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New Results and Techniques for Computation of
Stored Energy in Lossless/All-Pass Systems

Chayan Bhawal, Debasattam Pal, Sandeep Kumar, and Madhu N. Belur

Abstract—Lossless and all-pass systems are energy-conservative
in the sense that the energy that is extracted from the system
always equals that supplied to the system. This stored energy turns
out to be independent of the system realization/description. For
example, there are different LC realizations of a lossless transfer
function, but the energy stored can be uniquely expressed in terms
of the port variables and their derivatives. This paper proposes
new results and algorithms to compute the stored energy in lossless
systems. We present four different techniques to compute the
stored energy of lossless/all-pass systems. The first method is LC
realization based (Foster, Cauer and their combinations) and the
second is based on the Bezoutian of two polynomials. The notion
of “balancing controllability/observability Gramians” is used for
the third, while the last method is based on adjoint networks. A
comparative study among the four methods shows that the first
three methods are comparable with respect to computation time,
while for numerical accuracy, the Bezoutian method is the best.
Three different methods to compute the Bezoutian is also reported
here: Euclidean long division, Pseudo-inverse method and the two
dimensional discrete Fourier transform.

Index Terms—Adjoint network, Bezoutian, Foster-Cauer real-
izations, Gramian balancing.

I. INTRODUCTION

THIS paper deals with lossless systems (and more generally
conservative systems), i.e., systems for which the energy

extracted from the system equals the energy supplied to the
system. Traditionally, LC realizations of lossless transfer func-
tions are non-unique; Foster 1 and 2, Cauer 1 and 2 and their
combinations, for example. The values of the capacitances and
inductances would be highly varied across these realizations,
due to which, for a given amount of stored energy, the capacitor-
voltages and inductor-currents would be different across the
realizations. Further, for a given lossless transfer function there
are many state-space realizations that need not correspond to
an LC realization, this also adds to the non-uniqueness in the
values of states for a given stored energy. In spite of this non-
uniqueness, it is known (and elaborated in Section II-D below)
that the energy stored, when expressed in terms of the external
variables (port-variables) and their derivatives, is exactly the
same function (henceforth called the storage function) and is
independent of both the LC realization and the state-space
realization. This property can be exploited in the sense that
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the LC realization or state-space realization can be chosen in
a form so that new methods (possibly with better numerical/
flop-count properties) to compute the stored energy are revealed
by the chosen realization. This paper proposes four different
approaches to characterize the stored energy; each approach
unfolds new results and algorithms to compute the storage
function. Note that when the system is not lossless but strictly
passive, then the computation of the stored energy is linked to
solutions of the so-called Algebraic Riccati Inequality/Equality
(ARI/ARE). However, such an inequality/equation cannot be
formulated for conservative systems, since certain “regularity
conditions” are not satisfied by such systems. Hence methods
described in this paper not only provide new ways to compute
the storage function but also to solve control problems where
the ARE does not exist due to failure of the regularity condition
on D . In this paper we develop new results which yield proce-
dures to compute storage function of conservative systems. We
propose following four approaches:

1) LC realizations: Foster/Cauer and their combinations,
2) Bezoutian of two polynomials

a) Euclidean long division,
b) Pseudo-inverse/Left-inverse,
c) Two dimensional discrete Fourier transform,

3) balancing of controllability/observability Gramians and
4) dual/adjoint network.

The rest of the paper is organized as follows: Section II sum-
marizes the notation and preliminaries required in the paper.
In Section III we present results based on LC realizations.
Section IV contains results based on the Bezoutian of two
polynomials. Three methods for Bezoutian are proposed in the
section. It also contains a comparison of these three methods
with respect to time and accuracy. Section V has results to
compute the storage function of all-pass systems using the con-
cept of balanced states. Methods to compute storage function
of lossless systems based on adjoint networks is reported in
Section VI. In Section VII, we report algorithms for storage
function computation of lossless systems. Section VIII has a
comparison of the algorithms based on their computational time
and numerical accuracy. Concluding remarks are presented in
Section IX.

II. NOTATION AND PRELIMINARIES

A. Notation

We use standard notation: R and C stand for the fields of
real and complex numbers respectively. R[ξ] denotes the ring
of polynomials in one indeterminate ξ with real coefficients.
The set Rw×p[ξ] denotes all w× p matrices with entries from
R[ξ]. We use • when a dimension need not be specified: for
example, Rw×• denotes the set of real constant matrices having
w rows. Rn×m[ζ, η] denotes the set of polynomial matrices in
two indeterminates: ζ and η, having n rows and m columns.
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C∞(R,Rw) denotes the set of all infinitely often differentiable
functions from R to Rw, and D(R,Rw) denotes the subspace
of all compactly supported trajectories in C∞(R,Rw). A block
diagonal matrix A is represented as diag (A1, A2, . . . , Am)
where A1, A2, . . . , Am are square matrices of possibly different
sizes. While vectors are usually column vectors in this paper,
sometimes, depending on the context ei either denotes the i-th
row or the i-th column of the identity matrix. 1m ∈ Rm denotes
a column vector of all ones. A = [aij ] represents a matrix A
with elements aij where i and j represent the row and column
indices of the matrix. The symbol A

⊗
B represents Kronecker

product of matrices A and B. A matrix of the form

[
B1

B2

]
is

represented as col(B1, B2).

B. Behavior

This section contains some essential preliminaries of the
behavioral approach to systems theory: an elaborate exposition
can be found in [22, Sec. 2]. A linear differential behavior,
denoted by B, is defined as the set of all infinitely often
differentiable trajectories that satisfy a system of ordinary linear
differential equations with constant coefficients, i.e.,

B :=

{
w ∈ C∞(R,Rw)|R

(
d

dt

)
w=0

}
, where R(ξ)∈R

•×w[ξ].

We denote the set of all linear differential behaviors with
w number of variables by Lw. The behavior B ∈ Lw can be
represented as B = kerR(d/dt) called the kernel represen-
tation of B. Without loss of generality, we assume R(ξ) is
of full row rank (see [18, Theorem 2.5.23]). Since R(ξ) is of
full row rank, there exists a possibly non-unique partition of
R(ξ) = [Q(ξ) P (ξ)] (after permutation of columns of R(ξ) if
necessary) where P (ξ) is square and nonsingular. Conforming
to this partition of R(ξ), the variable w is partitioned as (u, y)
with u as the input and y as the output. The transfer matrix from
input u to output y is −P−1Q. When this matrix of rational
functions is proper, then there exists an input/state/output (i/s/o)
representation of the form ẋ = Ax+Bu and y = Cx+Du
such that A ∈ Rn×n and with n defined as n := deg det P . For
the purpose of this paper, we call a behavior B controllable,
when an i/s/o representation of the system is both controllable
and observable; see [18, Chapter 5] for other equivalent defin-
itions. We represent the set of all controllable behaviors with
w variables as Lw

cont. The minimum number of states required
for an i/s/o representation of a controllable behavior is called
the McMillan degree of the system. It is known that the state-
space representation of a controllable and observable system is
minimal and the number of states of such a system is equal to
the McMillan degree. One of the various ways of representing a
controllable linear differential behavior B ∈ Lw

cont is the image
representation: there exists M(ξ) ∈ Rw×m[ξ] such that

B :=

{
w∈C∞(R,Rw)|∃�∈C∞(R,Rm) such that w=M

(
d

dt

)
�

}
.

In fact, there exists an M such that M(λ) has full column rank
for all λ ∈ C; it is called an observable image representation
(see [22, Sec. 2]). For the rest of the paper we consider con-
trollable behaviors B only and also use the term system and
behavior interchangeably.

C. Quadratic Differential Forms and Dissipativity

In this subsection, we provide basic details about quadratic
differential forms (QDF): for a detailed study see [22]. Consider

a two-variable polynomial matrix

φ(ζ, η) :=
∑
j,k

φjkζ
jηk ∈ R

w×w[ζ, η], where φjk ∈ R
w×w.

φ(ζ, η) is called symmetric if φ(ζ, η) = φ(η, ζ)T . For the rest
of the paper, we deal with symmetric two-variable polynomial
matrices only. The QDF Qφ induced by φ(ζ, η) is a map Qφ :
C∞(R,Rw) → C∞(R,R) defined as

Qφ(w) :=
∑
j,k

(
djw

dtj

)T

φjk

(
dkw

dtk

)
.

A quadratic form induced by a real symmetric constant matrix
is a special case and is often needed in this paper: we denote it
by QΣ(w) = wTΣw, where Σ ∈ Rw×w.

We call a controllable behavior B Σ-dissipative if∫
R

wTΣw dt � 0 for every w ∈ B ∩D. (1)

QΣ is called the supply rate or power. The variable w, in
terms of which the power is specified, is called the manifest
variable. For this paper, the manifest variable w contains the
port variables like voltage and current. The supplied power
and the energy stored may also be expressed in terms of other
variables, like the latent variable � and the state x: this is dealt
below when dealing with the stored energy.

For a Σ-dissipative controllable behavior B, the two variable
polynomial matrix ψ ∈ R

w×w[ζ, η] is said to induce a storage
function Qψ with respect to the supply rate QΣ if

d

dt
Qψ(w) � wTΣw for all w ∈ B. (2)

The notion of storage function captures the intuition that the
rate of increase of stored energy in a dissipative system is at
most the power supplied. The storage function with respect
to a supply rate is not unique in general for a given system.
However, lossless systems are a special case for which storage
function is unique (see [22, Remark 5.13]). Such a system also
satisfies the inequality (2) as an equality: these systems are the
focus of this paper and is elaborated in the following subsection.

D. Conservative Systems and Their Storage Functions

Conservative systems are a special class of dissipative sys-
tems. A controllable behavior B is said to be conservative with
respect to Σ ∈ R

w×w if the inequality in (1) is satisfied with
equality, i.e.,∫

R

wTΣwdt = 0 for all w ∈ B ∩D.

