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Study of transient behavior and design of control for large reactors, such as the Advanced Heavy Water
Reactor (AHWR) requires accurate mathematical models. An 80th order space–time kinetics model which
describes the core neutronics behavior of AHWR is available but it is nonlinear and stiff. The modern con-
trol design and analysis studies with this model are accompanied by serious numerical ill-conditioning
problems. Hence, there is a strong motivation for obtaining a reduced order model which preserves
the input–output behavior accurately.
In this paper, we have explored the application of balanced truncation technique to obtain a reduced

order model from the original high order model of the AHWR. The reduced order model thus obtained
was examined from the view point of transient performance by comparing its response with that of
the original model and it is found to yield a very good approximation. We also carried out the compar-
ative study between different reduced order models of AHWR, namely, Davison’s technique, Marshall’s
technique, singular perturbation analysis and balanced truncation by comparing their performances with
respect to each other and with the original model. All of these methods are found to be effective, however
the overall accuracy in the approximation using the balanced truncation approach is found to be far more
superior.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Description of large-scale systems by mathematical models
involves a set of first order differential or difference equations.
These models can be used to simulate the system response and
predict the behavior. Sometimes, these mathematical models are
also used to modify or control the system behavior to conformwith
certain desired performance. In practical control engineering appli-
cations with the increase in need for improved accuracy, mathe-
matical models lead to high order and complexity. Although, the
well established modern control concepts are valid for any system
order, they may not give fruitful control algorithms in control
design. Moreover, working with very high order model involves
computational complexity and need for high storage capability.
Sometimes, the presence of small time constants, masses, etc.
may give rise to an interaction among slow and fast dynamic phe-
nomena with attendant ill-conditioning or stiff numerical prob-
lems. When analyzing and controlling these large-scale dynamic
systems, it is extremely important to look for and to rely upon effi-
cient simplified reduced order models which capture the main fea-
tures of the full order complex model.

In the past few decades, several analytical model reduction
techniques have been proposed, such as retaining of the dominant
modes (Davison, 1966; Marshall, 1966), model reduction by aggre-
gation (Aoki, 1968) and decomposition of higher order model into
slow and fast systems by two-time-scale methods and singular
perturbation analysis (Kokotovic et al., 1976), etc. These methods
dealt with the eigenvalues of the system and require the assess-
ment of dominant modes present in the model. Various other
methods such as balanced truncation, balancing free technique,
etc., are also available for model order reduction.

For the state-space models, model order reduction method
based on the assessment of degree of controllability and observ-
ability has been suggested in Moore (1981) and Pernebo and
Silverman (1982) which is popularly known as balanced trunca-
tion. In order to obtain the original system in balanced form, its
basis should be transformed into another basis where the states
which are difficult to reach are simultaneously difficult to observe.
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It can be achieved by simultaneously diagonalizing the reachability
and the observability Gramians (Laub et al., 1987), which are the
solutions to reachability and observability Lyapunov equations.
The positive decreasing diagonal entries in the diagonal reachabil-
ity and observability Gramians in the new basis are called the Han-
kel singular values of the system. The reduced order model is
obtained simply by truncation of the states corresponding to the
smallest singular values. The number of states that can be trun-
cated depends on how accurate the approximate model should
be. There are some other techniques to obtain the balanced trunca-
tion viz., Schur method (Safonov and Chiang, 1989), balance square
root method (Varga, 1991) similar to Moore (1981), however, they
differ in the algorithms to obtain the balancing transformation. The
aforesaid methods can be efficiently applied when the system is
asymptotically stable and minimal, however, for the systems
where the stabilization is the major concern their straightforward
application is not possible. Balanced truncation for stable nonmin-
imal systems has been attempted in Tombs and Postlethwaite
(1987). Balanced truncation for unstable systems has also been
attempted in Kenney and Hewer (1987), Safonov et al. (1987)
and Benner et al. (2003). Usually unstable poles cannot be
neglected, therefore model reduction in this situation can be trea-
ted by first separating the stable and unstable parts of the model
and then reducing the order of the stable part using balanced trun-
cation methods. Pertinent literature survey on balanced truncation
methods and obtaining balanced transformation procedure can be
found in Benner et al. (2003), Gugercin and Antoulas (2004) and
Penzl (2006).

