general case
and significantly faster for the sparse state space system case.
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