Thus conservative systems satisfy (2) with equality
d

dt
Qψ(w) = wTΣw for all w ∈ B. (3)

Noting that
d

dt
QΨ(�) = QΦ(�) (4)

whenever (ζ+η)Ψ(ζ, η)=Φ(ζ, η) and using the image repre-
sentation of the controllable behavior w=M(d/dt)�, one can
obtain the two-variable polynomial matrix Ψ∈Rm×m[ζ, η] asso-
ciated with the storage functions (expressed in variable �) using

Ψ(ζ, η) =
Φ(ζ, η)

ζ + η
=

M(ζ)TΣ M(η)

ζ + η
=

∑
i,j Φ̃ijζ

iηj

ζ + η
(5)



74 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

with Φ̃i,j ∈ Rm×m. Given an image representation, (5) gives
us the unique storage function of the conservative system in
the latent variables: refer [22, Sec. 5] for a discussion on
conservative systems. Further, since the image representation
w = M(d/dt)� can be assumed to be observable without loss
of generality, the stored energy can be expressed in terms of the
manifest variable w using a polynomial left-inverse of M(ξ) as
follows. Let M †(ξ) ∈ Rm×w[ξ] be such that M †(ξ)M(ξ) = Im.
Then, the stored energy

QΨ(�)=QΨ̂(w) with Ψ̂(ζ, η) :=M †(ζ)TΨ(ζ, η)M †(η). (6)

The special case when the stored energy is to be expressed in
terms of the states is central to this paper. It is known that for
controllable systems, the energy stored can be expressed in the
form xTKx, where K ∈ R

n×n is symmetric: see [22, Sec. 5].
Think of x as the capacitor voltages and inductor currents in
an LC realization, but this paper considers other minimal state-
space realizations also. Note that ability to express energy in
terms of w, instead of � (or x), requires that the variable � (or x)
is observable from w: this is true for the controllable case. See
[12] for significance of observability in storage functions. Since
we deal with storage functions expressed in the observable
state variable, i.e., xTKx, for the rest of this paper we use
(6) to express xTKx in terms of w and its derivatives. Hence
hereafter we consider specific state-space realizations and then
focus only on the computation of the matrix K .

In this paper, we use power := 2 input × output as the supply
rate and call it the passivity supply rate, i.e., for w = (u, y)

QΣ(w) =

[
u
y

]T
Σ

[
u
y

]
induced by Σ =

[
0 1
1 0

]
(7)

where u, y are the input/output of the system. A system
dissipative with respect to the passivity supply rate is called a
passive system. In this paper, as in the literature, conservative
systems with respect to the passivity supply rate are called
lossless systems.1 From the above discussion, it is clear that (4)
written in terms of state variables x and adapted to passivity
supply rate takes the form

d

dt
xTKx = 2uTy. (8)

Electrical circuits consisting of ideal inductors and/or capaci-
tors have a lossless behavior. For example, consider the lossless
system with transfer function G(s) = (2s/(s2 + 1)). This cor-
responds to an LC tank circuit (or a mass-spring system) with
C = (1/2)F and L = 2H . Note that G(s) +G(−s) = 0. Let
vC and iL be the capacitor voltage and inductor current respec-
tively. The kernel and image representation of the system (as

discussed in Section II-B) is [(d2/dt2) + 1 − 2(d/dt)]

[
vC
iL

]
=

0 and

[
vC
iL

]
=

[
2(d/dt)

(d2/dt2) + 1

]
� respectively. The stored en-

ergy is given by (1/2)v2C + 2i2L.
In order to simplify the exposition in this paper, we shall be

using the passivity supply rate and deal with lossless systems
only. However, all the methods reported in this paper can be

1Lossless systems, with u input and y output, are conservative with respect
to the “passivity supply rate” uT y and have D +DT = 0. Similarly, all-pass
systems are conservative with respect to the “bounded real supply rate” uT u−
yT y. For all-pass systems the feedthrough term D satisfies I −DTD = 0.
Hence, it can be shown that all arguments made for lossless systems are
applicable to all-pass systems as well.

applied to systems conservative with respect to other supply
rates too.

E. Adjoint Systems and Duality

In this section, we give a brief introduction to adjoint sys-
tems and duality. We first define the Σ-orthogonal complement
behavior B⊥Σ of a behavior B.

Definition 2.1: Consider B ∈ Lw
cont and a nonsingular, sym-

metric Σ ∈ Rw×w. The Σ-orthogonal complement B⊥Σ of B is
defined as

B⊥Σ :=

⎧⎨⎩v∈C∞(R,Rw)|
∞∫

−∞

vTΣw dt=0 for all w∈B ∩D

⎫⎬⎭ .

The behavior B⊥Σ is also known in the literature as the
adjoint system of B: see details in [22, Sec. 10]. If (A,B,C,D)
is a minimal state-space representation of a system B then, with
respect to passivity supply rate, the system B⊥Σ , with manifest
variables (e, f), admits a minimal state-space representation of
the form ż = −AT z + CT e, f = BT z −DT e. The variable z
is called the dual-state and satisfies (d/dt)xT z = uT f + yT e

for

[
u
y

]
∈ B and

[
f
e

]
∈ B⊥Σ .

F. Controller Canonical Form

Though the controller canonical form is standard, we in-
clude it for completeness. Consider a system with a strictly
proper transfer function G(s) = (n(s)/d(s)) where n(s) =
bn−1s

n−1 + bn−2s
n−2 + · · ·+ b0 and d(s) = sn + an−1s

n−1 +
· · ·+ a1s+ a0. Define the controller canonical form state-
space representation of the system

ẋ = Ax+Bu and y = Cx (9)

where A ∈ Rn×n and B,CT ∈ Rn with A,B,C as

A :=

⎡⎢⎢⎢⎣
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 1
−a0 −a1 · · · −an−2 −an−1

⎤⎥⎥⎥⎦ , B :=

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦

C :=

⎡⎢⎢⎢⎣
b0
...

bn−2

bn−1

⎤⎥⎥⎥⎦
T

.

For n(s) and d(s) defined above, the states of the system
corresponding to this controller canonical representation satisfy

x :=

(
�,

•
�, . . . , �(n−1)

)
and

[
u

y

]
=

[
d
(

d
dt

)
n
(

d
dt

)]�. (10)

G. LMI and Algebraic Riccati Equation

As explained in Section II-D, consider a passive system
with minimal i/s/o representation (A,B,C,D) and McMillan
degree n. Suppose xTKx is the stored energy. Using QΨ̂(w) =

xTKx, the i/s/o representation of the passive system and the
dissipation inequality (2), we get an LMI of the form[

ATK +KA KB − CT

BTK − C −(D +DT )

]
� 0. (11)

Contrary to theconditionD+DT=0,which happenswhen asys-
tem is lossless, for strictly passive case we haveD+DT >0. For
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such systems, the Schur complement with respect to D +DT

in LMI (11) gives the well known algebraic Riccati inequality.
The algebraic Riccati equation (ARE)2 associated with such a
system with respect to the passivity supply rate is

ATK+KA+(KB−CT)(D+DT )
−1
(BTK−C) = 0. (12)

Equation (12) indicates that existence of the ARE depends on
the nonsingularity of D +DT . For lossless systems, D +DT

is identically zero and the ARE does not exist. However, for
lossless systems the LMI (11) holds with equality,3 i.e.,

ATK +KA = 0 and BTK − C = 0. (13)

H. Minimal Polynomial Basis (MPB)

The degree of a polynomial vector r(s) ∈ Rn[s] is defined as
the maximum degree amongst the n components of the vector.
Degree of the zero polynomial and the zero vector Rn[s] is
defined as −∞.

Consider the polynomial matrix R(s) ∈ R
n×m[s] of rank n.

Suppose P (s) ∈ Rm×(n−m)[s] is of rank n− m and satisfies
R(s)P (s) = 0. Then the columns of P (s) are said to form a
basis of the nullspace of R(s). Suppose the columns of P (s) are
{p1(s), p2(s), . . . , pm−n(s)} ordered with degrees d1 � d2 �
· · · � dm−n. The set {p1(s), p2(s), . . . , pm−n(s)} is said to be a
minimal polynomial basis of R(s) if every other nullspace basis
{q1(s), q2(s), . . . , qm−n(s)} with degree c1 � c2 � · · · � cm−n
is such that di � ci, for i = 1, 2, . . . , m− n. The degrees of the
vectors of minimal polynomial basis of R(s) are called the
Forney invariant minimal indices or Kronecker indices (more
details in [11, Sec. 6.5.4]).

III. LC REALIZATION BASED METHOD

The rest of this paper contains results for computation of
stored energy and algorithms based on these results (see [14]
also). This section uses the partial fraction/continued fraction
expansion based method. The capacitor voltages and inductor
currents in the electrical network are taken as the states while
computing the storage function in this section.

A. Foster/Cauer Based Methods: SISO Case

This method is based on viewing the lossless transfer func-
tion G(s) as the driving point impedance/admittance of an LC
network. Since the system is lossless, the poles and zeros of the

2There are different forms of ARE depending on the notion of power
being used. For example, consider a system with input/state/output (i/s/o)
representation ẋ = Ax+ Bu and y = Cx+Du, then for passivity studies
(power = 2uT y) we consider ARE of the form ATK +KA+ (KB −
CT )(D +DT )−1(BTK − C) = 0. On the other hand, for small gain
system (power = uT u− yT y), the ARE takes the form ATK +KA+
CTC + (KB + CTD)(I −DTD)−1(BTK +DTC) = 0. Note that the
existence of ARE crucially depends on the nonsingularity of D +DT and
I −DTD respectively. We call such conditions on the feedthrough term D
as “regularity condition”. For dissipative systems, ARE exists if and only if this
regularity conditions on feedthrough term D is satisfied. When the ARE exists,
it finds many applications: for example, see [1], [8], [20], amongst many others.