Advanced Heavy Water Reactor (AHWR) (Sinha and Kakodkar,
2006) is a 920 MW (thermal), vertical, pressure tube type, heavy
water moderated, boiling light water cooled, natural circulation
reactor. The physical dimensions of the AHWR core are large com-
pared to the neutron migration length. Therefore from neutronic
view-point, the behavior tends to be loosely coupled, due to which
a serious situation called ‘flux tilt’ may arise in AHWR followed by
an operational perturbation. Therefore it is necessary to provide
online monitoring and control schemes during the reactor opera-
tion. A reasonably accurate space–time kinetics model for describ-
ing the behavior of AHWR is developed for control related studies
using nodal methods (Shimjith et al., 2010; Sagar et al., 2013). An
important characteristic of the model based on nodal methods is
that the order of mathematical model depends on the number of
nodes into which the reactor spatial domain is divided. A rigorous
model with more number of nodes will give good accuracy in
online monitoring and control, but its order is very high. At the
same time, nuclear reactor models often exhibit simultaneous
presence of dynamics of different speeds. Such behavior leads the
mathematical model exhibiting multiple time-scales, which may
be susceptible to numerical ill-conditioning (Rajasekhar et al.,
2016; Kokotovic et al., 1976). Hence, it is very much essential to
develop a suitable mathematical model of lower order which alle-
viates the dimensionality and numerical ill-conditioning problems
in computations. The application of Davison’s technique for model
order reduction has been explored for PHWR in Talange et al.
(2002) and for AHWR in Rajasekhar et al. (2015). The application
of Marshall’s dominant mode retention technique has been
explored for AHWR in Rajasekhar et al. (2015). In Talange et al.
(2006), the aggregation technique has been applied for obtaining
simplified model of PHWR and model decomposition based on sin-
gular perturbation and time-scale methods for controller design
have also been applied for PHWR in Tiwari et al. (1996); Tiwari
et al., 2000 and for AHWR in Shimjith et al. (2011a,b), Munje
et al. (2013), Rajasekhar et al. (2015), Munje et al. (2015a) and
Munje et al. (2015b).

In this paper, we consider the 80th order linear model of AHWR
(Rajasekhar et al., 2015) developed by considering the time depen-
dent core neutronics equations with 17 node scheme and control
rod dynamic equations as derived in Sagar et al. (2013). Methods
based on retaining of dominant modes: Davison’s, Marshall’s and
model decomposition based on singular perturbation and time-
scale methods have already been attempted for the same model
in Rajasekhar et al. (2015). However, application of balanced trun-
cation method is not found in case of AHWR. Motivated by this, we
try to obtain a reduced order model based on balanced reduction
technique. However, the presence of multiple eigenvalues at origin
of the complex s-plane in the AHWR model, restricts the straight-
forward application of the state-space balancing algorithm (Laub
et al., 1987). Therefore, the model is first decomposed into stable
and unstable subsystems (Safonov et al., 1987; Benner et al.,
2003). Simplified model is obtained for the stable subsystem and
finally the reduced order model is formulated by augmenting the
unstable model with the simplified model of the stable subsystem.
The balanced truncation method is found to be very effective in
model order reduction. The transient performance of the simplified
model is compared with that of the original model and also with
transient performance of simplified models obtained using some
other methods.

The rest of the paper is organized as follows: Section 2 describes
the review of balanced truncation method and mathematical
approach for the decomposition of stable and unstable systems.
Section 3 presents the mathematical modeling of AHWR and its
state-space representation. Application of balanced truncation
technique to AHWR mathematical model is presented in Section 4.
Comparison of the transient response of different reduced order
models is presented in Section 5 and conclusions are drawn in
Section 6.
2. Review of balanced truncation method

Consider a large-scale dynamical system described by the linear
time invariant model

x
_ ðtÞ ¼ AxðtÞ þ BuðtÞ;
yðtÞ ¼ WxðtÞ;

ð1Þ

where xðtÞ 2 Rn;uðtÞ 2 Rm, and yðtÞ 2 Rp are the state, input and
output vectors respectively; A 2 Rn�n;B 2 Rn�m and W 2 Rp�n are
system, input and output matrices respectively. For the rest of this

paper, we use G : = to denote state-space form as in (1). We

use the same G to also denote the Transfer Function (TF) corre-
sponding to (1). From the context there would be no ambiguity.

The transfer function from u to y is GðsÞ :¼ WðsI � AÞ�1B.
For state-space models represented by (1), a methodology for

deriving reduced-order model is provided in terms of realization
in balanced co-ordinates (Moore, 1981). Most of the balanced trun-
cation methods available in literature can only be applied if the
system is stable. But realistic models which are used for system
analysis and design may not be stable. Hence, the straightforward
application of balanced truncation methods is not possible. There-
fore, model reduction of unstable system can be treated by first
separating the stable and unstable parts of the system, and then
reducing the stable part using balanced truncation methods.

