
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 63, NO. 1, FEBRUARY 2016 359

A Two-Time-Scale Approach for Discrete-Time
Kalman Filter Design and Application

to AHWR Flux Mapping
Rajasekhar Ananthoju, A. P. Tiwari, and Madhu N. Belur

Abstract—In large nuclear reactors such as the Advanced
Heavy Water Reactor (AHWR), the core neutron flux distribu-
tion needs to be continuously monitored and displayed to the
operator. This task is accomplished by an online Flux Mapping
System, which employs a suitable algorithm to estimate the core
flux distribution from the readings of a large number of in-core
detectors. Most of the algorithms available today employ the
Flux Synthesis method, Internal Boundary Condition method,
and the method based on simultaneous least squares solutions of
neutron diffusion and detector response equations. A common
feature of these methods is the assumption that the neutron
flux profile in the reactor is independent of time. Application of
Kalman filtering-based approaches are also found though to a
very limited extent. In this paper, we have formulated the task
of flux-mapping problem in AHWR as a problem of optimally
estimating the time-dependent neutron flux at a large number
of mesh points in the core. The solution is obtained using the
well-known Kalman filtering technique which works along with a
space-time kinetics model of the reactor. However, the attempt to
solve the Kalman filtering problem in a straightforward manner
is not successful due to severe numerical ill-conditioning caused
by the simultaneous presence of slow and fast phenomena typ-
ically present in a nuclear reactor. Hence, a grouping of state
variables has been suggested whereby the original high-order
model of the reactor is decoupled into a slow subsystem and a
fast subsystem. Now according to the order of the slow and fast
subsystems, the original time update and Kalman gain equations
have also been decoupled into separate sets of equations for the
slow and fast subsystems. The decoupled sets of equations could
be solved easily. The proposed method has been validated in a
number of typical transient situations. Overall accuracy in the
estimation using the proposed methodology has been very good
for mesh fluxes, channel fluxes, quadrant fluxes, and the core
average flux.

Index Terms—Advanced Heavy Water Reactor (AHWR), core
flux distribution, discrete-timeKalman filter, fluxmapping, ill-con-
ditioning, singular perturbation, two-time-scale systems.
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I. INTRODUCTION

F OR safe, reliable, and economic operation of nuclear
power plants, operating power of the reactor should be

maintained close to the demand power, and at the same time,
the core flux distribution should closely match the desired flux
distribution. Modern reactors have provisions for online spatial
control and monitoring of flux or power distribution during
the course of their operation. The time-varying neutron flux
distribution is computed by an online Flux Mapping System
(FMS), with the help of flux-mapping algorithms. The mea-
surement signals of several in-core flux detectors are processed
to generate the detailed 3-D flux map, which helps for spatial
control purpose. In CANDU-6 reactors and in Indian 540 MWe
Pressurized Heavy Water Reactors (PHWRs), 102 vanadium
detectors are used for flux mapping, while in PWRs it is carried
out by rhodium detectors installed in about 45 fuel assemblies.
Over the years, research has been carried out to evolve an effi-
cient flux-mapping algorithm for the improvement of accuracy
in flux mapping with less computational effort. Most of the al-
gorithms existing in the literature are based on three principles,
namely the Flux Synthesis, Internal boundary condition, and
simultaneous least squares solution of neutron diffusion and
detector response equations.
The most popular and traditional method for flux mapping

is known as the Flux Synthesis Method (FSM) [1]. It uses the
available detector measurements and performs a least squares
fit with precomputed flux modes, determined based on the
reactivity devices configuration. Determination of flux modes
requires the knowledge of core configuration and considerable
insight into the reactor operation. There are other synthesis
methods such as the Harmonic Synthesis Method (HSM) [2],
[3] the and Harmonic Expansion Method (HEM) [4] to improve
the accuracy of flux mapping. However, the accuracy of recon-
struction depends on selection of the reference case. Selection
of a suitable reference case which reflects the actual core con-
dition results in improvement of the reconstruction accuracy.
During the core configuration changes, the reference case has
to be renewed, which can be a time-consuming process.
A method based on direct online solution of neutron diffu-