3One way of computing solutions of an ARE is to solve for the LME linked
with it. Conservative systems do not admit an ARE but they do admit an LME.
However, solving such LME corresponding to a conservative system is not
possible with standard procedures like interior point methods due to absence
of interior points to work with. Further conservative systems also admit linear
matrix equations of the Sylvester form PX +XTQ = R where P,Q,R,X
are matrices of suitable dimensions. Methods to solve the Sylvester equation
are known in the literature. However, most of these methods require matrices P
and Q to be square, while the matrix equations encountered in the conservative
case have P and Q nonsquare.

Fig. 1. LC realization based on partial fractions: Foster-I form.

system are all on the imaginary axis. Expansion of the proper
transfer function G(s) into its partial fractions using the Foster
form gives

G(s) =
r0
s

+

m∑
q=1

rqs

s2 + ω2
q

(14)

where4 r0 � 0, r1, r2, . . . , rm > 0 and each ωq > 0. For a sys-
tem with proper transfer function G(s) as in (14), a minimal
i/s/o representation

ẋf = Afxf +Bfuf and yf = Cfxf (15)

is given by

Af := diag(A0, A1, . . . , Am)whereAq :=

[
0 −rq
ω2

q

rq
0

]
, A0 :=0

Bf :=
[
r0 r1 0 r2 0 · · · rm 0

]T ∈ R
2m+1

Cf :=
[
1 1 0 1 0 · · · 1 0

]
∈ R

2m+1, q = 1, 2, . . . , m.

On the other hand, expansion of a proper transfer function
G(s) = gq(s) in continued fraction using Cauer-II methods
involves the following iteration:

gq(s) =
hq

s
+

1

gq+1(s)
, gn(s) :=

hn
s

(16)

where q = 1, 2, . . . , n and n is the McMillan degree of the
system. For the sake of simplicity, we assume that the
McMillan degree n of the system is odd. Consider the vec-
tors V := [v1 v2 · · · vm]

T , I := [i1 i2 · · · im−1]
T and B2 :=

[h1 h3 · · · hn]
T ∈ Rm where m := ((n + 1)/2). For p =

1, 2, . . . , m− 1, define Hu, H l ∈ R(m−1)×(m−1) such that

Hu
pj :=

{
0 for p > j

h2p for p � j
& H�

pj :=

{
h2p+1 for p � j

0 for p < j

A minimal representation of the system G(s)

ẋc = Acxc +Bcuc and yc = Ccxc (17)

is given by the following matrices:

Ac :=

⎡⎣ Hu

0
−H�

⎤⎦ , B :=

[
0
B2

]
and C :=

[
0
1m

]T
where xc :=

[
I
V

]
.

The physical realization of transfer function in (14) in an LC
network can be done using the Foster method (as shown in
Fig. 1) and the Cauer method (as in Fig. 2).

4The residues in this expansion are assumed non-negative primarily to make
contact with LC realization studies, where the residues affect the inductance
and capacitance parameters. This is closely linked to positive definiteness of
the obtained storage function and plays no further role in the algorithm. We do
not dwell further on this: see [22, Sec. 6].
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Fig. 2. LC realization based on continued fractions: Cauer-II form.

Theorem 3.1: Consider a controllable, lossless system with
a strictly proper transfer function G(s) of the form given in
(14) and (16). Assume the McMillan degree of G(s) is odd. For
each of the two cases a) and b) below corresponding to Foster
and Cauer realizations, consider the state-space realizations
in which the states are the capacitor voltages and inductor
currents. Then, the stored energy

xTKx =
∑
Lj

Lji
2
j +

∑
Cq

Cqv
2
q .

More precisely,
(a) For systems with proper impedance function as in (14)

and a minimal i/s/o representation as in (15), the unique
storage function is xT

f Kfxf , with the diagonal matrix
Kf ∈ Rn×n defined by

Kf := diag

(
1

r0
,K1,K2, . . . ,Km

)
where

Kq :=

[
r−1
q 0
0 riω

−2
i

]
for q = 1, 2, . . . , m.

(b) For systems with proper admittance function as in (16)
and a minimal i/s/o representation as in (17), the unique
storage function is xT

c Kcxc, with the diagonal matrix
Kc ∈ Rn×n defined by

Kc := diag

(
1

h2
,
1

h4
, . . . ,

1

hn−1
,
1

h1
,
1

h3
, . . . ,

1

hn

)
.

Proof: a) Note that ωq �= ωj for q �= j guaran-
tees controllability and observability5 of the system. We
prove the theorem for n = 5, the general case follows
from it. The transfer function in partial fraction form is
G(s) = (r0/s) + (r1s/(s

2 + ω2
1)) + (r2s/(s

2 + ω2
2)). Hence

A = diag

{
0,

[
0 −r1

(r1/ω
2
1) 0

]
,

[
0 −r2

(r2/ω
2
2) 0

]}
, B =

[r0 r1 0 r2 0]T , C = [1 1 0 1 0].
Consider Kf = KT

f = [kxy] ∈ R5×5 where x, y = 0, 1,

. . . , 4. Since ω1 �= ω2 and Kf satisfies AT
f Kf +KfAf = 0,

we have Kf = diag {k00, k11, . . . , k44}, (k22/k11) = (r1/r2),
and (k44/k33) = (r3/r4). Further use of the equation
BT

f Kf − Cf = 0, we get a unique Kf of the form Kf =

diag {(1/r0), (1/r1), (r1/ω2
1), (1/r2), (r2/ω

2
2)}. This com-

pletes the proof Statement a) of Theorem 3.1.
b) We give a brief outline of the proof here due to paucity of

space. We show it for a system with McMillan degree n=5. The

5It can be verified that the controllability matrix [Bf AfBf · · · An−1
f Bf ]

and observability matrix [CT
f AT

f CT
f · · · An−1T

f CT
f ] has full rank if and

only if ωq �= ωj for q �= j.

proof for the general case follows from it. Using (17), we have

Ac =

⎡⎢⎢⎢⎢⎣
h2 h2

0 h4

0
−h3 0
−h5 −h5

⎤⎥⎥⎥⎥⎦ , Bc =

⎡⎢⎢⎢⎢⎣
0
0
h1

h3

h5

⎤⎥⎥⎥⎥⎦

Cc =

⎡⎢⎢⎢⎢⎣
0
0
1
1
1

⎤⎥⎥⎥⎥⎦
T

Solving the matrix equations AT
c Kc +KcAc = 0 and

BT
c Kc − Cc = 0, we get the unique diagonal matrix

Kc := diag ((1/h2), (1/h4), (1/h1), (1/h3), (1/h5)). Hence
Kc induces the storage function xT

c Kcxc of the system. This
completes the proof Statement b) of Theorem 3.1. �

Based on the above result, we report an algorithm referred to as
the “LC realization based” algorithm in Section 7.1 to compute
storage function of lossless systems. Results in Theorem 3.1 is
easily extendable to lossless systems with even McMillan de-
gree. We present an example next to demonstrate Theorem 3.1.

Example 3.2: Consider a lossless behavior B with transfer
function G(s) = ((8s2 + 1)/(6s3 + s)).

LC realization based method:

G(s) =
1

s
+

s/3

s2 + 1/6
=

1

s
+

1
1
2s + 1

1/3s

Clearly, r0 = 1, r1 = (1/3), ω2
1 = (1/6) and h1 = 1, h2 =

(1/2), h3 = (1/3).
Foster Realization (Theorem 3.1(a)): x = (vC1, vC2, iL)

Af =

⎡⎣0 0 − 1
3

1
2 0

⎤⎦ , Bf =

⎡⎣11
1
3

⎤⎦ , Cf =

⎡⎣11
0

⎤⎦T

Kf =

⎡⎣1 3
2

⎤⎦
Cauer Realization (Theorem 3.1(b)): x = (iL, vC1, vC2)

Ac =

⎡⎣ 0 0 1
2

0 0 0
− 1

3 0 0

⎤⎦ , Bc =

⎡⎣01
1
3

⎤⎦ , Cc =

⎡⎣01
1

⎤⎦T

Kc =

⎡⎣2 1
3

⎤⎦
B. Partial Fraction Based Method—MIMO Case

In this section we generalize the SISO result based on Foster
LC realization to MIMO lossless systems. Gilbert’s realization
is a well known method to find the i/s/o representation of
MIMO systems [11, Sec. 6.1]. However, such a method does
not guarantee an i/s/o representation with the inductor currents
and capacitor voltages as the states in an LC realization. We
need such a form of A since the proposed method uses energy
stored in inductor and capacitor as the storage function. In this
section, we present a method to find the i/s/o representation of
a lossless system such that the inductor current and capacitor
voltage are the states of the system. We then proceed to compute
the storage function matrix K with respect to these states.
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1) Gilbert’s Realization: Before we present the main re-
sults of the section, we revisit Gilbert’s theorem as given in
[6, Theorem 7]. This proposition gives a method to compute
the McMillan degree of a MIMO system.

Proposition 3.3: Consider a proper rational transfer-function
matrix G(s) whose elements have semi-simple poles at s = λi,
i = 1, . . . , q in the s-plane. Let the partial fraction expansion
of G(s) be

∑q
i=1(Ri/(s− λi)) +D where Ri = lims→λi

(s−
λi)G(s) and D = lims→∞ G(s). Corresponding to each λi,
let the rank of the Ri matrix be ri. Then McMillan degree
corresponding to the system is given by n =

∑q
i=1 ri.

For systems with imaginary axis poles, Proposition 3.3 is
adapted and presented as Lemma 3.5 in the next subsection.