2.1. Modal decomposition into stable and unstable subsystems

For the purpose of this paper, stable means the open left half of
the complex s-plane i.e., c 2 C�; ReðcÞ < 0; unstable means right
half of the complex s-plane including the imaginary axis i.e.,
c 2 Cþ; ReðcÞ P 0. Different approaches for decomposition into
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stable and unstable subsystems were reported in Safonov et al.
(1987), Kenney and Hewer (1987), Zhou et al. (1999), Benner
et al. (2003) and Nagar and Singh, 2004. Here, we consider the
application of decomposition algorithm given in Safonov et al.
(1987) and Benner et al. (2003). It is briefly introduced in the
following.

We assume that the system (1) represented by G has eigenval-
ues both in left and right half of complex s-plane. It can be con-
verted to block triangular form as

ð2Þ

where

where At11 ; At12 ; At22 ; Bt1 ; Bt2 ; Wt11 and Wt12 are respectively
k� k; k� ðn� kÞ; ðn� kÞ � ðn� kÞ; k�m; ðn� kÞ �m; p� k and
p� ðn� kÞ submatrices, obtained by partitioning At; Bt and Wt as
indicated.

A similarity transformation that is applied to the system given
by (1) to obtain the system (2) is

x ¼ Uxt; ð3Þ

where U is an orthogonal similarity transformation that brings A to
the real Schur form such that the diagonal elements of At are the
real parts of the eigenvalues of A arranged in order of increasing val-
ues of the real part. Further, k is the number of stable poles of G. By
another similarity transformation, the system represented by (2)
can be converted into block diagonal form as

ð4Þ

where

with cðAsÞ � C�;As 2 Rk�k; cðAusÞ � Cþ, and Aus 2 Rðn�kÞ�ðn�kÞ. Note
that As;Aus;Bs;Bus;Ws and Wus are respectively k� k; ðn� kÞ�
ðn� kÞ; k�m; ðn� kÞ �m;p� k and p� ðn� kÞ submatrices,
obtained by partitioning Ad;Bd and Wd as indicated.

The second stage transform that is applied to the system given
by (2) to obtain the system (4) is

xt ¼
Ik S

0 In�k

� �
xs
xus

� �
¼ W

xs
xus

� �
; ð5Þ

where S is the solution of the Sylvester equation

At11S� SAt22 þ At12 ¼ 0: ð6Þ
Therefore the system (1) can be written in additive decomposi-
tion form Safonov et al. (1987) of TF as

GðsÞ :¼ G�ðsÞ þ GþðsÞ; ð7Þ
where G�ðsÞ :¼ WsðsI � AsÞ�1Bs is stable TF, GþðsÞ :¼

WusðsI � AusÞ�1Bus is unstable TF and

are associated state-space realizations of

G�; Gþ respectively.

2.2. State-space balancing algorithm

Reachability and observability Gramians play a major role in
obtaining system balancing transformation. Assuming that the pair
ðAs; BsÞ is reachable and ðWs; AsÞ is observable, the reachability Gra-
mian WR and observability Gramian WO of G� can be obtained by
the solution of the following algebraic Lyapunov equations (Laub
et al., 1987):

AsWR þWRA
T
s þ BsB

T
s ¼ 0; ð8Þ

AT
sWO þWOAs þWT

sWs ¼ 0: ð9Þ

The goal of balancing is to find a co-ordinate transformation such
that in the new co-ordinate system the reachability and the observ-
ability Gramians both are diagonal and equal. In a balanced co-
ordinate system G� can be represented as

ð10Þ

where

Að11Þ
bal ; A

ð12Þ
bal ; A

ð21Þ
bal ; A

ð22Þ
bal ; B

ð1Þ
bal; B

ð2Þ
bal; W

ð1Þ
bal and Wð2Þ

bal are respectively
r� r; r� ðk� rÞ; ðk� rÞ � r; ðk� rÞ � ðk� rÞ; r�m; ðr� kÞ �m; p� r
and p� ðk� rÞ submatrices, obtained by partitioning Abal; Bbal and
Wbal as indicated. Further, r is the number of states which are to

be retained in Gbal
� . The procedure for obtaining Gbal

� and selection
of r are discussed in the following.