sion equations with detector readings as the internal boundary
condition is reported in [5], [6]. A method which obtains a
least squares solution of the core neutronics design equations
along with the in-core detector response equations is reported
in [7]–[9]. Applicability of this least squares method requires
to solve the overdetermined system of equations resulting in
the framework of mapping algorithm. Another approach with
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the combination of FSM and least squares method, known as
the modified flux synthesis method, has been proposed for the
Indian 700 MWe PHWR in [10]. This method takes longer
computation time than FSM does [9], and detector signal un-
certainty can also deteriorate the performance of flux-mapping
calculations. A common drawback of the aforesaid methods
is that they fail to account for time variation of neutron flux
distribution during the reactor operation and the accuracy might
be degraded considerably in presence of uncertainty in the
detector readings. With this motivation we have attempted dis-
crete-time Kalman filter (DKF) formulation for flux mapping
which is quite different from the existing methods, as it can
take care of both time-varying phenomena and random errors
in the detector readings.
The Advanced Heavy Water Reactor (AHWR) [11] is a

920 MW (thermal), vertical, pressure tube type, heavy-water
moderated, boiling light-water cooled natural circulation
reactor. The physical dimensions of the core are very large com-
pared to the neutron migration length. Therefore, operational
perturbations might lead to slow xenon-induced oscillations,
which might cause changes in axial and radial flux distribution
from the nominal distribution. Knowledge of any such changes
during the reactor operation is crucial. To monitor the core
flux distribution, 200 SPNDs are proposed to be provided
in AHWR. An efficient flux-mapping algorithm in AHWR
can ensure better reactor regulation and core monitoring, as
more accurate estimates of channel and zonal powers will be
available to the Reactor Regulating System (RRS) and Core
Monitoring System.
In this paper, we formulate the flux-mapping problem of

AHWR as a linear stochastic estimation problem and obtain the
solution by the DKF technique. It utilizes the time-dependent
core neutronics equations based on the nodal modeling tech-
nique [12], [13] and available detector measurements corrupted
with white Gaussian noise. However, the higher order esti-
mation model of AHWR exhibits a multi-time-scale property
which results in stiffness and ill-conditioning in design. In
particular, the set of recursive equations for computation of
DKF gains, as a solution to weighted least squares problem, is
ill-conditioned. Consequently, serious numerical difficulties are
expected if the DKF gain matrix is to be computed on the basis
of the full-order Riccati equation. Fortunately, this situation
can easily be handled by singular perturbation analysis and
two-time-scale methods. It has already been efficiently utilized
in designing advanced controllers for AHWR [14]–[17]. Sin-
gular perturbation analysis and decomposition methods are
reported in [18]–[22]. Singular perturbation methods in Kalman
filter design are reported in [23]–[27].
We derive the estimation model for two-time-scale systems

and decouple the DKF into a DKF for the slow subsystem and
another for the fast subsystem using block diagonalization.
Then we reformulate the problem as linear stochastic estima-
tion problem for singularly perturbed systems. To address the
numerical ill-conditioning problems in full-order design, we
propose a discrete-time decoupled Kalman filtering (DDKF)
technique by decoupling the DKF equations according to the
order of the slow and fast subsystems. Finally this technique
has been applied for estimation of detailed mesh, channel, and
zonal fluxes in the AHWR.

II. BACKGROUND

A. Singular Perturbation Analysis

The main purpose of the singular perturbation approach to
analysis and design is to handle the ill-conditioning resulting
from the interaction of slow and fast dynamic modes. Linear
singularly perturbed systems can be represented [18]–[22] by
the set of equations

(1)

(2)

and corresponding observations

(3)

where the -dimensional state vector is predominantly
slow and the -dimensional state vector contains fast tran-
sients superimposed on a slowly varying “quasi-steady-state,”
i.e., . The order of the system represented by (1)
and (2) is . The scaling parameter represents
the speed ratio of the slow versus fast phenomena [28]. is the
-dimensional input vector, and is the -dimensional output

vector. An important characteristic of the system described
by (1)–(3) is that the eigenvalues are found in two widely
separated clusters: eigenvalues are of large magnitude while

are of small magnitude. The system described by (1)–(3)
can be converted into block diagonal form as

(4)

and corresponding observations as

(5)

such that , where denotes the
set of eigenvalues of . The similarity transformation that is
applied to the system given by (1)–(3) to obtain the system given
by (4)–(5) is

(6)

in which and respectively denote - and -dimen-
sional identity matrices, and and respectively satisfy

(7)
(8)

in (7) and in (8) can be determined respectively by iterative
solution of [21]

(9)

(10)
(11)
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The matrices in (4) and (5) are related to those in (1)–(3) as

(12)

The system represented by (4) and (5) can be discretized to
obtain

(13)

(14)

where , , ,
, and is the sampling duration. For

, the system represented by (13) also exhibits two-time-
scale behavior, i.e., the eigenvalues of will be located close
to the origin of the z-plane while those of will be located
close to the periphery of the unit circle.