2) Adapted Gilbert’s MIMO Realization for Lossless Case:
We first review necessary and sufficient condition for a real
rational matrix to be positive real6 and/or lossless (see [20]).

Proposition 3.4: A transfer matrix G(s) ∈ R(s)p×p is posi-
tive real if and only if

1) Each element of G(s) is analytic in the open right half
s-plane.

2) G(jω) +G(−jω)T � 0 for all ω ∈ R such that jω is not
a pole of any element of G(s).

Further, a positive real rational transfer matrix G(s) is lossless
if and only if G(s) +G(−s)T = 0.

Let G(s) = [gij ] and poles of gij be represented as P(gij).
Using Proposition 3.4, we conclude that a necessary condition
for a positive real transfer matrix to be lossless is P(gij)i�=j ⊆
P(gij)i=j , i.e., the poles of the off-diagonal entries of G(s) are
also poles of the diagonal entries. This means that the residue
matrix corresponding to the poles of the diagonal entries of
G(s) that are not poles of the off-diagonal entries of G(s) will
be diagonal. Therefore a more generalized case would be when
the poles of the off-diagonal and diagonal entries of G(s) are
the same: thus ensuring non-diagonal residue matrix. We deal
with such systems. Suppose the poles of G(s) are P(G(s)) =
{±jω1,±jω2, . . . ,±jωq}. Using partial fraction method, we
write G(s) = Σq

�=1G�(s) where G�(s) = (R�(s)/(s
2 + ω2

� )),
R�(s) ∈ R[s]p×p.

Next we adapt Proposition 3.3 for the case of imaginary axis
poles and present it as a lemma. We will use the lemma to
construct the minimal i/s/o representation of a MIMO lossless
system.

Lemma 3.5: Consider a rational transfer matrix G(s) whose
elements have simple poles at s = 0 and/or s = ±jωi, i =
1, 2, . . .q. Let the partial expansion of G(s) be

R0

s
+

q∑
l=1

R�(s)

s2+ω2
�

+D=
R0

s
+

q∑
l=1

(
Z�

s+ jω�
+

Z∗
�

s− jω�

)
+D

where R0=lims→0 sG(s) ∈ Rp×p, D = lims→∞ G(s) ∈ Rp×p

are the residual matrices and R�(s) is the residue matrix corre-
sponding to the conjugate pair of poles on the imaginary axis.
Letr0= rank ofR0 and r�= rank of Z�. Then the minimal order
of the i/s/o representation of the system is n=r0+

∑q
�=1 2×r�.

Proof: Note that rank(Z�) = rank(Z∗
� ) = r�. Hence us-

ing Proposition 3.3, minimum number of states for the
system is n = r0 +

∑q
�=1 rank(Z�) +

∑q
�=1 rank(Z∗

� ) = r0 +∑q
�=1 2× r�. This proves the lemma. �
From Proposition 3.4, we know that for a lossless system

G(s) = −G(−s)T . Hence the partial fractions corresponding

6We focus on lossless systems in this paper. Proposition 3.4 can hence be
taken as definition of positive real.

to each of the poles ω� have a skew symmetric structure. Con-
sider G�=[g�ij ]. The general structure7 of G�(s) is given by

g�ij(s) =
α�
ijs− β�

ij

s2 + ω2
i

where β�
ij = −β�

ji. (18)

We state and prove a theorem next which gives a procedure
for construction of the (A,B,C) matrices for lossless systems.
For simplicity, we consider that the transfer matrix has only one
pair of conjugate poles on the imaginary axis, i.e., we consider
q = 1 in G(s) = Σ

q
�=1G�(s). (For the general case, i.e., q > 1

we just have to apply the method described in Theorem 3.6 (for
q = 1) on each partial fraction).

Theorem 3.6: Consider a lossless transfer matrix G(s) =
(R(s)/(s2+ω2))=(Z/(s+jω))+(Z∗/(s−jω)) where R(s)=
sX − Y ∈ R

p×p[s] and Z,X, Y ∈ R
p×p. Elements of G(s) are

of the form given in (18). Let the rank of Z be r. The i-th rows
of R(s), X and Y are represented as zi, xi and yi respectively.
Then the following state-space realization is minimal.

1) A := diag (Jω , Jω, . . . , Jω) ∈ Rn×n where n := 2× r

and Jω =

[
0 −ω
ω 0

]
.

2) Construct Bj :=

[
xj

(yj/ω)

]
for each j = 1, 2, . . . , p such

that Bj �= 0 and define

B := col (B1, B2, . . . , Br) ∈ R
n×p.

3) There exist row vectors c1, c2, . . . , cj ∈ Rn such that
C := col (e1, e3, . . . , e2r−1, c1, c2, . . . cj) ∈ Rp×n where
cj ∈ span of {e1, e2, . . . , e2r−1} and ei is the i-th row of
the identity matrix.

Proof: The proof for the general case follows from the
proofs of the following two special cases:

1) G(s) is nonsingular and p = 2.
2) G(s) is singular and p = 3.

Case 1: G(s) is Nonsingular: For p = 2. Using (18)

R(s) = s

[
α1 α12

α12 α2

]
−

[
0 β12

−β12 0

]
= sX − Y.

Since G(s) is nonsingular, r = 2 and n = 4 (By Lemma 3.5)

Here A=diag

{[
0 −ω
ω 0

]
,

[
0 −ω
ω 0

]}
∈ R

4×4. BT =[
α1 0 α12 −(β12/ω)
α12 (β12/ω) α2 0

]
, C=

[
1 0 0 0
0 0 1 0

]
.

Using (A,B,C), it is easy to verify that C(sI −A)−1B =
G(s).

Applying the same construction procedure for the matrices
A,B,C, the theorem is proved for any nonsingular G(s) of
arbitrary order n.

Case 2: G(s) is Singular: For p = 3. Using (18)

R(s)=s

⎡⎣α1 α12 α13

α12 α2 α23

α13 α23 α3

⎤⎦−
⎡⎣ 0 β12 β13

−β12 0 β23

−β13 −β23 0

⎤⎦=sX−Y.

7In general the elements of the transfer matrix G(s) may not be proper.
However, there always exists an input-output partition such that the transfer
matrix is proper [22, Sec. 2]. Hence without loss of generality, we assume the
transfer matrix to be proper.



78 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 64, NO. 1, JANUARY 2017

Since G(s) is singular, consider the case when the rows of R(s)
are related by the following relation a× z1 + b× z2 =: z3.
Here r = 2 and hence n = 4 (By Lemma 3.5).

Therefore considerA=diag

{[
0 −ω
ω 0

]
,

[
0 −ω
ω 0

]}
∈

R4×4. BT =

⎡⎣ α1 0 α12 −(β12/ω)
α12 β12/ω α2 0
α13 β13/ω α23 β23/ω

⎤⎦ and

C =

⎡⎣1 0 0 0
0 0 1 0
a 0 b 0

⎤⎦ .

With the constructed triplet (A,B,C), we have C(sI −
A)−1B = G(s). This completes the proof. �

Given the above minimal state-space realization of G(s),
we compute the storage function associated with the system.
The storage function associated to a lossless transfer function
G(s) must satisfy the matrix equations (13) where the storage
function is induced by the symmetric matrix K . Let K = [kij ]
andK = KT . SinceK satisfies the first matrix equation in (13),
K has to have the form

K=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k11 0 k13 k14 · · · k1(n−1) k1n
0 k11 −k14 k13 · · · −k1n k1(n−1)

k13 −k14 k33 0 · · · k3(n−1) k3n
k14 k13 0 k33 · · · −k3n k3(n−1)

...
...

...
...

. . .
...

...
k1(n−1) −k1n k3(n−1) −k3n · · · knn 0
k1n k1(n−1) k3n k3(n−1) · · · 0 knn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Writing the (n2/4) unknown elements in K as a vector yk, we
define

yTk := [k11 k13 · · · k1n k33 k35 · · · k3n · · · knn] ∈ R
n2

4 . (19)

The matrix K has to further satisfy the second matrix equa-
tion in (13). Hence we have p× n linear equations of the
form Pyk = q where q ∈ Rpn. Solution to these set of linear
equations8 gives us the desired storage function K .

Note that Theorem 3.6 gives a minimal realization of G(s).
With the same A obtained as in Statement 1 of Theorem 3.6,
we can have different (B,C) pairs. Depending on the specific
(B,C), we get different sets of linear equations. We compute
the storage function of the system using the triplet (A,B,C)
obtained in Theorem 3.6. The unknown elements of K are
hence given by yk=P †q where P † is the pseudo-inverse of P .

The special structure of the triplet (A,B,C) is used to
create P and q in the set of linear equations Pyk = q. For
simplicity, we show the construction of P and q for a lossless
nonsingular G(s) ∈ R2×2(s). Since G(s) is nonsingular, the
minimum number of states of G(s) is 4.

Construction of P ∈ R
8×4 and q ∈ R

8: Let BT :=
[b1 b2 b3 b4] ∈ R2×4 and C := [c1 c2 c3 c4] ∈ R2×4.

1) Construction of matrix P :
Partition PT =[PT

1 PT
2 · · · PT

(n/2)] wherePi∈R2p×p2 .

8Note that for a controllable conservative system there exists a unique
symmetric matrix K that induces the storage function xTKx. Hence for such
a system the vector yk defined in (19) is unique as well. Further, the facts that
every conservative system admits a storage function and the unique K satisfies
matrix equations (25) together guarantee that q ∈ imgP in equation Pyk = q.

Further, each Pi is partitioned as [Pi1 Pi2 · · · Pip] where
Pij ∈ R2p×(2p−2j+1). Therefore

P :=

[
P11 P12

P21 P22

]
=

⎡⎢⎢⎣
b1 b3 b4 0
b2 b4 −b3 0
0 b1 −b2 b3
0 b2 b1 b4

⎤⎥⎥⎦ .

