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a b s t r a c t

In this paper, we study the set of trajectories satisfying both a given LTI system’s laws and also laws of
the corresponding ‘adjoint’ system: in otherwords, trajectories in the intersection of the system’s behavior
and that of the adjoint system. This intersection has important system theoretic significance: for example,
it is known that the trajectories in this intersection are the ones with minimal ‘dissipation’. Underlying
the notion of adjoint is that of a power supply: it is with respect to this supply rate that the trajectories
in the intersection are known to be ‘stationary’. In this paper, we deal with half-line solutions to the
differential equations governing both the system and its adjoint. Analysis of half-line solutions plays a
central role for example in initial value problems and in well-posedness studies of an interconnection.
We interpret the set of half-line trajectories allowed by a system and its adjoint as an interconnection
of these two systems, and thus address issues about well-posedness/ill-posedness of the interconnection.
We formulate necessary and sufficient conditions for this intersection to be autonomous. For the case of an
ill-posed interconnection and resulting autonomous system, we derive conditions for existence of initial
conditions that lead to impulsive solutions in the states of the system. We link our conditions with the
strongly reachable and weakly unobservable subspaces of a state space system. We show that absence
of impulsive initial conditions is equivalent to the well-known subspace iteration algorithms for these
subspaces converging in one step.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For an LTI system, the intersection of the sets of trajectories
allowed by the system and its ‘adjoint’ (dual) system has signifi-
cance in various areas: as ‘stationary’ trajectories in the context of
LQ control (see [1,2]), as Hamiltonian systems (see [3]), and as tra-
jectories of minimal dissipation (see [4]). Under suitable regularity
assumptions, this intersection exhibits desirable properties—like,
autonomy, havingMcMillan degree equal to twice theMcMillan de-
gree of the original system. One or both of these properties are lost
when the regularity assumptions are relaxed. Consequently, under
non-satisfaction of the regularity assumptions, the usage of the in-
terconnection of the system and its adjoint, in control problems,
becomes subject to major modifications. For example, in singular
LQ control, the intersection of the system and its adjoint may or
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may not contain impulsive optimal solutions: see [5,1,6] for a re-
lated exposition. In this paper, we go beyond the intersection and
view the same as an ‘interconnection’. While the interconnection
point of view does not provide, for the regular case, any significant
leverage over that of the intersection, the former point of view can
handle the singular case better than the latter; this is because the
singular case is nothing but an ‘ill-posed’ interconnection of the
system and its adjoint.

Following the tradition of the study of ill-posedness in the
interconnection paradigm, in this paper, we study half-line
solutions of the interconnection of the system and its adjoint.
Further, we investigate the issue of whether this interconnection,
when ill-posed, contains impulsive modes. For the purpose of this
paper: ‘impulsive’ modes are those trajectories that contain one
or more derivatives of the Dirac delta δ. ‘Fast’ modes include
impulsive modes and jumps.

Without dwelling on the essential preliminaries (which are
elaborated below in Section 2), we first list the main questions we
address in this paper. Let B be the behavior of the system, that is,
the collection of all the allowable trajectories under the system’s
dynamical equations. Further, let Σ , a constant real symmetric
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0167-6911/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2016.02.009
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:belur@ee.iitb.ac.in
http://dx.doi.org/10.1016/j.sysconle.2016.02.009


2 S.C. Jugade et al. / Systems & Control Letters ( ) –

matrix, induce the quadratic supply rate wTΣw on trajectories
w ∈ B. LetB⊥Σ denote the adjoint ofBwith respect to the supply
rate wTΣw. We address the following issues:

1. Given Σ and controllable/observable state space representa-
tions of a system B and its adjoint system B⊥Σ , when is the
interconnection B ∧ B⊥Σ an autonomous system?

2. Find conditions on B under which the interconnection is an ill-
posed interconnection.

3. If the interconnection is autonomous and ill-posed: find
conditions under which there are no initial state-space
conditions causing impulsive solutions.

4. Find conditions on the system B under which the external
system variables exhibit impulsive solutions: relate these
conditions to those in Item 3 above.

5. Can there be situations under which one or more of the
states of the interconnected system are impulsive, but the
external system variables are not impulsive? Does ‘impulse
unobservability’ or ‘unobservability at infinity’ resolve this?

In this paper we formulate necessary and sufficient conditions
for resolving some of the above questions and we provide
counter-examples for the unresolved ones. When studying the
interconnection of B and B⊥Σ , there are three important
representations for the interconnected system: B ∧ B⊥Σ :

1. the (possibly singular descriptor) state space system obtained
from the minimal state space representations of B and B⊥Σ ,

2. the kernel representation of B ∩ B⊥Σ obtained by using the
kernel representations of B and B⊥Σ , and

3. the latent variable representation w = M( d
dt )ℓ and

M(− d
dt )

TΣM( d
dt )ℓ = 0.

Note that, while the various representations listed above all lead to
the same set of solutions for the case ofwell-posed interconnection
between B and B⊥Σ , it is ill-posed interconnection that results in
difference in the fast solution sets of the various representations:
this paper focuses only on the fast modes. In this context, it turns
out that even when the state space of the interconnected system
has impulsive initial conditions, the external system variables do
not necessarily have impulsivemodes. See also [7]. In the later part
of the paper, we describe numerical examples with these features,
and further, investigate if impulse unobservability can explainwhy
the system is ‘impulse unobservable’.

A brief overview of the main results in this paper and the
paper organization are as follows. The following section contains
definitions pertaining to the behavioral approach, quadratic
differential forms (QDFs), and preliminary results on well-
posedness of interconnection and the notion of zeros at infinity
of a polynomial matrix and its relation to inadmissible initial
conditions, i.e. those initial conditions that cause impulsive
solutions. In Section 3, we summarize the assumptions used in
this paper and also their system-theoretic justifications. Section 4
contains new results on ill-posedness of interconnection of a
systemB and its dualB⊥Σ , and conditions for the interconnection
to be autonomous. Section 5 contains another main result of
this paper: necessary and sufficient conditions for the ill-posed
interconnection case under which the interconnected system has
no impulsive initial conditions. Section 6 raises questions about
how the presence/absence of impulsive solutions need not be the
same for the case of state variables, manifest system variables
and the latent variable used in an image representation. Section 7
contains some concluding remarks.