B. Discrete-Time Kalman Filter Algorithm
The DKF is an optimal recursive data processing algorithm

[29], [30], also known as a linear quadratic estimator, which
uses a series of measurements observed over time, containing
noise (random variations) and other model inaccuracies, and
produces estimates of unknown states that tend to be more pre-
cise than those based on a single measurement alone. From a
Bayesian point of view, DKF propagates the conditional prob-
ability density of the desired quantities (mean and covariance),
conditioned on the knowledge of the past measurements and up-
dates it when new measurements are available. Consider a gen-
eral linear discrete-time invariant stochastic system represented
by

(15)
(16)

In this, and are random vectors representing respectively
the process and measurement noise sequences, assumed to be
independent, zero mean, with white Gaussian probability distri-
bution, and known covariances and respectively, i.e.,

where is positive-semidefinite matrix and is positive-def-
inite matrix. is expectation operator and is the Kro-
necker delta function, i.e., if , and
if . The initial state is also a Gaussian random vari-
able, independent of the noise processes, with .
Therefore , where
is state estimate, is the covariance of the error in the esti-

mated state. The DKF equations for the above system fall into
two groups, namely time update equations and the measurement
update equations.
1) Time Update Equations: These equations, also known as

state and covariance prediction equations, project forward (in

time) the current state and error covariance estimates to obtain
a priori estimates for the next step, i.e.,

(17)
(18)

2) Measurement Update Equations: These equations incor-
porate a new measurement into an a priori estimate to obtain
an improved a posteriori estimate, i.e.,

(19)
(20)
(21)

III. TWO-TIME-SCALE APPROACH FOR DISCRETE-TIME
KALMAN FILTER DESIGN

Direct implementation of the DKF algorithm to a high-order
stiff system, such as the nuclear reactor is not feasible due to
numerical ill-conditioning. However, utilizing the block diago-
nalized model (13) and (14), the time and measurement update
equations discussed in Section II-B can be decoupled according
to the order of the slow and order of the fast subsystems. A
high-order stochastic system such as the one represented by (15)
and (16) possessing two-time-scale behavior can be represented
into linear singularly perturbed form and block-diagonalized as
described in Section II-A, to obtain

(22)

(23)

where the additional terms , , and follow from (15) and
(16). The matrices and appearing in (18) can also be par-
titioned according to the orders of the slow and fast subsystems
and from (18), we have

(24)

Thus, we have

(25)
(26)
(27)

Similarly, (19) can be written as

(28)
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Fig. 1. AHWR core layout (schematic). (a) AHWR Core layout with ICDH Locations. (b) Placement of SPNDs in ICDH.

Hence

(29)

(30)

where

(31)

and

(32)

which yields

(33)
(34)
(35)

Note that the covariance equation of time update step is de-
coupled into three equations given by (25)–(27); the measure-
ment update step is decoupled into three equations given by
(33)–(35), and the Kalman gain equation is decoupled into two
equations given by (29)–(30). Hence the proposed DKF algo-
rithm for the singularly perturbed system has total ten equations.

IV. DEVELOPMENT OF FLUX ESTIMATION MODEL FOR AHWR
The DKF-based flux-mapping technique is applied to

AHWR, a Th-Pu-based boiling water cooled, heavy-water mod-
erated thermal reactor. Its core consists of 513 lattice positions,
452 of which are occupied by fuel assemblies and the remaining
by control and shut-off rods. Fig. 1(a) shows the layout of
AHWR core. In-core Detector Housings (ICDHs) located at 32
interlattice locations, accommodate the Self-Powered Neutron
Detectors (SPNDs) which are used for thermal neutron flux
measurement. These SPNDs are provided at different eleva-
tions of the assembly covering the entire AHWR core from top
to bottom. Fig. 1(b) shows the housing of seven detectors in one
of those intralattice locations, in which indicate
the locations where SPNDs have been proposed to be placed.