2) Construction of vector q

q = col (c1, c2, c3, c4) .

This construction is to be used for any lossless system with
nonsingular G(s). For a singular G(s), a slightly modified
construction procedure is to be used after appropriate zero
padding in B and C: this is skipped since the procedure is
straightforward.

IV. BEZOUTIAN BASED METHOD

This section contains results to compute storage function of
lossless system using the idea of Bezoutian. We deal with the
SISO case first and then move on to the MIMO case.

A. Bezoutian Based Method—SISO Case

Consider a lossless SISO system G(s) = (n(s)/d(s)) with
an observable image representation w = M(d/dt)� where w =[
u
y

]
, M(ξ) :=

[
d(ξ)
n(ξ)

]
. Here Σ =

[
0 1
1 0

]
and d(s) is a monic

polynomial. From (5)

Ψ(ζ, η) =
d(ζ)n(η) + d(η)n(ζ)

ζ + η
=

∑
i,j Φ̃i,jζ

iηj

ζ + η
. (20)

Here Φ̃i,j ∈ R. The storage function can be calculated by what
may be called, “polynomial long division technique” which is
based on Euclidean long division of polynomials. We state this
as a result below.

Theorem 4.1: Consider a Σ-lossless behaviorBwith transfer
function G(s) = (n(s)/d(s)) where d(s) is a monic polyno-
mial and the controller canonical state-space realization

ẋ = Ax+Bu and y = Cx. (21)

Construct the two variable polynomial zb(ζ, η), induced by the
“Bezoutian” of the polynomials n(s) and d(s) by

zb(ζ, η) :=
n(ζ)d(η)+n(η)d(ζ)

ζ + η
=

⎡⎢⎢⎢⎣
1
ζ
...

ζn−1

⎤⎥⎥⎥⎦
T

Zb

⎡⎢⎢⎢⎣
1
η
...

ηn−1

⎤⎥⎥⎥⎦ (22)

whereZb ∈ R
n×n is the corresponding symmetric matrix. Then,

xTZbx is the unique storage function for the Σ-lossless system
with state-space description (21), i.e., (d/dt)xTZbx = 2uy.

Proof: Consider the image representation of B: w =

M(d/dt)� =

[
d(s)
n(s)

]
�. Using equations (5) and (7), we have

Ψ(ζ, η) =

[
d(ζ)
n(ζ)

]T
Σ

[
d(η)
n(η)

]
ζ + η

=
n(ζ)d(η) + n(η)d(ζ)

ζ + η
= zb(ζ, η).
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Further, Ψ(ζ, η) is a symmetric 2-variable polynomial in ζ and
η. Hence

Ψ(ζ, η) =

⎡⎢⎢⎢⎢⎢⎣
1
ζ
ζ2

...
ζn−1

⎤⎥⎥⎥⎥⎥⎦
T

Ψ̃

⎡⎢⎢⎢⎢⎢⎣
1
η
η2

...
ηn−1

⎤⎥⎥⎥⎥⎥⎦ (Note that Ψ̃ = Zb).

The storage function is QΨ(d/dt)� = xT Ψ̃x where x =

(�,
•
�, . . . , �(n−1)) as in (10), and x corresponds to the state of

the behavior B. Hence xT Ψ̃x = xTZbx is the storage function
of B. �

Remark 4.2: The conventional Bezoutian of two polyno-
mials p(x) and q(x) is defined as Bz(x, y) := ((p(x)q(y) −
p(y)q(x))/(x − y)). Notice the change in sign between this
conventional Bezoutian definition and the one defined in (22):
in spite of the sign change, we call zb the Bezoutian due
to the following reasons. In any lossless transfer function
(n(s)/d(s)), when the order of the system is even then n(s)
is an odd polynomial, i.e., n(−s) = −n(s) and d(s) is even
polynomial, i.e., d(−s) = d(s). Thus our definition is same
as the conventional one if we substitute x = −ζ; y = η when
the order of the system is even and x = ζ; y = −η when the
order of the system is odd. Hence for lossless case Bz(x, y) =
zb(ζ, η) where x = −ζ, y = η for even order systems and
x = ζ, y = −η for odd order systems. In fact Zb of (22) is
nonsingular if and only if n(s) and d(s) are coprime. This
justifies the use of “Bezoutian” for zb(ζ, η) defined in (22).

Methods to compute the Bezoutian: There are various meth-
ods of finding the Bezoutian zb of two polynomials. In this
paper we propose three different methods to compute zb:

(a) Euclidean long division method,
(b) Pseudo-inverse method, and
(c) 2 dimensional discrete Fourier transform method.

Euclidean Long Division Method: Though Theorem 4.1
involves bivariate polynomial manipulation, Algorithm 7.3
below uses only univariate polynomial operations. The algo-
rithm is similar to Euclidean long division. As in [3], write
Φ(ζ, η) = φ0(η) + ζφ1(η) + · · ·+ ζnφn(η). Then the storage
function Ψ(ζ, η) = ψ0(η) + ζψ1(η) + · · ·+ ζn−1ψn−1(η) can
be computed by the following recursion (see [3, Sec. 6.5]) with
k = 1, . . . , n− 1:

ψ0(ξ) :=
φ0(ξ)

ξ
, ψk(ξ) :=

φk(ξ)− ψk−1(ξ)

ξ
. (23)

Pseudo-Inverse Method: Consider

Ψ(ζ, η) =
∑
i,j

Ψ̃ijζ
iηj where [Ψ̃ij ] =: Ψ̃ ∈ R

n×n.

Φ(ζ, η) =
∑
i,j

Φ̃ijζ
iηj where [Φ̃ij ] =: Φ̃ ∈ R

(n+1)×(n+1).

From (5), we have

(ζ + η)Ψ(ζ, η) = M(ζ)TΣM(η) = Φ(ζ, η). (24)

Using (24), we have

σR(Ψ̃) + σD(Ψ̃) = Φ̃ (25)

where σR(Ψ̃) :=

[
0T Ψ̃
0 0

]
, σD(Ψ̃) :=

[
0 0

Ψ̃ 0T

]
and 0 =

[0 0 · · · 0]: see also [21]. Due to the symmetry of Ψ(ζ, η) and
Φ(ζ, η) the number of unknowns in Ψ̃ is (n(n+ 1)/2) and the

number of distinct elements in Φ̃ is ((n + 1)(n+ 2)/2). Hence
the matrix equation (25) can be rewritten as linear equations of
the form

Pby = qb where Pb ∈ R
(n+1)(n+2)

2 × n(n+1)
2 , qb ∈ R

(n+1)(n+2)
2

and y := [Ψ11 Ψ12 · · · Ψ1n Ψ22 · · · Ψ2n · · · Ψnn]
T . (26)

For a dissipative system, a storage function exists and this guar-
antees qb∈ im Pb. We compute the pseudo-inverse9 of the matrix
Pb, i.e., P †

b and obtain y := P †
b qb. This gives the storage func-

tion. The above discussion is a proof of the following corollary.
Corollary 4.3: Consider a behavior B ∈ Lw

cont with transfer
matrix G(s) = (n(s)/d(s)) where d(s) is a monic polynomial
and construct Φ̃ = [Φ̃i,j ] as in (20). Let the matrix equation
(25) be written in the linear equation form Pby = qb. Then the
following are equivalent

1) B is lossless.
2) There exists a unique symmetric K such that xTKx =

2uTy.
3) Pb is full column rank and qb ∈ imgPb.

2 Dimensional Discrete Fourier Transform Method (2D-
DFT): Another technique we propose to compute the Bezoutian
of (22) is the 2D-DFT method. Consider the matrix Ĩ :=[
0 1
1 0

]
. Note that for a system with McMillan degree n, the

term ζ + η in (24) can be written as

ζ + η =
∑
i,j

Q̃ijζ
iηj where

[Q̃ij ] = Q̃ =

[
Ĩ 0
0 0

]
∈ R

(n+1)×(n+1).

Here 0 is the zero matrix of dimension (n − 1)× (n− 1).
Appending a row and column in Zb (from Theorem 4.1), we
rewrite the Bezoutian as

zb(ζ, η) =
∑
i,j

Z̃bijζ
iηj where

[
Z̃bij

]
= Z̃b =

[
Zb 0
0 0

]
∈R

(n+1)×(n+1).

We compute Zb using the formula

Zb = Z̃b(1 : n, 1 : n) where Z̃b = F−1
[
F(Φ̃)./F(Q̃)

]
where 2D-DFT and its inverse operation are represented as F
and F−1 respectively and the symbol ./ represents element-
wise division. Note that for the element-wise division to be
possible, F(Q̃) must have every element nonzero. Using the
definition/formula of two dimensional DFT, it can be shown
that F(Q̃) has all entries nonzero if n is even. Hence the pro-
cedure described here is directly applicable for even order sys-
tems. With a straightforward and meticulous modification, one
deals with the odd order case also: we hence skip this. We sum-
marize the above 3 methods in the following theorem for easy
reference. The description of the methods contains the proof.

Theorem 4.4: Consider the problem of finding K = [Kij ] ∈
R
n×n such that

∑
i,j Kijζ

iηj = (Φ(ζ, η)/(ζ + η)). Then each

9The solution of Pby = qb can also be found using Scilab’s so-called “back-
slash” implementation (i.e., Pb\qb). Technically, using the backslash method is
faster. However, in the case of Scilab and for the orders we considered, both
the backslash and the pseudo-inverse methods require the same computational
time. Hence we proceed with pseudo-inverse method only.
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Fig. 3. Plot of computation time versus system’s order.

of the following algorithms gives K
1) Euclidean long division using (23),
2) Pseudo-inverse of P in the linear equation Py = q (using

Corollary 4.3),
3) Two dimensional Fourier transform followed by element

wise division and inverse Fourier transform.
After having described these procedures to compute the

Bezoutian, we next compare them for accuracy and time.