We use standard notation in this paper: R and C stand for
the fields of real and complex numbers respectively. The ring
of polynomials in the indeterminate ξ with coefficients from R
is denoted as R[ξ ], while matrices with entries from R[ξ ] and
having p rows and m columns are denoted by R[ξ ]

p×m, which for

polynomials is also Rp×m
[ξ ]. The spaces C∞(R, Rw) andLloc

1 (R, Rw)

stand for the spaces of infinitely often differentiable functions and
locally integrable functions each fromR toRw. In this paper,we also
need C∞(R+, Rw), where R+ stands for (0, ∞). The set of those
elements in C∞(R, Rw)which have compact support is denoted by
D(R, Rw). When the co-domain is clear from the context, then we
drop the co-domain andwriteC∞(R+), for example. Further, when
both domain and co-domain are clear, we write just C∞ or Lloc

1 .

2. Preliminaries

This section deals with the preliminaries that are required for
this paper. The following subsection reviews required results from
the behavioral approach to dynamical systems.

2.1. The behavioral approach

A linear differential behavior B is defined as the subspace of
Lloc
1 (R, Rw) consisting of all solutions to a set of ordinary linear

differential1 equations with constant coefficients; i.e. for R ∈

R•×w
[ξ ]

B :=


w ∈ Lloc

1 (R, Rw) | R


d
dt


w = 0


. (1)

This representation is called a kernel representation of B and w

is called the manifest variable. We assume a kernel representation
matrix R(ξ) to be of full row rank without loss of generality
(see [8]); such a full row rank kernel representation is called a
minimal kernel representation. The set of subsets of Lloc

1 (R, Rw)

that can be described by an equation of the form in Eq. (1) is defined
as Lw.

The familiar steerability aspect of the state controllability
definition has been extended for behaviors and the PBH rank test
generalizes [8, Chapter 5] as follows. For a behavior B described
by a minimal kernel representation R( d

dt )w = 0, B is controllable
if and only if R(λ) has full row rank for every λ ∈ C. The set of
controllable behaviors in w variables is denoted as Lw

cont. It is also
known that a behavior B is controllable if and only if there exists
a polynomial matrixM ∈ Rw×m

[ξ ] such that

B =


w ∈ C∞(R, Rw) | there exists ℓ ∈ C∞(R, Rm)

such that w = M


d
dt


ℓ


. (2)

This representation of B is called an image representation. It turns
out (see [8]) that for an image representation, without loss of
generality, one can assume M(ξ) to be such that M(λ) has full
column rank for each λ ∈ C: we call this an observable image
representation. A special case when a polynomial matrix U has for
each λ ∈ C both full row rank and full column rank is when its
determinant is a nonzero constant: such polynomial matrices are
called unimodular.

2.2. Dissipativity

In this subsection we review the essential notions of dissipativ-
ity theory: see [9] for a thorough treatment. Consider Σ ∈ Rw×w,

1 The differential equations are required to be satisfied in only aweak sense, i.e. in
the distributional sense.
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Fig. 1. Interconnection B1 ∧ B2 .

assumed symmetric and nonsingular without loss of generality. A
controllable behavior B ∈ Lw

cont is said to be Σ-dissipative if
∞

−∞

wTΣw dt > 0 for all w ∈ B ∩ D.

Supposew = M( d
dt )ℓ is an observable image representation of the

behavior. Then B is dissipative if and only if M(−jω)TΣM(jω) is
non-negative definite for every ω ∈ R.

2.3. Well-posed/ill-posed interconnections, impulsive solutions

This section contains the definition of well-posedness of
an interconnection and the link with existence of impulsive
initial conditions. For the purpose of this paper, we deal with
interconnection when an input/output partition of the system
variables is specified. For the systemB ⊆ C∞(R, Rw), a partition of
the system variablew intow = (u, y) is said to be an input/output
partition with respect to C∞, with u as input and y as output, if for
every u in C∞(R, Rm) there exists a y ∈ C∞(R, Rp) and, no further
component in y can be chosen arbitrarily in C∞(R, R). Conforming
to this partition of w, rewrite the minimal kernel representation
R( d

dt )w = 0 as

Q


d
dt


u + P


d
dt


y = 0.

Then w = (u, y) is an input/output partition with respect to C∞ if
and only if P is square and has nonzero determinant. With respect
to this input/output partition, we speak about the transfer matrix
G(s) := −P(s)−1Q (s). Important in this paper is Lloc

1 properties
of the variables, instead of C∞: the partition w = (u, y) is an
input/output partitionwith respect toLloc

1 if and only if, in addition
to P being square and nonsingular, G(s) = −P(s)−1Q (s) is proper.

A natural question that arises when dealing with two behaviors
B1, B2 ∈ Lw is whether upon ‘interconnecting’ the systems,
properness-type conditions are lost. This brings us to the definition
of a well-posed interconnection.

Definition 2.1. Consider behaviors B1 and B2, both with the
system variable w, and suppose the partitions w = (u1, y1) and
w = (y2, u2) are input/output partitions with respect to Lloc

1 for
B1 and B2 respectively. Assume the number of components in u1
equals that in y2. The interconnection B1 ∧ B2 of the systems B1
and B2 is defined as the system with variables w and (d1, d2), and
laws being those of B1 and B2, together with

u1 = y2 + d1 and u2 = y1 + d2. (3)

Further, the interconnection of B1 and B2 is said to be well-
posed if for any d1, d2 ∈ Lloc

1 , there exist unique u1, y1, u2, y2 ∈

Lloc
1 such that the laws of B1 and B2 and Eq. (3) are satis-

fied. In other words, the interconnection is said to be well-posed
if (d1, d2, u1, y1, u2, y2) = ((d1, d2), (u1, y1, u2, y2)) is an in-
put/output partition with respect to Lloc

1 for B1 ∧ B2.