A. Mathematical Modeling of AHWR
For the purpose of estimation of neutron flux in the AHWR

core, using the DKF-based algorithm, a reasonably accurate
space-time kinetics model is required. In [12], a 17-node
scheme, which exhibits all the essential control-related prop-
erties and yields accurate transient response characteristics, is
derived. The same model is reformulated in terms of neutron
flux equations in [13]. This model is more suitable for flux
distribution studies owing to its simplicity and the structure,
thus facilitating selection of state variables for the system in
a straightforward manner. It assumes that the reactor spatial
domain is divided into relatively large number of rectangular
parallelopiped shaped regions called nodes which are coupled
through neutron diffusion. Neutron flux and other parameters
in each node are represented by homogenized values integrated
over its volume, and the degree of coupling among these nodes
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Fig. 2. Seventeen-node scheme.

is given by coupling coefficients. The following set of nonlinear
time-dependent core neutronics equations and the associated
equations for the delayed neutron precursors represents the
nodal core model of AHWR:

(36)

(37)

where denotes neutron flux in node ; denotes delayed
neutron precursor concentration for group in node ; and

denote neutron fraction yield and decay constant for group
respectively; denotes mean velocity of neutron in node ;

and denotes prompt neutron life time. The coupling coeffi-
cients depend on the geometry, material composition, and
characteristic distance between the nodes and . Fission reac-
tions do not take place in reflector region. However, the neutron
leakage to reflector needs to be taken into account. Thus, for the
nodes in the reflector region, the flux variation taking place can
be described as

(38)
The AHWR core is considered to be divided into 17 nodes as
shown in Fig. 2. There are eight regulating rods (RRs) from
which four are in manual mode. The other four RRs located in
nodes 2, 4, 6, and 8 are under automatic control. The top and

bottom reflector regions are divided into 17 nodes each, in iden-
tical manner as the core, whereas the side reflector is divided
into eight nodes, giving 59 nodes in all. Thus, in (36) and (38),

and . For further simplicity, only one effective
group of delayed neutrons is considered, i.e., in (37),
and internal reactivity feedbacks are not considered. Besides,
in small-scale transients involving normal operational and con-
trol situations, in which the flux-mapping task is of significance,
reactivity control requirements are fulfilled only by regulating
rods, i.e., is essentially on account of RR movements. Re-
activity contributed by the movement of a RR is a nonlinear
function of its position. However, around the equilibrium posi-
tion, the nonlinearity is very insignificant. Thus, the reactivity
in node due to the movement of RR in it is given by

(39)

Each RR is attached through a rope-pulley mechanism to the
respective reversible variable speed type RR drive having in-
dividual three phase induction motors and static frequency con-
verters. Neglecting the friction, damping, and rotational to linear
motion transmission dynamics, the speed of the regulating rod
is directly proportional to the applied voltage to the drive
motor, i.e.,

(40)

where .
In [13], a scheme for obtaining detailed core flux distribu-

tion from the 17 nodal fluxes and 42 reflector fluxes computed
by solving (36)–(38) is given. According to this scheme, the
values of neutron fluxes in 22 950 small volume elements are
determined as

(41)

where denotes a vector of 22 950 flux values, denotes
the vector of flux values obtained from (36)–(38) and is
a weighting matrix determined based on detailed 3-D flux dis-
tribution computations. Subsequently the fluxes at SPND loca-
tions are obtained from

(42)

where denotes the vector of fluxes at SPND locations and
is a weighting matrix. Combining (41) and (42), we have

(43)

Thus, the fluxes at SPNDs locations are obtained from nodal
fluxes. The SPNDs are assumed to give output signal propor-
tional to local fluxes, i.e., dynamic effects are ignored.

B. Derivation of Estimation Model

To obtain the estimation model, the system of nonlinear equa-
tions (36)–(40) is linearized around the steady-state operating
point , by considering a small perturbation in neutron
flux level, delayed neutron precursor concentration, RR posi-
tion, and the input voltages to RR drives, denoted respectively
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by and around the operating point. Then
from (36), (37), (38), and (40), we have

(44)

(45)

(46)

(47)

where denotes the deviation from respective steady-state
values. In (44), the term denoting the deviation in position
of the th RR from that corresponding to the critical configura-
tion will be present only if the node contains the RR- . Now,
define the state vector as

(48)

where

(49)
(50)
(51)
(52)

