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ABSTRACT
In this paper, we deal with a special class of passive systems, which possess the characteristic property
of having no finite spectral zeros. We call these systems strongly passive. It is well known that, for
these systems, storage functions, i.e. solutions to the linear matrix inequality (LMI) arising from the
Kalman–Yakubovich–Popov (KYP) lemma, cannot be obtained by the conventional approach of algebraic
Riccati equations (AREs) and Hamiltonian matrices. In this paper, we first show that a strongly passive
system always admits a unique storage function. We then provide a closed-form expression for this
unique storage function. Using the closed-form formula of the unique storage function we characterise
the ‘lossless’ trajectories of strongly passive systems and show that such systems admit impulsive lossless
trajectories on the half-line; we call them fast lossless trajectories. This adds to the existing notion that such
systems do not admit any ‘slow’ lossless trajectories.
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1. Introduction

One of the most important tools used in the analysis and design
of control systems is the linear matrix inequality (LMI) aris-
ing from the Kalman–Yakubovich–Popov (KYP) lemma (see
Kalman, 1963; Popov, 1964; Yakubovich, 1962); for the sake of
brevity, henceforth in this paper, this LMI will be called the
KYP LMI. The KYP LMI is well studied in the literature and
its solutions find widespread applications in stability analysis,
dissipativity, optimal control, stochastic control and filtering:
see Brogliato, Lozano, Maschke, and Egeland (2007, Chap-
ter 3) and references therein for various applications. The KYP
lemma states that a system with a minimal input-state-output
(i/s/o) representation (d/dt)x = Ax + Bu, y = Cx + Du, where
A ∈ R

n×n,B,CT ∈ R
n×p and D ∈ R

p×p, is passive if and
only if there exists a non-negative definite K = KT ∈ R

n×n

such that [
ATK + KA KB − CT

BTK − C −(D + DT)

]
� 0. (1)

One of the most widely used methods to compute solutions of
the KYP LMI involves the use of the corresponding algebraic
Riccati equation (ARE): seeAnderson andVongpanitlerd (2006,

Section 6.2) and Bini, Iannazzo, and Meini (2012) for methods
to solve the ARE. However, the formulation of the ARE cru-
cially depends on the nonsingularity of D + DT . We call this
condition of nonsingularity of D + DT the feedthrough regular-
ity condition. In this paper, we deal with a special class of passive
systems that do not satisfy this feedthrough regularity condition
and hence do not admit an ARE.

Non-satisfaction of the feedthrough regularity condition
causes a deficit in the number of finite spectral zeros1 from
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being double the system’s order in the regular case, i.e. when
the feedthrough regularity condition is satisfied (Jugade, Pal,
Kalaimani, & Belur, 2013, Lemma 3.2; Trentelman, Minh,
& Rapisarda, 2009, Theorem 3.6). The class of passive systems
that we deal with in this paper is characterised by an extreme
deficit in the number of finite spectral zeros: these systems have
no finite spectral zeros at all. We call this special class of pas-
sive systems, strongly passive systems (see Definition 2.1 below
for the formal definition of strong passivity). At this point,
an elaboration on the nomenclature is in order. The spectral
zeros of a passive system are known to be precisely the modes
of trajectories in the system that incur zero loss due to dis-
sipation (Trentelman et al., 2009). As mentioned above, the
characteristic property of strongly passive systems is that they
have no finite spectral zeros. It then follows that such systems
do not admit any lossless trajectory that has a finite mode. In
other words, a strongly passive system admits no ‘slow’ loss-
less trajectories. Saying alternatively, every slow trajectory in
a strongly passive system incurs dissipation loss. The adverb
‘strongly’ thus emphasises this inevitability of dissipation loss
for slow trajectories in the system.