A similarity transformation to obtain Gbal
� from G� is

xs ¼ Txsb ; ð11Þ
where T 2 Rk�k is nonsingular. Following (Laub et al., 1987), an
algorithm for computation of a balancing transformation is as
follows:

(1) Compute the Gramians WR and WO for G�.
(2) Compute the Cholesky factors of WR and WO i.e.,

WR ¼ LRL
T
R; WO ¼ LOL

T
O, where LR and LO denote lower trian-

gular Cholesky factors.
(3) Compute singular value decomposition (SVD) of product of

Cholesky factors, i.e., LTOLR ¼ URVT
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(4) Finally, a co-ordinate transformation that results in balanced
realization can be obtained as

T ¼ LRVR
�1=2: ð12Þ

Gbal
� is asymptotically stable and is in balanced realization form with

WR ¼ WO ¼ diag: ½R1 R2� ; ð13Þ
where

R1 ¼ diag: ½r1 r2 . . . rr �; R2 ¼ diag: ½rrþ1 rrþ2 . . . rk�;
rr > rrþ1 and ri > 0; i ¼ 1; 2; . . . ; k; ri are the Hankel singular

values of Gbal
� . One usually tries to choose r so that we have

rr � rrþ1, in addition to other criteria like desired accuracy and
sought order of the reduced order model. Therefore, the system
(1) can be represented in additive TF form as

GðsÞ :¼ GþðsÞ þ Gbal
� ðsÞ; ð14Þ

where is balanced and stable. Let

x1
x2
x3

264
375 ¼

g11 g12 g13

g21 g22 g23

g31 g32 g33

264
375 xus

xsb1
xsb2

264
375; ð15Þ

where xus 2 Rn�k; xsb1 2 Rr , and xsb2 2 Rk�r be a similarity transfor-
mation to obtain (14) from (1). Hankel singular values for the sys-
tem are defined as the square roots of the eigenvalues of the
product WRWO. The balanced basis has the property that the states
which are difficult to reach are simultaneously difficult to observe.

The states in Gbal
� corresponding to the largest singular values are

most important in the input–output behavior. Truncation of the
states corresponding to the smaller Hankel singular values i.e., R2

will result in a reduced order model bGr whose input–output behav-
ior closely approximates the behavior of the original model. More
precisely, the H1 norm of the difference between full-order system

G and the reduced order system bGr is upper bounded by twice the
sum of the neglected Hankel singular values (Antoulas, 2005) and
given as

kG� bGrkH1 6 2ðrrþ1 þ � � � þ rkÞ: ð16Þ
Therefore a reduced order model for the system (1) can be

obtained as

ð17Þ

where

Reduced order model of (1) in terms of original co-ordinate sys-
tem can be obtained by setting xsb2 ¼ 0 in (15) as

_~x ¼ KArK
�1~xþKBru; ð18Þ

y ¼ WrK
�1~x; ð19Þ
where ~x ¼ x1
x2

� �
; K ¼ g11 g12

g21 g22

� �
. Moreover, from (15) we have

x3 ¼ n
x1
x2

� �
; where n ¼ g31 g32½ �K�1: ð20Þ
Thus, the original nth order model represented by (1) is reduced
to ðn� kþ rÞth order model. The state variables of the reduced
order model are defined as the first ðn� kþ rÞ state variables of
the original model. Though we do not need the remaining ðk� rÞ
state variables of original model in this paper, if they are required
in an application, they can be expressed in terms of the first
ðn� kþ rÞ state variables by using (20).

Remark: Model reduction by balanced truncation requires bal-
ancing the whole system G� followed by truncation. The Lyapunov
Eqs. (8) and (9) play a prominent role in obtaining system balanc-
ing transformation T and are required to be solved to obtain WR

and WO. The Bartels-Stewart and Hammarling methods are direct
standard methods for the solution of Lyapunov equations of small
to moderate size. These methods rely on initial Schur decomposi-
tion of AS followed by additional factorization schemes. In general
and especially for large-scale systems, it is unwise to solve for WR

and WO directly since these require arithmetic operations of order
N3 representing computational complexity and storage of order N2,
where N is the original system order. This approach may turn out
to be numerically inefficient and ill-conditioned as the Gramians
WR and WO often have numerically low rank i.e., the eigenvalues
ofWR and WO decay rapidly. However, results on low rank approx-
imations to the solutions of Lyapunov equations based on iterative
methods (SVD-Krylov methods) make the balanced truncation
model reduction approach feasible for large-scale systems (Penzl,
2006; Antoulas, 2005; Benner et al., 2005).
3. Mathematical model of AHWR

An extensive derivation of AHWR mathematical model is given
in Shimjith et al. (2010) and Sagar et al. (2013) and the same has
been used for the study carried out in this paper. However, for
brevity the model is discussed briefly in the following.
3.1. Core neutronics model