Fig. 1 illustrates Definition 2.1. The interconnection B1 ∧ B2 is
said to be ill-posed if it is not well-posed. Note that well-posedness
can be checked by merely considering the system B1 ∧ B2 with
d1 = 0 and d2 = 0: see [10, Theorem 2.1] and [11, Theorem 7.1].
In the case when d1 = 0 and d2 = 0, the C∞-trajectories in the
interconnection B1 ∧ B2 can be uniquely identified with those in
B1 ∩ B2: the identification being u1 = y2 and u2 = y1. In view
of this, for the rest of the paper, the system laws of B1 ∧ B2 will
include d1 = 0 and d2 = 0, and hence B1 ∧ B2 ∈ Lw. Crucially, for
the well-posed case, the trajectories in B1 ∧ B2 are exactly those
in B1 ∩ B2. Then, a kernel representation of B1 ∩ B2 (and hence
B1 ∧ B2) is R1(

d
dt )w = 0 and R2(

d
dt )w = 0, where R1(

d
dt )w = 0

and R2(
d
dt )w = 0 are respectively minimal kernel representations

of B1 and B2. In this paper, we focus on the case when trajectories
are Lloc

1 .
It follows from Definition 2.1 that when an interconnection is

ill-posed, then one or more of the following is the case.

• Non-autonomous interconnected system: for some d1 and d2 ∈

Lloc
1 there do not exist u1, u2, y1 and y2 satisfying the system

laws.
• Autonomous interconnected system, but impulse causing initial

conditions (singular descriptor interconnected system): there
exist d1 and d2 ∈ Lloc

1 such that one or more of u1, u2, y1 and y2
are impulsive.

These two issues are central for this paper. We review the
notion of an inadmissible initial condition and that of zeros at
infinity of a polynomial matrix. For this paper, this is defined
only for an autonomous system, i.e. for systems which, loosely
speaking, the system variables do not ‘respond’ to external inputs,
in other words, all variables are outputs. A system B ∈ Lw is called
autonomous if in any input/output partition, all system variables
are outputs. Thus B ∈ Lw with minimal kernel representation
P( d

dt )w = 0 is autonomous if and only if P(ξ) is square and
nonsingular.

Suppose an autonomous system B ∈ Lw has a minimal kernel
representation P( d

dt )w(t) = 0 with P(ξ) ∈ Rw×w
[ξ ] nonsingular.

Let N be the highest degree of all the polynomial entries in P(ξ). Let
w(0), w(1)(0), . . . , w(N−1)(0) be the values of w, d

dt w, . . . , dN−1

dtN−1 w

at time t = 0−. Define w(0) = [w(0), w(1)(0), . . . , w(N−1)(0)].
We call the vector w(0) ∈ RNw an initial condition vector. A vector
w(0) is said to be an inadmissible initial condition vector if the
corresponding solution w(t) nontrivially contains a Dirac impulse
δ(t) and/or its distributional derivatives. See [12–14] for a similar
treatment.

There are various (equivalent) definitions of the notion of a
zero at infinity of a polynomial/rational matrix. Loosely speaking, a
matrix P(s) has one or more zeros at infinity if the matrix Q (λ) :=

P(1/λ) has one or more zeros at the origin λ = 0. We adopt a
more direct definition: consider P(s) ∈ Rq×w

[s] of rank say r . The
polynomial matrix P(s) is said to have no zeros at infinity if all the
following inequalities hold:

ν1 6 ν2 6 · · · 6 νr ,

where νi := maxs∈Si{deg det (s)} and Si is the set of all i × i
minors of P(s). If r = 1, there is no inequality to be satisfied:
in this case there are no zeros at infinity. Of course, the negative
of each of the νi are the ith valuations at ∞: see [15]. Using the
above definition, and the fact that a unimodular polynomialmatrix
U(ξ) has a nonzero constant as its determinant, we note that any
nonconstant unimodular U(ξ) has zeros at infinity.

The relevance of zeros at infinity is due to Vardulakis
[14, Theorem 4.32], which states that a necessary and sufficient
condition for absence of inadmissible initial conditions for the
autonomous system P( d

dt )w = 0 with P square and nonsingular
is that P has no zeros at infinity. See also [12].
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2.4. Orthogonal complement of a behavior and Hamiltonian systems

We review the definition of the Σ-orthogonal complement of
the system B. This system is familiar in the control literature as
dual or adjoint system. See also [16] where this dynamical system
is termed the ‘costate dynamics’.

Definition 2.2 (See [9]). Consider a controllable behavior B ∈

Lw
cont and a symmetric, nonsingular matrix Σ ∈ Rw×w. The Σ-

orthogonal complement of B, denoted by B⊥Σ , is the set of all the
trajectories v ∈ Lloc

1 (R, Rw) such that


∞

−∞
vTΣw dt = 0 for all

w ∈ B ∩ D.

Suppose R( d
dt )w = 0 is a minimal kernel representation and

w = M
 d
dt


ℓ is an observable image representation of B ∈ Lw

cont.
It is known that (see [9, Section 10], for example) a minimal kernel
representation for B⊥Σ isM


−

d
dt

T
Σv = 0 and v = ΣR(− d

dt )
Tℓ

is an observable image representation for B⊥Σ . In this paper we
deal with three situations.

(a) B ∩ B⊥Σ is non-autonomous,
(b) B ∩ B⊥Σ is autonomous and the interconnection B ∧ B⊥Σ is

ill-posed, and
(c) B ∩ B⊥Σ is autonomous and the interconnection B ∧ B⊥Σ is

well-posed.

For the ill-posed case, we characterize conditions for existence of
initial conditions resulting in impulses in one or more variables.

We dwell further on different representations of B ∩ B⊥Σ :
see also [1, equations (10), (12) and (18)] and [17, Proposition
4.1 and Theorem 3.4] for a similar treatment. We view the set
B ∩ B⊥Σ as those trajectories in the ‘interconnected’ or the
‘closed-loop’ system obtained by connecting the system B with
its adjoint system:when asking questions aboutwell-posedness of
the interconnection, we distinguish the interconnection B ∧ B⊥Σ

from the intersection B ∩ B⊥Σ .