B. Experimental Setup and Procedure

Experimental setup: The experiments were carried out on an
Intel Core i3 computer at 3.30 GHz with 4 GB RAM using
Ubuntu 14.04 LTS operating system. The relative machine pre-
cision is ε ≈ 2.22× 10−16. Numerical computational package
Scilab 5.5 (which, like MATLAB and Python-SciPy, NumPy,
relies on LAPACK for core numerical computations) has been
used to implement the algorithms.

Experimental procedure: Randomly generated transfer func-
tions of lossless systems are used to test the algorithms. Com-
putation time and error for each transfer function order has been
averaged over three different randomly generated transfer func-
tions. To nullify the effect of CPU delays the computation time
to calculate K for each transfer function is further averaged
over hundred iterations.

C. Experimental Results

1) Computation Time: Fig. 3 shows a comparison of the time
taken by each of the Bezoutian based methods viz. Euclidean
long division, Pseudo-inverse and 2D-DFT. From the plot it
is clear that the Euclidean long division based method and
pseudo-inverse methods are comparable to each other and are
much faster than 2D-DFT.

2) Computation Error: As discussed in Section II-G, loss-
less systems satisfy LMI (11) with equality. In view of this,
define the error associated with the computation of K as

Err(K) :=

∥∥∥∥[ATK +KA KB − CT

BTK − C 0

]∥∥∥∥
2

. (27)

The matrix K obtained from the above procedures must ideally
yield Err(K)=0. Fig. 4 shows the error in computation of sto-
rage function using the three Bezoutian based methods discussed
above. All the three methods have comparable errors. From the
comparison it is clear that Euclidean long division performs bet-
ter that the other two methods. Hence we present an example next
to show how the algorithm for computation of the Bezoutian
based on the Euclidean long division method is constructed.

Fig. 4. Plot of error [see (27)] versus system’s order.

Example 4.5. Bezoutian Based Method: Consider the system
G(s) = ((8s2 + 1)/(6s3 + s)) = (((8/6)s2 + (1/6))/(s3 +
(1/6)s)). Here N = [0 (8/6) 0 (1/6)], D = [1 0 (1/6) 0] and
n = 3.

The i/s/o representation of the system is

A =

⎡⎣0 1 0
0 0 1
0 − 1

6 0

⎤⎦ , B =

⎡⎣00
1

⎤⎦ , C =
1

6

⎡⎣10
8

⎤⎦T

Hence Φ(ζ, η) = n(ζ)d(η) + n(η)d(ζ) =

1

36

⎧⎪⎨⎪⎩(η+6η3)︸ ︷︷ ︸
φ0(η)

+(1+8η2)︸ ︷︷ ︸
φ1(η)

ζ+(8η+48η3)︸ ︷︷ ︸
φ2(η)

ζ2+(6+48η2)︸ ︷︷ ︸
φ3(η)

ζ3

⎫⎪⎬⎪⎭
=

1

36

⎡⎢⎢⎣
1
ζ
ζ2

ζ3

⎤⎥⎥⎦
T ⎡⎢⎢⎣

0 1 0 6
1 0 8 0
0 8 0 48
6 0 48 0

⎤⎥⎥⎦
︸ ︷︷ ︸

NTD+DTN=Kb

⎡⎢⎢⎣
1
η
η2

η3

⎤⎥⎥⎦

This corresponds to step (3) of Algorithm 7.3. Using the
equations (23), we have

ψ0(ξ) =
φ0(ξ)

ξ
=

1+ 6ξ2

36
, ψ1(ξ) =

φ1(ξ) − ψ0(ξ)

ξ
=

2ξ

36

ψ2(ξ) =
φ2(ξ)− ψ1(ξ)

ξ
=

6 + 48ξ2

36

Note that the polynomial subtraction and division shown in
these steps can also be done using corresponding vector shift
and subtraction operations. This is implemented with Step (4)
to Step (10) of Algorithm 7.3. Hence the storage function is

Ψ(ζ, η) =
1

36

{
(1 + 6η2) + 2ηζ + (6 + 48η2)ζ2

}
=

1

36

⎡⎣ 1
ζ
ζ2

⎤⎦⎡⎣1 0 6
0 2 0
6 0 48

⎤⎦
︸ ︷︷ ︸

K

⎡⎣ 1
η
η2

⎤⎦

D. Bezoutian Based Method—MIMO Case

In this section we propose an extension of the Bezoutian
based method for the SISO case to MIMO case when each
of the elements in G(s) are considered to be lossless, i.e., we
consider each element of G(s) to have poles on the imaginary
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axis. In general the elements of G(s) have the form given in
(18). However, since we consider each element of G(s) to be
lossless therefore βij=0. For such systems, we consider each
of the elements in G(s) as lossless systems and use the proce-
dure described in Section IV-A to compute the storage function
of the system. We present a theorem next to compute the sto-
rage function of MIMO systems with the Bezoutian method.

Theorem 4.6: Consider a lossless transfer matrix G(s) with
the (i, j)-th element represented as gij . Recall again that gij
has the form of (18) with βij = 0. The controller canoni-
cal form of each element gij is represented by the triplet
(Aij , bij , cij). Construct matrices Bij ∈ R2×p such that j-th
column of Bij := bij and rest entries zero. Let Cij ∈ Rp×2

be matrices with i-th row of Cij := cij and rest entries zero.
Suppose Kij represents the storage function corresponding to
each gij given by Theorem 4.1. Then (possibly nonminimal)
state-space representation of the system G(s) is given by the
following (A,B,C) matrices.

1) A=diag (A11, A12, . . . , A1p, A21, . . . , App)∈R2p2×2p2 .
2) B = col(B11, B12, . . . , B1p, B21, . . . , Bpp) ∈ R2p2×p.
3) C = [C11 C12 . . . C1p C21 . . . Cpp] ∈ Rp×2p2 .

The K matrix that induces the storage function of the lossless
system G(s) with respect to the triplet (A,B,C) is given by
K = diag (K11,K12, . . . ,K1p,K21, . . . ,Kpp) ∈ R2p2×2p2 .

Proof: We present the proof for a specific case. The gener-
al proof is essentially a book-keeping version of this simplified
case. Consider the transfer matrix of the form G(s) =[
g11(s) g12(s)
g21(s) g22(s)

]
:=

[
(α11s/(s

2+ ω2)) (α12s/(s
2+ ω2))

(α21s/(s
2+ ω2)) (α22s/(s

2+ ω2))

]
.

Consider cij(sI −Aij)
−1bij = gij where i, j = 1, 2.

Construct A = diag {A11, A12, A21, A22}, B =

⎡⎢⎢⎣
b11 0
0 b12
b21 0
0 b22

⎤⎥⎥⎦
and C =

[
c11 c12 0 0
0 0 c21 c22

]
. It can be verified that

C(sI −A)−1B = G(s).
The storage function corresponding to each gij is Kij . Hence

AT
ijKij +KijAij = 0 is satisfied. Further, bTijKij − cij = 0.

Construct K = diag {K11,K12,K21,K22}. From the con-
struction of A and K it follows that ATK +KA = 0. Further
it can also be verified that BTK − C = 0. This proves that K
gives the required storage function. �

Note that the K matrix obtained by the method described in
Theorem 4.6 is not minimal in general. This is due the non-
minimal state-space representation obtained for the lossless
transfer matrix G(s). It is not clear whether a minimal state-
space realization is always possible for a lossless MIMO system
with the states of the form given in Section II-F: for more on
nonminimality of RLC circuits in general see [5], [9]. This
requires further investigation and is not dealt here.

V. GRAMIAN BALANCING METHOD

In this subsection we present a method to compute storage
function of all-pass systems. Note that only for the Gramian
balancing method, we shift to all-pass instead of lossless sys-
tems. Both lossless and all-pass systems are conservative with
respect to a suitable supply rate. It is based on the notion
of balancing of controllability and observability Gramian. We
proceed to state the result in the form of a theorem next.

Theorem 5.1: Consider an nth order all-pass and stable
system G(s) ∈ R(s)p×p with a minimal balanced state-space
realization ẋ = Ax +Bu, y = Cx+Du, i.e., in this basis,
A+AT +BBT = 0 and AT +A+ CTC = 0. Then the stor-
age function associated is xTx.

Note there always exists a balanced state-space representa-
tion for any stable system. The proof is skipped here since
this paper focuses on algorithms. The algorithm for Gramian
balancing method consists of two main steps. Firstly, for the
given system compute a transformation that yields a balanced
state-space realization. The procedure to find such a balanced
state-space representation involves use of the Cholesky decom-
position and SVD: for the detailed algorithm refer [1, Sec. 7.3].
Let S be the transformation matrix. Secondly, note that in the
balanced state-space realization the storage function is induced
by I ∈ Rn×n. Hence the storage function in the original state
space basis is K := ST IS = STS.

Example 5.2: For the transfer function G(s) in Example 4.5
above, consider the all-pass system ((1−G(s))/(1 +G(s))) =
((6s3 − 8s2 + s− 1)/(6s3 + 8s2 + s+ 1)). The storage func-
tion is xTx for

A =

⎡⎣−0.04 −0.36 −0.04
0.36 0 0.01
−0.42 −0.01 −1.29

⎤⎦
B =

⎡⎣−0.29
0

−1.61

⎤⎦ , C=−BT , D = 1

Remark 5.3: Obtaining a minimal state-space realization of
system G(s) such that the controllability and observability
Gramians (Wr and Wo) are equal is achieved using the so called
simultaneous diagonalization method: see [1, Sec. 7.1]. The
basis in which we obtain Wr = Wo is called a balanced basis.
Hence we call the method of obtaining storage function of all-
pass systems based on Theorem 5.1 as the “Gramian balancing
method” when comparing the time and accuracy in Figs. 5 and 6.
See also [19, Theorem 3] for related work about balancing,
though the development is solely for the strict dissipative case.