Also, define the input vector as

(53)

Then, (44)–(47) which constitute the estimation model can be
represented in standard linear state space form of (1)–(3). The
system matrix of size is expressed as

(54)

The input matrix is given as

(55)

and the output matrix is given as

(56)

where

The eigenvalues of the system matrix of AHWR are reported
in [31], from which it can be noticed that they fall into two dis-
tinct clusters: one of 21 eigenvalues located very close to the
origin of the complex s-plane and the other of 59 eigenvalues
located between and . This suggests the pres-
ence of two-time-scale property in the estimation model. There-
fore, state variables are regrouped as

(57)
(58)

Now, the system, input, and output matrices given by (54)–(56)
are partitioned into block matrices according to the new state
vectors defined. Thus in (1)–(3) we have

Now, the full-order system is block diagonalized using the sim-
ilarity transformation (6), in which the and matrices for
the transformation are obtained by the iterative solution of (9)
and (10) respectively. Thereafter , , , , , and
of the decoupled system represented by (4)–(5) are obtained by
(12). It is observed that 59 magnitudewise largest eigenvalues of
are equal to eigenvalues of , and the remaining 21 eigen-

values are equal to eigenvalues of . This confirms that the
estimation model is decoupled into slow and fast subsystems of
order 21 and 59 respectively.

V. APPLICATION TO AHWR FLUX MAPPING

Now the method presented in Section III has been applied
for flux mapping in the core of AHWR, which is presented in
Section IV. The estimation model represented by (4)–(5) is dis-
cretized for sampling time s for which the discrete-time
system is observed to possess the two-time-scale property.
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Fig. 3. One hundred twenty-eight-node scheme.

The effectiveness of the Kalman filtering technique for flux
mapping has been examined in three cases. In the first case,
decay of the nonzero initial condition is observed. The states of
the estimation model are nonzero, while the reactor is assumed
to be at steady-state. In the second, the movement of one or mul-
tiple RRs is simulated. Finally in the third case, xenon-induced
spatial oscillation is considered. These cases are elaborated in
the following subsections.
SPND signals (measurements) were generated under the

same transient situations from a separate set of offline compu-
tations using a 128-node scheme as shown in Fig. 3, for the
first two cases, and the 17-node scheme as shown in Fig. 2 for
the third case. In the 128-node scheme, the core region, top
reflector region, and bottom reflector region each are divided
into 128 nodes, and the side reflector region is divided into
eight nodes, giving 392 nodes in all. From the operational 540
MWe PHWR units 3 and 4 of the Tarapur Atomic Power Sta-
tion (TAPS), India, it was revealed that noise in the signals of
detectors takes normal probability distribution with a standard
deviation of nearly 2% [32]. Hence, measurement noise of the
order of 2% has been assumed for each SPND. This noise is
equivalent to 2% random fluctuations around the full-power
steady-state value in each detector.
Using the methodology suggested in [13], reference flux

values have been generated for 22 950 volume elements, 452
fuel channels, four quadrants, and the core average flux denoted
respectively as , , , and . The state estimation is
carried out using the DKF algorithm with

where and denote identity matrices of size 80 and 200
respectively. Estimates for fluxes in 22 950 volume elements are
obtained as

(59)

where denotes the weighting matrix for flux reconstruc-
tion. Now, from the estimates of flux in 22 950 volume elements,
the average values of channel fluxes are obtained as

(60)

where denotes the volume of the th mesh box, denotes fuel
channels in core, as shown in Fig. 2. Similarly, the estimated
values of quadrant fluxes are computed from

(61)

where I, II, III, and IV. Estimated value of core average flux
is computed as

(62)

The values of these quantities, as determined using the DKF al-
gorithm, are compared with their respective reference values for
assessment of reconstruction accuracy. To characterize the per-
formance of the DKF, we compute relative errors in estimation
of flux in 22 950 volume elements, 452 coolant channels, and
four quadrants, and also the error in the estimation of the core
average flux, respectively using

(63)

(64)

(65)

(66)

RMS percentage error in flux is also calculated for volume ele-
ments and channels using

(67)

(68)

A. Response of DKF to Nonzero Initial Condition of
Estimation Model

The reactor is assumed to be under steady-state full-power
operation such that the delayed neutron precursor concentra-
tions in different nodes are in equilibrium with the respective
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TABLE I
TEST CASES AND DESCRIPTION

Fig. 4. Variation in the estimated values of neutron flux and delayed neutron
precursor concentration in node 1.