B ∩ B⊥Σ =


w ∈ Lloc

1 (R, Rw) | R


d
dt


w = 0

and M


−
d
dt

T

Σw = 0


. (4)

Another representation of B ∩ B⊥Σ can be obtained by using
the image representations of B and B⊥Σ :

B ∩ B⊥Σ =


w ∈ Lloc

1 (R, Rw) | w = M


d
dt


ℓ

with ℓ satisfyingM


−
d
dt

T

ΣM


d
dt


ℓ = 0


. (5)

It is easy to see that B ∩ B⊥Σ is autonomous if and only if the
w × w polynomial matrix RHam(ξ) :=


R(ξ)

M(−ξ)TΣ


, which plays a

role in Eq. (4), is nonsingular. This nonsingularity is equivalent to
that of M(−ξ)TΣM(ξ). It is less easy to see that, while the two
representations (i.e. Eqs. (4) and (5)) indeed both describeB∩B⊥Σ

as far as slow solutions are concerned: the fast modes need not
be the same. More precisely, while RHam(ξ) could have nontrivial
impulsive half-line solutions, the corresponding M(−ξ)TΣM(ξ)
need not necessarily have: see Section 6 for concrete examples. A
third important representation, a first order one, is what we need
often.

SupposeB has the followingminimal input/state/output (i/s/o)
representation

ẋ = Ax + Bw1 and w2 = Cx + Dw1 (6)

where x is the state vector, w1 is the input vector, w2 is the output
vector. Consider Σ =


Im 0
0 −Ip


, then a state space representation

of B⊥Σ is given by

ż = −AT z − CTv1 and v2 = BT z + DTv1. (7)

Under the interconnection w2 = v1 and w1 = v2, a first order
representation of the interconnected system simplifies toẋ
ż
0


=

 A BBT BDT

0 −AT
−CT

−C −DBT Ip − DDT

  x
z
v1


. (8)

It is well-known (see [18, Lemma 5.1], for example) that B ∧ B⊥Σ

is well-posed if and only if (Ip − DDT ) is nonsingular. In that case,
the last line in the matrix–vector equation (8) can be rewritten as
v1 = (Ip − DDT )−1Cx + (Ip − DDT )−1DBT z. Substituting this in Eq.

(8) to eliminate v1 we get

ẋ
ż


= H


x
z


where

H :=


A + BDT (Ip − DDT )−1C BBT

+ BDT (Ip − DDT )−1DBT

−CT (Ip − DDT )−1C −(AT
+ CT (Ip − DDT )−1DBT )


.

The (2n × 2n) matrix H above is a Hamiltonian matrix, i.e. H
is similar to −HT . Note, however, that the above derivation fails
when (Ip − DDT ) is singular. The nonsingularity of (Ip − DDT )
remains a standing assumption in various applications: optimal
control through algebraic Riccati equations and to Hamiltonian
matrices, see [19,20], for example. In this paper, we focus on the
case when (Ip − DDT ) is singular, and analyze the interconnection
B ∧ B⊥Σ when it is not well-posed.

We note here that the set B ∩ B⊥Σ has received attention
in various contexts. For example, stationarity properties of this
set have been noted in [1] in the context of LQ control, and the
link with Euler–Lagrange equation has been brought out there.
Similar studies have been pursued later in [3,2]. In the context
of interpolation at spectral zeros, the matrix in Eq. (8) is the
one in [21], although for the ‘passivity supply rate’ instead of
the bounded real supply rate Σ (Eq. (9)) of this paper. The set
B ∩ B⊥Σ has been shown to be the set of trajectories of ‘minimal
dissipation’ in [4]. See also [22–24] for use of the notion of adjoint
system for system identification and construction of canonical
state maps, for example. We mention here that, unlike smooth
modes, impulsive solutions in a system behavior do get affected
by equation manipulation of the kind arising from (nonconstant)
unimodular matrices. However, the similarity transformations on
the states, being constant matrices, do not affect impulsive modes
in the system: hence their usage in [25], for example.

3. Assumptions and justifications

In this section we list the assumptions we make throughout
this paper. We also give system theoretic justification for the
assumptions.

3.1. Maximum input cardinality

Consider the supply rate induced by the matrix Σ used for
defining dissipativity above. By considering a suitable coordinate
transformation in the w variable, Σ can be assumed without loss
of generality to be equal to

Σ =


I+ 0
0 −I−


. (9)

Denote the positive and negative signatures of Σ , (the number of
positive and negative eigenvalues of the matrix Σ respectively),
by σ+(Σ) and σ−(Σ). Suppose the system is described by a
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minimal kernel representation R( d
dt )w = 0 and observable image

representation w = M( d
dt )ℓ with R(ξ) ∈ Rp×w

[ξ ] and M(ξ) ∈

Rw×(w−p)
[ξ ] and define m := rank (M) = w− p. It is known that [9,

Remark 5.11] m 6 σ+(Σ) is necessary for Σ-dissipativity of B.
This paper deals with the special case m = σ+(Σ): we call this the
maximum input cardinality condition and hence use

Σ =


Im 0
0 −Ip


. (10)

Corresponding to the partition of Σ , partition w = (u, y). It is
known that Σ-dissipativity ensures that this partition is, in fact,
an Lloc

1 -input/output partition. In other words, partitioning R of
the kernel representation R( d

dt )w = 0 above into R = [Q P]

with respect to w = (u, y), Σ-dissipativity results in the transfer
matrix G(s) := −P(s)−1Q (s) to be proper, and ∥G(s)∥L∞

6 1.
Further, since G(s) is proper, one can obtain a minimal state-space
representation of G(s), for which, up to a similarity transformation,
the state-space representation is unique.

3.2. Feedthrough term D = I

Assume a controllable behavior B ∈ Lw
cont satisfying

assumptions in Section 3.1 is Σ-dissipative, and suppose d
dt x =

Ax + Bu and y = Cx + Du is a minimal state space representation.
Then Ip − DDT is non-negative definite. The case when Ip − DDT

is positive definite is well-understood and results in a well-posed
interconnection. This paper focuses on the case when I − DDT is
singular. In order to avoid pursuing with a decomposition of the
(u, y) variables into nullspace and image of Ip − DDT , we assume
that (Ip − DDT ) is zero; further, we also assume that D = I and
Σ = diag (Im, −Im). The reasons are elaborated below.