VI. ADJOINT NETWORK METHOD

In this section we report new properties of the storage
function of lossless systems based on adjoint network. Using
these new properties we propose an Algorithm in Section VII.
As discussed in Section II-E, the system B⊥Σ is interpreted as
the adjoint behavior of B: refer [10], [17]. In network theory
terminologyB⊥Σ represents the adjoint network corresponding
to the given network behavior B. Note that an n-dimensional
minimal i/s/o of B being ẋ = Ax+Bu, y = Cx+Du, the
adjoint system B⊥Σ admits a correspondingn-dimensional i/s/o
representation with respect to the passivity supply rate:

ż = −AT z + CTu and y = BT z −DTu

where A ∈ Rn×n, B,CT ∈ Rn×p and D ∈ Rp×p.
An interconnection of the adjoint system (dual system) with

its primal system gives a new behavior B ∩B⊥Σ . Call this
behavior BHam. Though it was shown in the context of strict
passivity, it can be shown along the lines like in [20] that BHam

admits a first order representation of the form

R

(
d

dt

)⎡⎣xz
y

⎤⎦ = 0 with R(ξ) = ξE −H (28)
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where E :=

⎡⎣In 0 0
0 In 0
0 0 0

⎤⎦ and H :=

⎡⎣A 0 B
0 −AT CT

C −BT D +DT

⎤⎦.

For reasons elaborated in[10], call R(ξ) a “Hamiltonian pencil.”
For a lossless behaviorB, a first order representation ofBHam is⎡⎣ξIn −A 0 −B

0 ξIn +AT −CT

−C BT 0

⎤⎦⎡⎣xz
y

⎤⎦ = 0. (29)

It turns out that when a behavior B is lossless with respect to

Σ=

[
0 I
I 0

]
and input cardinality of B is equal to the positive

signature of Σ, then B ∩B⊥Σ =B: see [2, Lemma 11].
Hence the McMillan degree of BHam and B is the same, i.e., n.
However, the representation of the behavior BHam in (29) has
2n states and hence x and z satisfy static relations amongst each
other. This is made precise in Proposition 6.1 below, whose
proof can be found in [4]. We use this to prove the main result of
this section: Theorem 6.2. The theorem helps extract the static
relations of the first order representation (29) of behaviorBHam

and in the process yields the storage function for the lossless
behavior B.

Proposition 6.1: Consider a lossless behavior B ∈ Lw
cont

with minimal i/s/o representation ẋ = Ax+Bu, y = Cx+
Du and define the Hamiltonian pencil R(ξ) as in (28). Then,
there exists a symmetric K ∈ R

n×n such that

d

dt
xTKx = 2uTy for all

[
u

y

]
∈ B. (30)

if and only if

rank

⎡⎢⎢⎣
sI −A 0 −B

0 sI +AT −CT

−C BT 0
−K I 0

⎤⎥⎥⎦
= rank

⎡⎣sI −A 0 −B
0 sI +AT −CT

−C BT 0

⎤⎦ . (31)

Next we report one of the main results of this paper.
Algorithm 7.4 to compute the storage function of lossless
systems is based on this result. The definition of minimal
polynomial basis can be found in Section II-H.

Theorem 6.2: Consider R(ξ) := ξE−H∈R[ξ](2n+p)×(2n+p)

as defined in (28) constructed for the lossless behavior B ∈
L
2p
cont. Let M(ξ) ∈ R[ξ](2n+p)×p be any minimal polynomial

nullspace basis (MPB) for R(ξ). Partition M =

[
M1(ξ)
M2(ξ)

]
with

M1 ∈ R[ξ]2n×p. Let N(ξ) be any MPB for M1(ξ)
T . Then, the

following statements are true.

1) Each of the first n Forney invariant minimal indices of
N(ξ) are 0, i.e., first n columns of N(ξ) are constant
vectors.

2) Partition N into [N1 N2(ξ)] with N1 ∈ R2n×n and further

partition N1 =

[
N11

N12

]
with N12 ∈ Rn×n. Then N12 is

invertible and K := −N11N
−1
12 is the storage function for

B, i.e., (d/dt)xTKx = 2uTy for all system trajectories.

Proof: 1: We first prove that the first n minimal in-
dices of the Hamiltonian pencil R(ξ) are 0. For lossless
systems detR(ξ) = 0. Since rank R(ξ) = 2n where n is the

McMillan degree of behaviorB and R(ξ) ∈ R
(2n+p)×(2n+p)[ξ],

find M(ξ) ∈ R(2n+p)×p[ξ] with rank M(ξ) = p such that
R(ξ)M(ξ) = 0.

From Proposition 6.1, we have [−K I 0] is in the row span
of R(ξ). Therefore

[−K I 0]M(ξ) = 0 i.e., [−K I 0]

[
M1(ξ)

M2(ξ)

]
= 0

where M1 ∈ R[ξ]2n×p. This implies that

[−K I]M1(ξ) = 0 i.e., M1(ξ)
T

[
−K

I

]
= 0.

The nullspace of M1(ξ)
T must have n constant polynomial

vectors. Hence the first n (Forney invariant) minimal indices
are 0. This proves Statement 1 of Theorem 6.2.

2: A minimal polynomial nullspace basis of M1(ξ)
T is

the set of columns of N(ξ) ∈ R[ξ]2n×(2n−p). Partition N
into [N1 N2(ξ)] with N1 ∈ R2n×n and further partition N1 =[
N11

N12

]
with N12 ∈ Rn×n. Further

span

[
N11

N12

]
= span

[
−K

I

]
.

Therefore K = −N11N
−1
12 . The construction of K ∈ Rn×n in

the proof is done such a way that [−K I 0] is in the row span
of R(ξ). From Proposition 6.1, the matrix K ∈ Rn×n satisfies
(31) and hence (d/dt)xTKx = 2uTy for all (u, y) ∈ B.

Note that lossless systems satisfies(8) for all (u, y)∈B. Hence
K induces the storage function for B. Thus Statement 2 of the
theorem follows. This completes the proof of the theorem. �

Example 6.3: Consider the system: G(s) = ((8s2 + 1)/
(6s3+s)). One of the state space representation of the system is

d

dt
x =

⎡⎣0 1 0
0 0 1
0 − 1

6 0

⎤⎦ x+

⎡⎣00
1

⎤⎦ u y =
1

6

⎡⎣10
8

⎤⎦T

u

The pencil corresponding to B∩B⊥Σ is

R(ξ) =
1

6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6ξ −6 0 0
0 6ξ −6 0
0 1 6ξ −6

6ξ 0 0 −1
6 6ξ −1 0
0 6 6ξ −8

−1 0 −8 0 0 6 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The minimal polynomial basis of R(ξ) is⎡⎢⎣36 36ξ 36ξ2 1 + 6ξ2 2ξ 6 + 48ξ2︸ ︷︷ ︸

M1(ξ)T

6ξ + 36ξ3

⎤⎥⎦
T

This is step 2 of Algorithm 7.4. By Theorem 6.2 the first
n = 3 columns of the minimal polynomial basis of the M1(ξ)

T

have Forney indices 0. The first 3 columns of the minimal
polynomial basis of M1(ξ)

T are⎡⎢⎢⎢⎢⎢⎢⎣
−0.0189 0.0025 −0.0987
−0.0002 −0.0554 −0.0013
−0.0960 0.0195 −0.7921
0.9938 −0.0017 −0.0470
0.0028 0.9981 0.0243
−0.0522 −0.0144 0.6000

⎤⎥⎥⎥⎥⎥⎥⎦ =:

[
N11

N12

]
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This step corresponds to step (3) and step (4) of Algorithm 7.4.

Therefore K = −N11N
−1
12 = (1/36)

⎡⎣1 0 6
0 2 0
6 0 48

⎤⎦.

VII. ALGORITHMS BASED ON THE PROPOSED METHODS

In this section, we present four algorithms based on the
results developed in previous sections. Algorithm 7.1 and
Algorithm 7.2 are based on partial fraction expansion (Foster
method for LC realization) described in Section III-A and B
respectively. The Cauer realization is analogous. The transfer
function of the lossless system is an input to each of the
algorithms and output of the algorithm is a unique symmetric
matrix K that induces the storage function. Algorithm for
lossless systems without pole at the origin is almost the same
and hence is not presented here.

Algorithm 7.1 LC realization based algorithm-SISO

Input: Strictly proper transfer function of the lossless sys-
tem G(s).
Output: K ∈ Rn×n with xTKx the storage function.

1: Calculate the partial fraction expansion: G(s) = (r0/s) +∑m
i=1 Gi(s) (say) where Gi(s) = (ris/(s

2 + ω2
i )), i =

1, . . . , m and ωi > 0.
2: For each Gi(s), obtain (Ai, Bi, Ci) triple, where Ai ∈

R2×2, Bi ∈ R2×1 and Ci ∈ R1×2 using Equation (15).
3: ObtainKi from each triple (Ai, Bi, Ci)using Theorem 3.1.
4: Define K := diag ((1/r0),K1,K2, . . . ,Km) ∈ Rn×n.

Algorithm 7.2 Partial fraction expansion algorithm-MIMO

Input: Strictly proper transfer function matrix of the loss-
less system G(s).
Output: K ∈ Rn×n with xTKx the storage function.

1: Find the minimal state-space realization of G(s) using
Theorem 3.6. Result: Triplet (A,B,C).

2: Define a matrix P such that it is partitioned into row
blocks Pi ∈ R2p×p2 .

3: Partition each Pi in column blocks Pij ∈ R2p×(2p−2j+1).
Pij is the i-th row block and j-th column block of P .