The AHWR core is considered to be divided into 17 nodes, as
shown in Fig. 1 by the segments labelled from 1 to 17. The top
and bottom reflector regions are divided into 17 nodes in identical
pattern as the core, labelled from 18 to 51, whereas side reflector is
divided into 8 nodes labelled from 52 to 59, giving 59 nodes in
total. Ignoring the dynamical effects of xenon and iodine, the fol-
lowing set of nonlinear time dependent equations represents the
nodal core model of the AHWR:

d/h

dt
¼ �xhhth/h þ

XNh

k¼1

xhkth/k þ ðqh � bÞ/h

‘h

þ
Xmd

i¼1

thkiCih; h ¼ 1; 2; � � � ; Zp; ð21Þ

dCih

dt
¼ bi/h

th‘h
� kiCih; i ¼ 1; 2; � � � ; md; ð22Þ

d/h

dt
¼ �xhhth/h þ

XNh

k¼1

xhkth/k; h ¼ Zp þ 1; � � � ; Zp þ Zr ; ð23Þ



Fig. 1. 17 Node AHWR nodalization scheme with 17 nodes in the core, 17 nodes each in top and bottom reflectors and 8 nodes in surrounding reflector.
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dHk

dt
¼ KRR#k; k ¼ 2; 4; 6; 8: ð24Þ

where /h is the neutron flux in node h; Cih the delayed neutron pre-
cursor concentration for group i; Hk the %-in position of kth control
rod; bi and ki denote neutron fraction yield and decay constant for
group i; md denotes total number of delayed neutron precursor
groups; th the mean velocity of neutrons in node h; and ‘ the
prompt neutron life time; #k the control signal applied to kth regu-
lating rod (RR) drive; and KRR=0.56, a constant. Nh denotes total
number of neighboring nodes to node h. Zp and Zr denote the total
number of nodes in reactor core and surrounding reflector regions
respectively. The coupling coefficients xij, depend on the geometry
and material composition and characteristic distance between the
nodes. qh, the reactivity contributed by the movement of the RRs
around their equilibrium positions, is expressed as

qh ¼
ð�10:234Hk þ 676:203Þ � 10�6 if k ¼ 2; 4; 6; 8
0 otherwise

(
ð25Þ
3.2. Linearization and state-space representation

For simplicity, only one group of delayed neutron precursors is
considered instead of six groups. Now, the set of equations given
by (21)–(24) can be linearized around the steady state operating
conditions ð/h0; Ch0; Hj0Þ, and the linear equations so obtained
can be represented in standard state-space form. For this, define
the state vector as
x :¼ xT/C
xTC xT/R

xTH
h iT

; ð26Þ

where

x/C
:¼ d/1=/10 � � � d/17=/170

� �T
xC :¼ dC1=C10 � � � dC17=/170

� �T
x/R

:¼ d/18=/180 � � � d/59=/590

� �T
xH :¼ dH2 dH4 dH6 dH8½ �T

in which d denotes the deviation from respective steady state value
of the variable. Likewise define the input vector as
u ¼ d#2 d#4 d#6 d#8½ �T and the output vector as

y ¼ y1 � � � y17½ �T , where yi ¼ d/i=/i0 denotes the corresponding
deviation in nodal flux. Then the system of Eqs. (21)–(24) can be
expressed in linear standard state-space form (1), with

A ¼

A/C/C
A/CC A/C/R

A/CH

AC/C
ACC 0 0

A/R/C
0 A/R/R

0
0 0 0 0

26664
37775; ð27Þ

B ¼ 0 0 0 BT
H

� �T
; ð28Þ

and W ¼ W/C
0 0 0½ � ð29Þ

where
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A/C/C
ði; jÞ :¼

�xijti þ qi0
‘i
� b

‘i
if i ¼ j

xijti
/j0
/i0

if i– j

8<:
A/CC :¼ �b� diag: 1

‘1

1
‘2

� � � 1
‘Zp

h i
A/C/R

ði; jÞ :¼
�xijti if i ¼ j

xijti
/j0
/i0

if i– j

(

A/CHði; jÞ :¼ �1:0234� 10�5 � /i0
‘

for i ¼ 2; 4; 6; 8; j ¼ i
2 ;

� �
0 otherwise:

(
AC/C

:¼ diag: k1 k2 . . . kZP½ �
ACC :¼ �diag: k1 k2 � � � kZp

� �
A/R/R

ði; jÞ :¼
�xijti if i ¼ j

xijti
/j0
/i0

if i– j

(

A/R/C
:¼ AT

/C/R

BH :¼ diag: KRR KRR KRR KRR½ �

W/C
:¼ IZp ; and IZp denotes an Identity matrix.