Clearly, for ill-posedness, I − DDT is singular, i.e. one or more
of the singular values of D are equal to one. Further, when the
system is Σ-dissipative, i.e. when the system transfer matrix has
L∞-norm at most one, the remaining singular values are strictly
less than one. The singular values of D that are strictly less than
one do not cause ill-posedness of the interconnection and hence a
state space similarity transformation combined with a coordinate
transformation inu and y variables (see [26, equation (A.3)]) results
in a modified (Ã, B̃, C̃, D̃) such that D̃ is diagonal with all diagonal
entries being either zero or one. The diagonal entries being zero
are as good as the corresponding transfer matrix being strictly
proper. Since the strictly proper case and the situation when I −

DDT > 0, both result in the well-understood regular case, this
particular aspect in the more general singular (I − DDT ) case can
be handled by a corresponding regular part in the final singular
descriptor state space system. In order to analyze the situation due
to singularity, we thus focus on the extreme case of ill-posedness,
namely, when D is the identity matrix Im. As a special case, for a
SISO system, assuming Σ = diag (1, −1), ill-posedness of the
interconnection is equivalent to D = 1.

3.3. Full column rank condition on input matrix B

For the rest of this paper, we assume the input matrix B is
full column rank. By a dual argument, we also assume C is full
row rank. This is elaborated in this subsection. We first state a
necessary condition on state space representations of B under
which B ∩ B⊥Σ is autonomous. The rest of the paper deals with
autonomy of the interconnected system.

Lemma 3.1. Consider Σ = diag (Im, −Im) and suppose B ∈ L2m
cont

has variable w partitioned into w = (u, y) with respect to which the
transfer matrix G from u to y has a minimal state space realization
(A, B, C, Im). Suppose B ∩ B⊥Σ is autonomous. Then B is full column
rank.

The proof can be found in [2, Remark 4.3]. Further, this is related to
Hautus and Silverman [27, Theorem 3.26] and Heemels et al., [28,
Lemma 3.3], and our assumption that D = I . Consider the
assumption of B being full column rank. Under the situation that
D is the identity matrix, it can be proved that if B is not full column
rank, then the inputs corresponding to the null-space of B result
in a non-autonomous all-pass subsystem in the interconnection of
B and B⊥Σ . We outline this proof here. Suppose v is a constant
nonzero vector such that Bv = 0. Then u = vℓ for any nonzero
compactly supported function ℓ has the corresponding output y =

vℓ, assuming initial condition is zero. Clearly, (u, y) is an element of
bothB and ofB⊥Σ and is a nonzero compactly supported function.
This proves that the intersection is non-autonomous. Thus the
assumption that B is full column rank is a necessary condition for
the interconnected system to be autonomous.

For the situation addressed in the above result, we interpret
the above lemma, loosely speaking, as a nontrivial kernel of B
resulting in a non-autonomous and all-pass subsystem in the
interconnection of B and B⊥Σ .

By a similar argument, we also assume the full row rank
condition on C: this is also a necessary condition forB∩B⊥Σ to be
autonomous. In summary, the following assumptions hold for the
rest of this paper.

(a) The dissipativity being considered is with respect to uTu−yTy:
dissipativity ensures the input/output partition is unique, and
the corresponding transfer matrix is proper.

(b) With respect to the above input/output partition, the feedthrough
term D = I , i.e. a state space system of B is d

dt x = Ax + Bu and
y = Cx + u.

(c) B is full column rank and C is full row rank.

4. Ill-posed interconnection B ∧ B⊥Σ

In this section, we obtain a state space representation of B ∧

B⊥Σ for the case that the interconnection is not well-posed,
i.e. (Ip − DDT ) is singular.

The main result needs the notions of the weakly unobservable
subspace V and the strongly reachable subspace W as proposed
in [27]. The weakly unobservable subspace V is defined as the set
of all initial conditions x0 for which there exists an input u ∈

C∞(R+) such that the corresponding output y(t) is identically zero
on [0, ∞). The strongly reachable subspace W ⊆ Rn is defined as
the set of all states reachable by an impulsive input without the
output y being impulsive. The sets V and W can be computed by
the following subspace iteration algorithms [27, equations (3.20)
and (3.22)], each of which has been shown there to converge in at
most n steps.

Consider the state space system ẋ = Kx+ Lu, y = Mx+Nuwith
K ∈ Rn×n and N ∈ Rp×m, and L and M of corresponding sizes.

V0 := Rn,

Vi+1 :=


K
M

−1 
(Vi ⊕ 0) + im


L
N


, Vn =: V

(11)

W0 := {0},
Wi+1 := [K , L] {(Wi ⊕ Rm) ∩ ker [M, N]} Wn =: W .

(12)

It is known that the above subspace iteration algorithms converge
in at most n steps. The set W1 has a special significance in this
paper: it is the set of states reachable by an input containing δ
but no derivatives of δ. Further, together with autonomy of the
system, W = W1 is equivalent to no initial condition resulting in
an impulsive solution. We use Vi and Wi in Theorems 4.1 and 5.1.

SupposeBhas aminimal state space representation d
dt x = Ax+

Bu and y = Cx + u: the assumptions listed in the previous section
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hold for the rest of the paper. Recall the state space representation
for B ∧ B⊥Σ described in Eq. (8):ẋ
ż
0


=

 A BBT B
0 −AT

−CT

−C −BT 0

  x
z
v1


. (13)

Define

A :=


A BBT

0 −AT


, B :=


B

−CT


,

C :=

C BT  .

(14)

The above matrices are used to characterize the situation when
the interconnection is autonomous. See Remark 5.2 for the relation
with all-pass behavior of the system.

Theorem 4.1. Consider the interconnection of the behaviors B and
B⊥Σ with Σ as defined in Eq. (9). Let (A, B, C,D) be a minimal i/s/o
representation with D = I , B being full column rank, and C being full
row rank. Then statements 1, 2 and 3 are equivalent.

1. The interconnected system is autonomous.
2. The m × mmatrixC(sI −A)−1B is invertible as a rational matrix.
3. V ⊕ W = R2n.

Further, suppose any one of the above is true. Then we have the
following:

4. ker (CB) ∩ ker (CAB) ∩ · · · ∩ ker (CA2n−1B) = {0}.

Proof. The proof is organized as follows. We prove 1 ⇔ 2, 1 ⇔ 3,
and then 2 ⇒ 4.
(1 ⇔ 2) Define

P(s) :=

sIn − A −BBT
−B

0 sIn + AT CT

C BT 0

 .