4: if i = j then

5: P̂ii=

[
b2i−1 b2i b2i+2 b2i+3 · · · b2p
b2i −b2i−1 b2i+3 −b2i+2 · · · −b2p−1

]
6: Delete second column of P̂ii. Result: Pii ∈

R2p×(2p−2i+1).
7: else
8: if i < j then
9: Pij = 0 ∈ R2p×(2p−2i+1)

10: else (i.e., if i > j)
11: Construct

12: Lj :=

[
b2j−1 −b2j
b2j b2j−1

]
, L̂j = [0 Lj

⊗
Ip−j ]

13: col (P(j+1)j , P(j+2)j , . . . , Ppj) := L̂j

14: where j = 1, 2, . . . , p− 1.
15: end if
16: end if
17: q = col (c1, c2, . . . , c2p)
18: Compute yk = P †q where y is as defined in (19).

Algorithm 7.3 is based on the Bezoutian of polynomials de-
scribed in Section IV-A. Many methods like long division, 2D-
DFT, Linear matrix equation can be used to find the Bezoutian
matrix Zb defined in Theorem 4.1. The algorithm here is based
on long division method.

Algorithm 7.3 Bezoutian based algorithm—SISO

Input: Transfer function of a lossless system G(s) =
(n(s)/d(s))of order nwhere d(s) is monic andG(s) proper.
Output: K ∈ Rn×n with xTKx the storage function.

1: Extract coefficients of the polynomials n(s) and d(s)
into arrays N ∈ R1×n and D ∈ R1×(n+1) with constant
term coefficient first.

2: Equate length of N and D by N(n+ 1) := 0.
3: Compute Bezoutian coefficient matrix using (22)

Kb := NTD +DTN ∈ R
(n+1)×(n+1).

4: Implement the division in first equation of (23) by con-
structing a row vector from the first row of Kb

Fold := [Kb(1, 2 : n+ 1) 0] ∈ R
1×(n+1).

5: Set Fnew := Fold.
6: Append new rows to get Fnew ∈ R

n×(n+1) by implement-
ing the division in (23) by the following iteration:

7: for i = 2, . . . , n do
8: r := Kb(i, :)− Fnew(i− 1, :)

9: Fnew :=

[
Fold

r(2 : n+ 1) 0

]
10: Fold := Fnew

11: end for
12: Define K := Fnew(1 : n, 1 : n).

Algorithm 7.4 is based on extraction of static relations in
first order representation of the behavior BHam described in
Section VI. The algorithm takes as input the Hamiltonian pencil
R(ξ) and gives a unique symmetric matrix K that induces
storage function of the lossless behavior.

Algorithm 7.4 Adjoint network algorithm

Input: Recall R(ξ) := ξE−H ∈ R[ξ](2n+p)×(2n+p), a rank
2n polynomial matrix.
Output: K ∈ Rn×n with xTKx the storage function.

1: Compute a minimal polynomial nullspace basis of R(ξ).
Result: A full column rank polynomial matrix M(ξ) ∈
R[ξ](2n+p)×p.

2: Partition M(ξ) as

[
M1(ξ)
M2(s)

]
where M1(ξ) ∈ R[ξ]2n×p.

3: Compute a minimal polynomial nullspace basis ofM1(ξ)
T .

Result: A full column rank polynomial matrix N(ξ) ∈
R[ξ]2n×(2n−p).

4: Partition N(ξ) =

[
N11 N12(ξ)
N21 N22(ξ)

]
with N11, N21 ∈

Rn×n. (See Theorem 6.2)
5: Define K := −N11N

−1
21 ∈ Rn×n.

Algorithm 7.4 is based on computation of nullspace basis
of polynomial matrices. Efficient and stable computation of
nullspace basis of a polynomial matrix can be done by block
Toeplitz matrix algorithm: more details can be found in [13].
However, instead of dealing with polynomial computations,
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Fig. 5. Plot of computation time versus system’s order.

we use the Zassenhaus subspace intersection algorithm with a
QR adaptation proposed in [15] for Fig. 5. This results in an
improvement of about 8 times in the computation time.

Remark 7.1: Note that different state representations used
in the above algorithms are related to each other by a similar-
ity transform and the storage function matrix K obtained by
these techniques are correspondingly related by a congruence
transform. For example, if K is the storage function matrix
obtained in Method 1, and if S ∈ Rn×n maps the state space
representation used in Method 1 to that used in Method 2, then
K̂ = STKS induces the storage function in Method 2. This
ability to relate the K’s across realizations allows choice of the
computationally best algorithm for a specific instance: this is a
key contribution of this paper.

Remark 7.2: The choice of the storage function computation
method depends on the system description: for example transfer
function or state space. Loosely speaking, a few of the key
factors that help in the choice of the algorithm are

(a) Ability to diagonalize the system matrix A using a well-
conditioned matrix (i.e., the so-called “departure from
normality”).10

(b) Extents of uncontrollability/unobservability.
(c) McMillan degrees of the elements in the transfer matrix.

A detailed and thorough investigation would be a matter of
further research: we indicate our preliminary observations next.

Partial fraction expansion algorithm is about “summing”
over terms, this algorithm is favorable for a system whose
transfer function is obtained as a “sum”-of-parallel blocks (see
[11, Sec. 2.1.3]). Further, for a system whose system matrix A
is normal the similarity transform matrix S that diagonalizes
A is well-conditioned (see [16] and also [7, P7.2.3]). Hence
for such systems, use of partial fraction based method is
suitable. Bezoutian based algorithm is best suited for sys-
tems whose matrix A is non-diagonalizable: this is due to
non-diagonalizability being linked to a chain-of-“integrators”
type of interpretation. Hence systems with controller canonical
forms and with A matrices not diagonalizable are candidates
for this algorithm. Gramian balancing method uses inversion
of a diagonal matrix for simultaneous diagonalizability. These
diagonal elements represent, in a loose sense, the “distance
from simultaneous uncontrollability and unobservability”: see
[1, Sec. 7.3]. Hence this method is not favorable for systems
which are “nearly uncontrollable” or “nearly unobservable” as

10A matrix A ∈ Rn×n is called normal if AAT = ATA.

Fig. 6. Plot of error residue versus system’s order.

this will result in inversion of an ill-conditioned matrix. The
adjoint network algorithm11 is favorable for systems where the
McMillan degree of the system is much higher than the degrees
of the denominators of the transfer matrix of the system (this is
especially relevant, in general, for MIMO systems). For such
systems, the nullspace of the matrix R(ξ) in Algorithm 7.4
will have a smaller degree and this will result in less compu-
tational effort and less error in the computation of K . Hence
given a MIMO system realization which has neither the sum-
of-parallel blocks form nor the controller canonical form, the
adjoint network method is favorable.

VIII. COMPARISON OF THE METHODS FOR

COMPUTATIONAL TIME AND NUMERICAL ERROR

Using the experimental setup and procedure described in
Section IV-B, we compare the three methods described in
Sections III–VI in this section.

Computation Time: The plot in Fig. 5 shows the time taken by
each algorithm to compute the matrix K for lossless systems of
different orders. The Bezoutian long division method, the LC
realization based method and the Gramian balancing method
take relatively less computation time compared to adjoint
network method in spite of the Zassenhaus algorithm based
modification proposed in [15].

Computation Error: Error in K is computed using (27) and
is plotted for comparison. We calculate Err(K) for test cases
used above for computation time. Fig. 6 shows a comparison
of the error associated in the computation of K using the four
methods presented in this paper. The error has been plotted
in the logarithmic scale for better comparison of data. From
the plot we infer that Bezoutian based method is marginally
better than LC realization based method, Gramian balancing
and adjoint network method.

11The adjoint network method is based on finding minimal polynomial
basis of the polynomial matrix R(ξ). The algorithm of finding the minimal
polynomial basis, as reported in [13], is an iterative algorithm and is based on
writing the matrix R(ξ) as

∑d
i=0 Riξ

i and then using the coefficient matrices
Ri to form Toeplitz matrices at each iteration. Consider the matrices Ri have
size N× N, rank col(R0, R1, . . . , Rd) =: r0 and the iteration step is t then
the Toeplitz matrix will have a size (d + 1 + t)r0 × (r0 + rt−1). At each
iterations, SVD of such augmented matrices needs to be computed to find the
minimal polynomial basis of R(ξ). Hence, the algorithm being iterative and the
large size of the augmented matrix results in more error and computation time.
Further the operation of finding minimal basis is done twice in Algorithm 7.4
and this also adds to the error and computation time.
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IX. CONCLUDING REMARKS

This paper dealt with the computation of the stored energy
in lossless/all-pass systems. We presented four different con-
ceptual methods to compute the unique storage function for
lossless/all-pass systems.

1) LC realization based method: This uses Foster/Cauer
method (Theorem 3.1 and Theorem 3.6) and capacitor
voltages and inductor currents as states.

2) Bezoutian based method: (Theorem 4.1) States corre-
sponding to controller canonical form are used in this
method. Three different techniques are presented to com-
pute the Bezoutian of such systems.

a) Euclidean long division,
b) 2D discrete Fourier transform,
c) Pseudo-inverse.

3) Controllable/Observable Gramians balancing me-
thod: (Theorem 5.1). The method uses states in a bal-
anced basis: “balanced” loosely means that the extent of
controllability and observability is equal for each state.

4) Adjoint network method: Unlike the three methods
mentioned above, this method takes an arbitrary minimal
state-space realization as the starting point.

All the methods mentioned in the paper can also be used to
solve optimal control problems where ARE does not exist due
to failure of regularity conditions on D. Based on the results
of the paper, algorithms were formulated and compared for
computation time and numerical accuracy: see Figs. 5 and 6.
All computations were done in Scilab: the time comparison
would be thorough if the implementation were in C or Fortran
language for example. This paper focussed only on “proof-of-
concept” algorithms emanating out of the main results.
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