The neutronic parameters, nodal volumes and necessary data
under full power operation are given in Shimjith et al. (2010)
and Sagar et al. (2013). The eigenvalues of the system matrix A
of AHWR are reported in Rajasekhar et al. (2015). An observation
of these eigenvalues reveals that they fall into two distinct clusters.
First cluster has 21eigenvalues consisting of 5 eigenvalues at the
origin and the other 16 eigenvalues ranging from �6:2977� 10�2

to �5:1852� 10�2 and the second one is of 59 eigenvalues ranging
from �4:751� 102 to �8:4578. This indicates the presence of two-
time-scales. The distance between these two eigenvalue clusters,
computed by dividing the largest absolute value of the slow (first)
group by the smallest absolute value of the fast (second) group, is
e ¼ 0:0074. This value is small enough to motivate the use of two-
time-scale based techniques.

4. Application to AHWR space–time kinetics model reduction

The balanced truncation technique discussed in Section 2 can be
applied to the AHWR model developed in Section 3.2 for obtaining
the reduced order model with lesser dimension than the original.
The model has 80 states, 4 inputs and 17 outputs. The presence
of the five eigenvalues at the origin restricts the straightforward
application of the state-space balancing method described in Sec-
tion 2.2. Therefore, we carry out stable and unstable decomposi-
tion of the AHWR model described by (1) to obtain an unstable
subsystem of order 5 and a stable subsystem of order 75. There-
after, we calculate the similarity transformation T in (10) such that
the reachability and observability Gramians in the transformed co-
ordinate system are diagonal and equal. Corresponding Hankel sin-
Table 1
Hankel singular values.

S. No. HSV ð�10�3Þ S. No. HSV ð�10�3Þ
1 0:5348 10 0:0006
2 0:4775 11 0:0006
3 0:1124 12 0:0002
4 0:0634 13 0:0002
5 0:0263 14 0:0001
6 0:0028 15 0:0001
7 0:0025 16 0:0001
8 0:0023 17–75 < 10�8

9 0:0022
gular values of Gbal
� are shown in Table 1. Fig. 2 shows the Hankel

singular values which represent the ‘‘energy” of each state in the
balanced system of AHWR. Before applying the truncation of the

system Gbal
� , it is necessary to determine the partitioning of the

Hankel singular values. We consider the first five Hankel singular
values as listed in Table 1 because the ratio r1=r6 is considerably

larger than r1=r5; r1=r4; . . ., etc. Hence, the order of bGr is 5 and
considering unstable dynamics also an approximate model of order
10 is obtained. The eigenvalues of the reduced order systemmatrix
Ar of AHWR are shown in Table 2, from which it is evident that the
eigenvalues of Ar also fall into two distinct clusters. First cluster
has 9 eigenvalues consisting of 5 eigenvalues at the origin and
other four, ranging from �0:0601 to �0:0529 and the second clus-
ter has only one eigenvalue, i.e., �8:5034. Thus, the reduced order
model also possesses two-time-scale property. The distance
between these clusters, er , of the reduced order model is 0:0071,
which is almost equal to e of the original model.

To illustrate the dynamic behavior of the 10th order reduced
model obtained as described above, the open loop response for a
short–time control relevant transient is presented here. Response
obtained by the simulation of original 80th order is considered as
reference. In the simulation, the reactor was assumed to be initially
operating at full power and each RR is at 66:7% in position. At time
t ¼ 0 s, a control signal of 1 V is applied to RR drive in node 2 and
maintained for 5 s, under which the RR moved linearly into the
reactor core. After a short interval of 5 s, the control signal is made
�1 V and is maintained at this level for 10 s. Then the control volt-
age is made 1 V for 5 s to bring back the RR to its nominal position.
Fig. 3 shows the position of RR and, the reactivity introduced by it
during the transient. From the deviations in the nodal fluxes, the
deviation in the core average flux is calculated as
Table 2
Eigenvalues of system matrix Ar .

S. No. Eigenvalue S. No. Eigenvalue

1 0 6 �0.0529
2 0 7 �0.0530
3 0 8 �0.0596
4 0 9 �0.0601
5 0 10 �8.5034
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Fig. 7. Change in flux in node 14 from its steady state value during the movement
of RR.
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Fig. 5. Change in flux in node 2 from its steady state value during the movement of
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Table 3
Error (%) in deviation in fluxes.