Evaluating the determinant of P(s) by using the Schur complement

with respect to the top-left 2n×2n block:

sIn − A −BBT

0 sIn + AT


we get

det (P(s)) = χA(−s)χA(s)det (C(sI2n −A)−1B), (15)

where χA(s) is the characteristic polynomial of A. Since autonomy
of the interconnected system is equivalent to nonsingularity of
P(s), we infer the equivalence of 1 and 2.
(1 ⇔ 3) This has been shown in [28, Lemma 3.3]. See also [27].
(2 ⇒ 4) Suppose the condition within statement 4 does not hold,
that is, ker (CB) ∩ ker (CAB) ∩ · · · ∩ ker (CA2n−1B) ≠ {0}.
We show that, this implies C(sI − A)−1B cannot be invertible as
a rational function matrix. Let v ∈ R2n

\ {0} be in kerCAiB for all
0 6 i 6 2n − 1. Note that using the Cayley–Hamilton theorem,

CeAtB =

α0(t)CB + α1(t)CAB + · · · + α2n−1(t)CA2n−1B

for suitable analytic functions αi(t). Since v ∈ ker CAiB for all
0 6 i 6 2n − 1, it follows from the last equation thatCeAtBv = 0
for all t > 0. Taking Laplace transform ofCeAtBv, we get thatC(sI −A)−1Bv = 0, and v ≠ 0,

which meansC(sI −A)−1B is not invertible as a rational function
matrix. �

5. Impulsive initial conditions

In this sectionwe formulate necessary and sufficient conditions
for the interconnected systemB∧B⊥Σ to have inadmissible initial
conditions, i.e. initial conditions that cause impulsive solutions.

The following result is one of the main results of this paper:
necessary and sufficient conditions on B for the interconnection
B ∧ B⊥Σ to have no inadmissible initial conditions. The relation
of the conditions with all-pass characteristics of a MIMO system
is elaborated in Remark 5.2. Also compare the corresponding
equivalent statements in Theorem 4.1wherewe characterized just
autonomy.

Theorem 5.1. Consider the state space representation of the systems
B and B⊥Σ as in Eqs. (6) and (7) and their interconnection B ∧

B⊥Σ . Assume the resulting Hamiltonian system given by Eq. (13) is
autonomous. ConsiderA,B andC as defined in Eq. (14) and use them
to construct Vi and Wi as described in Eqs. (11) and (12). Then the
following are equivalent:

1. The singular Hamiltonian system has no inadmissible initial
conditions.

2. ker (CB) = {0}.
3. det (CB − (CB)T ) ≠ 0.
4. CeAtB is nonsingular at t = 0.
5. W = W1 and V = V1.

Proof. The proof is organized as follows: 1 ⇒ 2 ⇔ 3 ⇔ 4 ⇒

5 ⇒ 1.
(1 ⇒ 2) Suppose statement 2 is not true, we show that this implies
statement 1 also is not true. Take ℓ ∈ kerCB; because 2 has been
assumed to be false, we have ℓ ≠ 0. Now, consider solving Eq. (13)
with initial condition
x0
z0


:= ABℓ,

and distributional input

v1(t) := −ℓδ′(t),

where δ′(t) denotes the distributional derivative of the Dirac delta
distribution, δ(·), supported at t = 0. The resulting state trajectory
is given by:
x(t)
z(t)


=

eAt

x0
z0


−AeAtBℓ −Bℓδ(t) for t > 0

0 for t < 0.

Since

x0
z0


:= ABℓ, and ℓ ∈ kerCB it follows that

C 
x(t)
z(t)


≡ 0.

(Here, we have made use of the fact that eAt commutes withA.) Therefore,

x(t)
z(t)


as above and v1(t) = ℓδ′(t) solves Eq.

(13). Since, the Hamiltonian system has been assumed to be
autonomous, v1(t) = −ℓδ′(t) is the unique distribution that
makes C 

x(t)
z(t)


≡ 0 for the chosen initial condition,


x0
z0


:= ABℓ.

However,

x(t)
z(t)


clearly contains an impulse. Therefore,


x0
z0


:= ABℓ

is an inadmissible initial condition, which is contrary to statement
1.
(2 ⇔ 3) This follows by using the definition ofB and C from Eq.
(14).
(3 ⇔ 4) This is seen by noting thatCeAtB|t=0 = CB.
(4 ⇒ 5) We assume that CeAtB is non-singular at t = 0, and
want to show that W = W1 and V = V1. First, the equivalence
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of statements 2, 3 and 4 implies that CeAtB being non-singular at
t = 0 is equivalent to kerCB = {0}. It follows that kerC ∩ imB =

{0}. Due to the full column rank assumption on B and CT , we obtain
the full column rank assumption on B and CT , which results in
dim


kerC

= 2n − m and dim

imB = m. These two facts

together imply that

kerC ⊕ imB = R2n. (16)

Using [29, Lemma 4.2], we note that a necessary and sufficient
condition for kerC to be (A,B)-invariant is:A 

kerC
⊆ kerC +

imB. Therefore Eq. (16) implies that kerC is (A,B)-invariant, i.e.,
there exists a state-feedback matrix F ∈ Rm×2n such that ker C
is (A +BF)-invariant. It then follows that the consistent subspace
V , for the case at hand, is nothing but ker C (because, in this
particular case with D = 0, the consistent subspace V is the
largest (A,B)-invariant subspace contained in kerC [27, Theorem
3.10]). However, using the iteration Eq. (11), we have V1 = kerC .
Therefore, V = V1. Now, since the system has been assumed to be
autonomous, by Heemels et al. [28, Lemma 3.3] we get that

V ⊕ W = R2n,

where W is the jump space of the system. It then follows that
dimW = 2n − (2n − m) = m because V = ker C and
dim


kerC

= 2n − m. However, note that W ⊇ im B and
dim


imB = m. Hence,W = imB = W1.

(5 ⇒ 1) Since the Hamiltonian system has been assumed to be
autonomous, by Theorem 4.1, we must have

V ⊕ W = R2n.

This means every initial condition

x0
z0


∈ R2n can be decomposed

as
x0
z0


=


xW0
zW
0


+


xV0
zV
0


,

where

xW0
zW0


∈ W and


xV0
zV0


∈ V . Two key observations will help

complete the proof.

Observation 1. Note that W = W1 = imB and V = V1 = kerC
imply that
xW0
zW
0


∈ imB, and


xV0
zV
0


∈ kerC . (17)

It then follows that there exists ℓ ∈ Rm such that
xW0
zW
0


=Bℓ.