Fig. 5. Variation in the estimated values of neutron flux and delayed neutron
precursor concentration in node 2.

nodal flux levels and RRs are at 66.7% in position, which corre-
sponds to critical core configuration. As already stated, SPND
signals were generated from offline computations using the 128-
node scheme. At steady-state, their signals are constant but mea-
surement noise of 2% has been introduced for each detector.
The initial estimate for neutron flux in node 1 of the AHWR

core is assumed to be deviating from the actual value by 10%,
while the state estimates for neutron flux in the remaining nodes

, , and are assumed to be identical to their actual
values. Now, the DKF algorithm is processed using the values of
and as mentioned earlier. The values of estimated neutron

flux and delayed neutron precursor concentrations in node 1, 2,
and 15 of AHWR are shown in Figs. 4, 5, and 6, respectively.
The estimated states gradually approach zero in short duration
of time. Such a response is considered to be satisfactory.

Fig. 6. Variation in the estimated values of neutron flux and delayed neutron
precursor concentration in node 15.

Fig. 7. Position of RR corresponding to applied control signal.

B. Movement of Regulating Rods
This simulation involves movement of one or multiple RRs as

listed in Table I. At steady-state full-power operation, RRs are
at 66.7% in position. In each case, the reactor is at steady-state
for the initial 50 s. At time s, control signal of 1 V
is applied to RR drive and maintained for 8 s. Corresponding
RRs move linearly into the reactor core, as governed by (40)
and reach 71.14% in position. Then, the control signal is made
0 V to hold the RRs at the new position. After 3 s, the RR is
driven out linearly to nominal position by applying a control
signal of V. Again after 3 s, an outward movement followed
by inward movement back to its nominal position is simulated.
First, movement of RR located in Quadrant-I is considered.

Fig. 7 shows the applied control voltage to RR drive and cor-
responding position of the RR in the core during the test case.
Fig. 8 shows the core average flux and the relative error in the
estimation of the core average flux. Fig. 9 shows the average
values of flux in Quadrants-I and II of the reactor. Axial flux
distribution for 24 volume elements in the channel E16X, which
is near to RR, is shown in Fig. 10. Flux distribution in channel
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Fig. 8. Core average flux along with relative error (%) during the transient
involving the movement of RR in Quadrant-I.

Fig. 9. Average flux in Quadrants I and II during the transient involving the
movement of RR in Quadrant-I.

Fig. 10. Axial flux distribution in the channel E16 (in the vicinity of RR), where
maximum errors occur.

N20, where minimum error occurs is shown in Fig. 11. Max-
imum RMS error in the estimation of flux occurs at s for
the applied transient as shown in Table II.
To asses the performance of DKF algorithm further, sim-

ilar analysis is carried out for the remaining test cases listed in
Table I. RMS error between estimated and reference distribution
were computed and are shown in Table III. At the instant when
the maximum RMS error occurred, absolute relative average er-
rors (%) in fluxes are computed and shown in Table IV. Chan-
nelwise maximum and minimum relative errors (%) are shown

Fig. 11. Axial flux distribution in the channel N20 (away from RR), where
minimum errors occur.

Fig. 12. Average flux in Quadrants I, II, III, and IV during the transient in-
volving xenon oscillations.

in Table V. Absolute relative error in quadrant fluxes and core
average fluxes are also computed and shown in Table VI.
It is worthy to note from the numerical values presented in

Table III–VI that the average relative error and maximum RMS
error in quadrant fluxes are 0.31% and 0.34% respectively; in
case of channel fluxes they are 0.37% and 0.57% respectively;
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TABLE II
MAXIMUM RMS ERROR IN ESTIMATION OF FLUX IN THE TRANSIENT INVOLVING MOVEMENT RR

TABLE III
MAXIMUM RMS ERROR (%) IN FLUXES

Max. RMS Error Occurred at s.
Max. RMS Error Occurred at s.

TABLE IV
ABSOLUTE RELATIVE AVERAGE ERROR (%) IN FLUXES

TABLE V
MAXIMUM AND MINIMUM RELATIVE ERROR (%) IN CHANNELS

TABLE VI
ABSOLUTE RELATIVE ERROR IN QUADRANT AND CORE AVERAGE FLUX

and in the case of mesh fluxes they are 0.37% and 0.51% re-
spectively. These are of the same order as reported in [6] and
[8]. From Table V it can be claimed that the maximum relative
error in the estimation of channel flux from the DKF method is
2.4% which is of the same order as reported in [9].