Method Order of the Simplified model Core

Davison’s technique 22 0.095
Marshall’s technique 21 0.151
Singular perturbation analysis 21 0.155
Balanced truncation technique 10 0.168
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d/avg ¼
P17

i¼1d/iV iP17
i¼1Vi

; ð30Þ
where Vi denotes the volume of ith node. To characterize the accu-
racy of approximation of the reduced order model, we compute the
error using
eyi ¼ ðyiref � yiÞ � 100; i ¼ 1; 2; � � � ; 17; ð31Þ
where yiref denotes the reference value of deviation in flux in node i

and yi denotes the approximate value of deviation in flux in node i.
Fig. 4 shows the core average flux alongwith error. Fig. 5 shows the
variation of neutron flux in node 2 from the respective equilibrium
value. Fig. 6 shows the variation of neutron flux in node 10, which is
neighboring to node 2. Fig. 7 shows the variation of neutron flux in
node 14 which is far away from node 2.
L2-norm of error (%) in

average flux Node-2 flux Node-10 flux Node-14 flux

4 3.7349 1.9481 1.0641
8 0.1646 0.1582 0.1324
9 0.1682 0.1616 0.1347
0 � 10�3 0.0132 0.0157 0.0099
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5. Comparison of different reduced order models with the
application of space–time kinetics model of AHWR

As already stated, due to the interaction of slow and fast
dynamics present in AHWR, the mathematical model describing
its behavior exhibits the multiple time-scales bringing in suscepti-
bility to numerical ill-conditioning in control design and analysis.
In Rajasekhar et al. (2015), a systematic method has been sug-
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Fig. 9. Comparison of core average flux during the movement of RR.
gested to handle the numerical ill-conditioning occurring in the
computations due to the presence of the slow control rod dynamics
by decoupling the higher order model into very slow and fast mod-
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els. Model order reduction techniques based on Davison’s and Mar-
shall’s dominant mode retention are then applied to retain the
slow dynamics. Finally, the reduced order model was formulated
by augmenting the control rod dynamics. Model decomposition
into slow and fast subsystems based on singular perturbation anal-
ysis has also been explored by suggesting regrouping of state
variables.

In this section, we compare the performance characteristics of
different reduced order models of AHWR obtained from Davison’s,
Marshall’s, singular perturbation analysis and balanced truncation
methods, with respect to each other and with the performance
characteristics of the original higher order model. To illustrate
the dynamic behavior of the aforesaid reduced order models, the
open loop response is simulated for a short–time transient as
described in Section 4 and is compared with the open loop
response of the original 80th order model. Accuracy analysis as
described earlier has also been carried out to determine the error
in the approximation. We also quantified the error in approxima-
tion for different simplified models by computing the L2-norm of
the error defined by (31) and this is shown in Table 3. Fig. 8 com-
pares the L2-norm of error vector for all the 17-nodes of the AHWR.
Plot for Davison’s approach has not been shown, as it yields large
error compared to other methods.
0 5 10 15 20 25 30
−0.1

−0.05

0

0.05

0.1

0.15

δφ
10

 (%
)

Time (s)

Reference
Davison’s Approximation
Marshall’s Approximation
Singular Perturbation
Approximation
Balanced Truncation
Approximation

0 5 10 15 20 25 30
−0.04

−0.02

0

0.02

0.04

Er
ro

r (
%

)

Time (s)

Reference−Davison’s
Approximation

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3
x 10−3

Er
ro

r (
%

)

Time (s)

Reference−Marshall’s
Approximation
Reference−Singular
Perturbation Approximation
Reference−Balanced
Truncation Approximation

Fig. 11. Comparison of neutron flux in node-10 during the movement of RR.
The response of different reduced order models shown in Fig. 9
reveals that the core average flux obtained from the approximate
models is nearly same as that of the original model. Fig. 10 shows
the variation of flux in node 2, from the respective equilibrium
value. Fig. 11 shows the variation of neutron flux in node 10, which
is neighboring to node 2. Fig. 12 shows the variation of neutron
flux in node 14 which is far away from node 2. The comparison
of responses makes it clear that Davison’s technique fails to repro-
duce the accurate response characteristics as that of original model
in node 2; 10 and 14 with the reduced order model obtained by
retaining first 22 eigenvalues of A. Marshall’s, singular perturbation
and balanced truncation methods yield better approximation for
deviation in core average flux as well as nodal fluxes with the order
of 21; 21 and 10 respectively, compared to the Davison’s tech-
nique. However, the application of Davison’s and Marshall’s
method increases computational burden in obtaining approximate
model in reactor applications due to the presence of multiple
eigenvalues at origin of the complex s-plane, whereby the diago-
nalization of AHWR space–time kinetics model is difficult.
Balanced truncation method requires the decomposition of stable
and unstable dynamics while singular perturbation technique
requires reordering of state variables and block diagonalization.
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Table 4(a)
Computation time for simplified models.