Consider the solution of Eq. (13) with

x0
z0


=


xW0
zW0


and

v1(t) = −ℓδ(t). Clearly, using

xW0
zW0


= Bℓ, the state trajectory

corresponding to this v1 evaluates to
x(t)
z(t)


= eAt


xW0
zW
0


− eAtBℓ ≡ 0 for all t > 0.

Observation 2. Since V = V1 = ker C , there exists a state
feedback matrix F ∈ Rm×2n such that kerC is (A +BF)-invariant.
Thus,

Ce(A+BF)t

xV0
zV
0


= 0 for all t > 0,

because

xV0
zV0


∈ kerC and kerC is (A +BF)-invariant.

Observations 1 and 2 together imply the following. Suppose for

an initial condition

x0
z0


=


xW0
zW0


+


xV0
zV0


, we have

v1(t) =

Fe(A+BFt) 
xV0
zV
0


− ℓδ(t) for t > 0

0 for t < 0,

then the resulting trajectory

x(t)
z(t)


has the property that

C 
x(t)
z(t)


≡ 0,

in the distributional sense. This means,

x(t)
z(t)


, with the above-

mentioned v1(t) solves Eq. (13). However, notice that


x(t)
z(t)


=



x0
z0


for t = 0,

e(A+BF)t

xV0
zV
0


for all t > 0,

which is clearly impulse-free, but perhaps has jumps. At t = 0, we
have


x0
z0


, which was chosen arbitrarily, and hence it follows that

theHamiltonian systemhas no inadmissible initial conditions. This
proves 1 and thus completes the proof of Theorem 5.1. �

Note that the minimal state space representation (A, B, C,D)
for B was arbitrary, except for D = I . In our analysis, we used
the state space representation in Eq. (7) for B⊥Σ . If one begins
with a different minimal state space representation for B⊥Σ , then
there must exist a similarity transformation S such that the new
representation is d

dt z = −S−1AT Sz − S−1CTy and u = BT Sz + y
and it can be verified that each of the statements in the above
theorem is unchanged due to the matrix S. In this way, our results
are not dependent on any specific state space representation for
B or B⊥Σ . In the context of Statement 5 of the above theorem,
as mentioned before Theorem 4.1: together with autonomy of the
system, W = W1 is known to be equivalent to no initial condition
resulting in an impulsive solution. The following remark relates
condition 2 of the above Theorem with an all-pass MIMO transfer
matrix.

Remark 5.2. Loosely speaking, Condition 2 of the above theorem
is opposite to the condition required for a transfer function G(s)
to be all-pass.2 More precisely, consider a square MIMO transfer
function G(s) ∈ R(s)m×m which is all-pass, i.e. I − G(−s)TG(s) = 0
for every s ∈ jR. The feed-through term D of such a transfer matrix
can be assumed to be I by considering a change of coordinates in
either the u or the y variables. With this assumption on D, equating
each of the Markov parameters of I − G(−s)TG(s) to zero, the all-
pass condition on G results in the following conditions onmatrices
A, B and C of its state space realization:

CB − BTCT
= 0,

CAB + (CAB)T − BTCTCB = 0, · · · .
(18)

Notice that CB is nothing but the firstmoment ofG(s) about s = ∞.
Thus a necessary condition on the first moment for G to be all-pass
is that the skew-symmetric part of CB is zero. On the other hand,

2 This remark is relevant for the case that the supply rate corresponds to uTu −

yT y, for which ‘lossless’ corresponds to all-pass characteristics. When dealing with
the supply rate uT y, relevant in passivity analysis, it is singularity of (D + DT )

matrix that plays a role for the results of this paper; G(s) + G(−s)T then replaces
I − G(−s)TG(s) for the statements made in this remark.
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condition 3 of the above theorem requires the skew-symmetric
part to be nonsingular. In this sense, the necessary and sufficient
condition on G(s) for the singular Hamiltonian system to not have
any inadmissible initial conditions is opposite to the requirement
that G(s) is all-pass.

Another consequence of condition 3 in Theorem 5.1, under
Lemma 3.1, is that square MIMO systems with an odd-number of
inputs, in particular SISO systems, always has inadmissible initial
conditions. This is seen in the following example.

Example 5.3. Consider G(s) =
s+1
s+2 with input u and output y and

consider its state space realization (A, B, C,D) = (−2, 1, −1, 1).
The adjoint system has transfer function s−1

s−2 and (2, 1, 1, 1) is a
state space description. The interconnected system (described in
the variables: state x and output y of the system G and state z of its
adjoint) turns out to be:

d
dt

1 0 0
0 1 0
0 0 0

 x
z
y


=

 1 1 1
0 1 1

−1 1 0

 x
z
y


.

It can be checked that the matrix pencil corresponding to the
above first order differential equation has a zero at infinity. After
elimination of the variable y too, the differential equation in
just x and z turns out to contain inadmissible initial conditions.
Theorem 5.1 can be used to obtain the same inference: since
CB − BTCT

= 0, we conclude that there exist inadmissible initial
conditions. Of course, as noted in Remark 5.2, for SISO systems,
ill-posed interconnection implies existence of inadmissible initial
conditions.

6. Impulsive solutions in the manifest/system variables

The last section (in particular, Theorem 5.1) formulated
conditions under which the state-space of the interconnected
system (with the states being that of B and B⊥Σ ) has impulsive
initial conditions. In this section we investigate further into the
case when the manifest variables w have impulsive solutions in
B ∧ B⊥Σ .

Recall again from [14, Theorem 4.32] that a necessary and
sufficient condition for absence of inadmissible initial conditions
for an autonomous system P( d

dt )w = 0 with P square and
nonsingular is that P has no zeros at infinity. Using a kernel
representation for B ∩ B⊥Σ of Eq. (4), we note that there are
no impulsive modes in the variable w if and only if


R(ξ)

M(−ξ)TΣ


has no zeros at infinity. Alternatively, using the latent variable
representation in Eq. (5):

B ∩ B⊥Σ =


w ∈ Lloc

1 (R, Rw) | w = M


d
dt


ℓ

with ℓ satisfyingM


−
d
dt

T

ΣM


d
dt


ℓ = 0


, (19)

we see that w is impulsive if ℓ is impulsive, equivalently, in the
presence of zeros at infinity inM(−ξ)TΣM(ξ).