C. Xenon-Induced Oscillations
As already stated, due to large physical dimensions, opera-

tional perturbations might lead to slow xenon-induced oscilla-
tions in AHWR. If these oscillations are left uncontrolled, the
power density and time rate of change of power at some lo-
cations in the reactor core may exceed the respective design

limits, resulting into increased chance of fuel failure. There-
fore, to maintain the total power and power distribution within
the design limits, AHWR is provided with total power control
and spatial power control schemes. If due to some hypothetical
reason, the spatial control scheme is ineffective, xenon-induced
oscillations might occur. These xenon-induced spatial oscilla-
tions and subsequent local overpowers pose a potential threat to
the fuel integrity of the reactor. Therefore, the detailed knowl-
edge of axial and radial flux distribution in the core during the
operational condition is crucial.
To ascertain this, simulation of transient involving spatial

power variation was carried out using the nonlinear model of
AHWR described by (36)–(40). Xenon and iodine dynamic
equations [12], [14] were also incorporated in the model. The
reactor was initially assumed to be under steady-state operation
at full power. A small disturbance was enforced for a short du-
ration by the simultaneous countermovement of two diagonally
opposite RRs. The RR in Quadrant-I was driven 4% in, while
the RR in Quadrant-III was driven 4% out simultaneously in
order to maintain the net reactivity nearly zero. The response of
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TABLE VII
ERROR STATISTICS IN CASE OF XENON-INDUCED SPATIAL OSCILLATIONS. (a) RMS ERROR AND RELATIVE ERROR IN FLUXES. (b) MAXIMUM AND MINIMUM

RELATIVE ERROR IN CHANNELS. (c) ABSOLUTE RELATIVE ERROR IN QUADRANTS

model subsequent to this disturbance, was simulated for about
50 h. Reference values of mesh box fluxes were determined
using (41), and SPND signals were generated using (43). Again,
in these signals 2% noise was added. Now the DKF-based
flux-mapping algorithm was processed for the estimation of
flux distribution in AHWR. Fig. 12 shows the average values
of flux in Quadrant-I, II, III, and IV of the reactor during the
xenon-induced oscillations. Error analysis as described earlier
has been carried out to determine the RMS percentage error
and relative error (%) in flux for volume elements, channels,
and quadrants. The various types of errors in estimation are
given in Table VII. In general, the errors are observed to be
insignificant.
From the simulations, it can be concluded that the proposed

DKF algorithm can accurately estimate the time-dependent neu-
tron flux distribution during the typical reactor operating condi-
tions. The degradation of DKF algorithm accuracy is also very
less against the detector random errors. Therefore, the proposed
method can serve an effective alternate to the existing flux-map-
ping techniques.

VI. CONCLUSION
The neutron flux distribution in a nuclear reactor undergoes

continuous variation due to routine perturbations, nonuniform
burn-up at different locations, etc. The operating procedure and
core control philosophy generally ensure that the time-depen-
dent flux variations are maintained within prescribed limits.
However, the flux profile is continuously monitored and dis-
played to the operator. The knowledge of flux distribution in
the reactor core during its operation is helpful to the operator
in planning of refueling scheme as well as in zonal power
correction. We have suggested a novel technique based on the
two-time-scale formulation of the Kalman filtering problem for
the time-dependent neutron diffusion equation to near-optimum
estimation of the core flux profile in AHWR. The important
aspect of our technique is that it attempts solving for smaller
order state prediction equations, process covariance matrices
and Kalman gain. This is accomplished easily while direct

solution of the Kalman filter equations is not feasible for the
AHWR. Moreover, it yields excellent accuracy in flux estima-
tion as evident from simulation exercises.
Before deployment in the AHWR, the efficacy of the tech-

nique needs to be established further, and it should be demon-
strated using plant data, such as from PHWRs that it yields
improvement in accuracy compared to that resulting from ex-
isting techniques. It should also be assessed from the viewpoint
of implementation that the computations could be performed in
real-time using hardware and other resources, suitable for con-
trol and instrumentation systems in nuclear reactors.
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