Computation time in (s)

Method Order of the Simplified model Algorithm Simulation Total

Davison’s technique 22 0.0203 0.1569 0.1772
Marshall’s technique 21 0.0174 0.1493 0.1667
Singular perturbation analysis 21 0.0025 0.1849 0.1874
Balanced truncation technique 10 0.3169 0.0823 0.3992
Original model 80 NA 0.3328 0.3328

Table 4(b)
Computational cost and memory requirement for simplified models.

Method Number of FLOPs (Mega
FLOPs)

Memory requirement
(MB)

Davison’s technique 3.8 441.90
Marshall’s technique 5.5 489.64
Singular perturbation

analysis
2.2 140.58

Balanced truncation
technique

17.2 1192.77
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Singular perturbation and balanced truncation methods preserve
the two-time-scale property of the model, however transient
response of balanced truncation method is marginally superior to
the singular perturbation method. It may be noted from the Table 3
that the error in approximation using the balanced truncation
approach is far lower in comparison with other methods.

We compare the computation time and memory for the differ-
ent model order reduction techniques. The computation was per-
formed on Matlab R2015b and Windows-7, 64 bit computer with
intel(R) Core(TM) i3-4130 CPU @ 3.40 GHz processor and 4 GB
RAM memory. The computation time for processing the model
reduction algorithm is just a one-time requirement, while simula-
tion is to be carried for different situations and multiple cases may
be studied. Hence, comparison of simulation time would be appro-
priate. Nevertheless, the Table 4(a) gives a comparison of algorithm
processing time as well as simulation time, for balanced truncation
and other methods. Although the total computation time for bal-
anced truncation approach is slightly higher compared to the orig-
inal model, simulation time is very less compared to the original
method as well as the other methods.

Also, the number of floating point operations (FLOPs) and mem-
ory requirement are given in Table 4(b) for the different methods.
Singular perturbation analysis is the most efficient requiring the
minimum memory as well as FLOPs while the balanced truncation
method is the least efficient with requirement of about 17.2 Mega
FLOPs and 1192.7 MB memory. However, the most important thing
is its feasibility of working in reduced order modeling of AHWR
space–time kinetics.
6. Conclusions

For the AHWR system, various model order reduction tech-
niques, viz., Davison’s and Marshall’s dominant mode retention
techniques; balanced truncation technique and model decomposi-
tion into slow and fast subsystems based on singular perturbation
analysis, have been applied. Among these, Davison’s and Marshall’s
techniques require diagonalization and balanced truncation tech-
nique requires a modal decomposition into unstable and stable
subsystems. Also, it is essential for model order reduction based
on Davison’s and Marshall’s techniques, to identify the modes to
retain and those to truncate/reduce. In contrast, singular perturba-
tion techniques require a decomposition of the state-space systems
into fast/slow subsystems using block diagonalization methods.
Davison’s and Marshall’s techniques result into a simplified model
that retains the slowly varying dynamics while the application of
singular perturbation analysis and two-time-scale methods
decompose the model into two subsystems viz., slow and fast, thus
providing better approximation of dynamics of the system. Quite
similar to this, application of balanced truncation yields a reduced
model in which both the slow and fast dynamic characteristics are
simultaneously retained yielding good accuracy in approximation
of high order model by reduced order model.

The order of the reduced order model obtained by the applica-
tion of Davison’s, Marshall’s, and singular perturbation approaches
is 22, 21 and 21 respectively. However, balanced truncation
approach is most effective in model order reduction yielding the
simplified model with an order 10. The transient response of sim-
plified models based on Marshall’s, singular perturbation and bal-
anced truncation techniques were in good agreement with the
transient response of the original high order model.

In summary, we have proposed a novel approach for the appli-
cation of balanced truncation technique to nuclear reactor systems
which have a nontrivial unstable part based on stable and unstable
decomposition. This is accomplished easily while the direct appli-
cation of balanced truncation for model order reduction is not fea-
sible. The computation involved in obtaining a balanced basis is
typically considered too high and this method has not been ade-
quately used in model order reduction applications. However,
our work shows that the computation is required to be done off-
line and only once. The computation time is only marginally
higher, but the advantages outweigh the marginally higher compu-
tation time. It is evidenced that the final reduced order model
based on the balanced truncation method is of much lower order
in spite of negligible error between the response of the original
system and that obtained from the reduced order model. This pro-
vides significant advantage from a practical perspective because a
lower-order controller or estimator needs to be designed for the
purpose of controlling the AHWR. In general, the singular perturba-
tion and balanced truncation methods are expected to perform
better in cases where time-scales are widely separated.
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