The natural question is whether these are equivalent. For single
input systems, M(−ξ)TΣM(ξ) is a scalar and hence never has
zeros at infinity: but


R(ξ)

M(−ξ)TΣ


can have: Example 5.3 is one such

case. In this example, G(s) =
s+1
s+2 , with w = (u, y), for which

R(ξ) := [(ξ + 1) − (ξ + 2)] and M(ξ) := [(ξ + 2) (ξ + 1)]T .
Verify that

RHam(ξ) :=


R(ξ)

M(−ξ)TΣ


=


(ξ + 1) −(ξ + 2)
(ξ + 2) (ξ + 1)


whileM(−ξ)TΣM(ξ) = 1.

Since RHam(ξ) above is unimodular and nonconstant, RHam(ξ) has
zeros at infinity, which implies that one or both of the components
in w have impulsive modes. We infer from this example that
the latent variable representation in Eq. (19), which imposes
restrictions on the latent variable ℓ by M(− d

dt )
TΣM( d

dt )ℓ = 0,
need not be able to generate the impulsive modes in w (through
w = M( d

dt )ℓ). In fact, for the case of single input, M(−ξ)TΣM(ξ)

cannot have zeros at infinity and is unable to reveal impulsive
modes in w or the corresponding state space representation of
B ∧ B⊥Σ . A natural question is whether the impulsive modes as
revealed by the state space representation ofB∧B⊥Σ and RHam(ξ)

agree with each other: the example below addresses this question.

Example 6.1. Consider G(s) =
(s+1)2

(s+2)2
, with w = (u, y), for which

defineR(s) = [(s+1)2 −(s+2)2] andM(s) = [(s+2)2 (s+1)2]T . As
far as the corresponding first order singular/descriptor state space
representation is concerned, again like in Example 5.3, since the
system is SISO, there are zeros at infinity in sE−H and hence one or
more of the states contain impulsivemodes.WhileM(−ξ)TΣM(ξ)
evaluates to a scalar and hence causes no impulsivemodes in ℓ, the
2 × 2 polynomial matrix RHam(ξ) evaluates to

RHam(ξ) =


R(ξ)

M(−ξ)TΣ


=


(ξ + 1)2 −(ξ + 2)2

(ξ + 2)2 (ξ + 1)2


which has determinantal degree 2; using the definition of zeros at
infinity, verify that there are no zeros at infinity.We infer from this
example thatwhile one ormore of the states x and z have impulses,
the kernel representation RHam(ξ)w = 0 is such that the manifest
variable w contains no impulsive solutions.

A natural question that arises due to the absence of impulses
in the external variables w in spite of x and z containing impulses
is whether the system is impulse unobservable. We investigate this
after a brief review of the notion of impulse observability, and the
related notion: ‘observability at ∞’.

Consider the definition of impulse observable from [25,
page 1079]: a singular descriptor system Eẋ = Ax and y = Cx
is said to be impulse observable (and also observable at ∞ in the
sense of Verghese et al. [12]) if for every τ > 0, knowledge of
y(τ ) is sufficient to determine x(τ ). Closely related to impulse
observable is the notion of ‘observability at ∞’ in the sense of
Rosenbrock [30], in which knowledge of the distribution y over
the duration [0, τ ] for some τ > 0 and y(0−) is sufficient to infer
x(0−). Note that ‘knowledge’ of x and y in both definitions refers
to in the distributional sense. We refer to Cobb [25] for a thorough
comparison of the definitions/equivalent conditions about the two
observabilities at ∞ as defined in [30,12,31]: we restrict ourselves
to an equivalent condition each to check these observabilities.
Observability at∞ in the sense of Verghese is equivalent to


sE − A

C


having no zeros at ∞, while that in the sense of Rosenbrock is
equivalent to


E − sA

C


having full column rank at s = 0: see

[25, Theorems 9 and 10] and their proofs.
For Example 6.1, it can be checked as follows that the system is

observable at ∞ in both senses. E, A and C matrices respectively
evaluate to
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 ,


−4 −4 1 0 1
1 0 0 0 0
0 0 4 −1 2
0 0 4 0 3
2 3 −1 0 0

 and


0 0 0 0 1
0 0 1 0 1


.
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While

E
C


is obviously rank 5, absence of zeros at infinity of

the matrix

sE − A

C


follows from noting that the degree of the

determinant of the 5× 5 matrix comprising of the first 4 rows and
the last row is 4: using the definition, we conclude that there are
no zeros at infinity.

A conclusion inferred from the above example is that, while the
states could have impulsive behavior, the manifest variables need
not have, as suggested by the kernel representation.More crucially,
in spite of the singular descriptor system satisfying observability at
∞with respect to twodifferent definitions, the impulsive behavior
in the states is not revealed in the manifest variable. Perhaps a
different notion of impulse observability needs to be formulated
to explain this.

7. Concluding remarks

We studied the interconnection of B and B⊥Σ and studied
half-line solutions in the interconnected system. While the full-
line solutions are the same for three different representations of
this set (namely, the latent variable representation, the kernel
representation and the state space representation), the fast-modes
in the half-line solutions set need not be the same. We formulated
necessary and sufficient conditions for the interconnected system
to be well-posed and for it to be autonomous.

When the interconnection of B and B⊥Σ is not well-posed,
under suitable regularizing assumptions, we formulated necessary
and sufficient conditions for existence of inadmissible initial
conditions for the interconnected system B ∧ B⊥Σ in terms of
the first moment about s = ∞ of the transfer matrix: our
second main result. We also related these conditions to the one-
step convergence of thewell-known subspace iteration algorithms
for obtaining the strongly reachable and weakly unobservable
subspaces. We noted that the condition on the skew-symmetric
part of the firstmomentwas opposite to that for theMIMO transfer
matrix to be an all-pass filter.

We finally saw two examples, and one of them had the feature
thatwhile the state space representation ofB∧B⊥Σ had impulsive
solutions, the kernel representation (in just the manifest variable)
did not reveal any impulsive behavior. Further, the states were
observable at infinity in the sense of both Verghese et al. [12] and
Rosenbrock [30], thus raising questions about why impulses in the
states were not revealed in the manifest variables.
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