For every control problem based on the theory of passivity,
non-satisfaction of the feedthrough regularity condition causes
significant difficulty in obtaining a solution. This is mainly due
to non-existence of the ARE and shortage of finite spectral
zeros. This, perhaps, is the main reason why it is prevalent in
the existing literature on passivity and passivity based control
to assume that the feedthrough regularity condition is satis-
fied (Sorensen, 2005). However, it should be noted that non-
satisfaction of the feedthrough regularity condition arises quite
naturally in passive systems. In particular, there is a large class
of passive systems that, in fact, exhibit strong passivity. Passivity
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theory originated in the problem of synthesising linear systems
by electrical circuits (Cauer, 1926). Going back to this origin, we
can readily construct RLC circuits, which are strongly passive.
One of the simplest such circuits is shown in Figure 1. Apart
from such simple examples, one can also construct a family of
strongly passive electrical circuits, as well. For example, the RLC
network in Figure 2 is strongly passive for any arbitrary value of
b> 0. Quite evidently, existence of strongly passive circuits is
not confined to electrical circuits only: the characterising prop-
erty of these systems, based on their transfer functions, has been
presented in Definition 2.1. The abundance of strongly pas-
sive systems, and the fact that such systems do not satisfy the
feedthrough regularity condition indicates that study of such
systems are essential for any application that uses solutions of
KYPLMI for design and analysis. Typical areas of analysis where
strongly passive systems can show up is in passivity preserving
model order reduction (Sorensen, 2005), in the design of con-
trollers for various applications (Hoang, Tuan,&Nguyen, 2009),
(Paszke, Rogers,&Gałkowski, 2013), in the analysis of uncertain
systems (Megretski & Rantzer, 1997) and so on.

The motivation for our studying systems with strong passiv-
ity comes from two different perspectives: first, from a numer-
ical point of view and second, from a system theoretic one.
As mentioned earlier, solutions of the KYP LMI are essential
in different fields of control and communication. It is natural,
therefore, to seek for an algorithm to compute solutions of the
KYP LMI efficiently. For passive systems that admit ARE, effi-
cient ARE solvers already exist (Bini et al., 2012). However,
such efficient ARE solvers are unusable for strongly passive
systems, since they do not admit AREs. Besides ARE solvers,
one of the most widely used methods to solve such LMIs is to
use semi-definite programming (SDP) techniques. SDP solvers
are based on decreasing the gap2 between improved estimates
of the solution to the LMI and hence, such algorithms have

Figure 1. A parallel RC network with impedance function Z(s) = R
1+sRC .

Figure 2. A RLC network with impedance function Z(s) = (bs2+b2s+b)
(bs3+b2s2+(1+b)s+b)

,
b> 0.

an inherent tolerance (algorithm stopping criterion) associated
with them: see Boyd and Vandenberghe (2004, Section 5.5) for
more on tolerance. This makes such solvers inefficient in terms
of computational time and computational error (Vandenberghe,
Balakrishnan,Wallin,Hansson&Roh, 2005). Therefore, there is
always a scope for an algorithm to compute solutions of the KYP
LMI that outperforms SDP-based LMI solvers. It turns out that,
by exploiting the special properties of strongly passive systems,
we can indeed obtain a muchmore efficient and accurate solver.
This is achieved by the solver because it solves theKYPLMIwith
a closed-form expression: see Theorem 3.1 and Algorithm 1.

As mentioned above, the system theoretic interpretation of
the solutions of KYP LMI is the other motivating factor for
studying strongly passive systems in this paper. It is known in
the literature that there exists an interesting link between the
solutions of theKYPLMI and the optimal charging and discharg-
ing policies of passive circuits: see Willems (1972) and Willems
and Trentelman (1998, Remark 5.14) for more on this optimi-
sation problem. Note that a characteristic property of passive
systems is that the set of solutions of the KYP LMI are par-
tially ordered with two extrema (Willems & Trentelman, 1998),
i.e. there exist solutions of KYP LMI (1), Kmin and Kmax,
such that Kmin � K � Kmax for all K that satisfy the KYP LMI
(1). These extremal solutions are special since they reveal the
optimal charging and discharging policies of an RLC network.
Using these extremal solutions of the KYP LMI, controllers can
be designed that restrict the system trajectories to its optimal
charging and discharging trajectories. These trajectories are, in
fact, the lossless trajectories of the system as discussed above.
It is known in the literature that for passive systems that admit
AREs, these lossless trajectories turn out to be infinitely differ-
entiable (slow) (Trentelman et al., 2009). However, we show that
for strongly passive systems such lossless trajectories are impul-
sive (Theorem 5.3). This is primarily due to the fact that such
systems have no finite spectral zeros, and hence, no slow loss-
less voltage-current profile exists. Therefore, a natural question
is: can these lossless trajectories be characterised? This is one of
the primary motivations for studying such an extreme case of
passive systems in this paper.

Our main contributions in this paper can therefore be
broadly divided into two points: first, we bring out an explicit
closed-form expression of the (unique) solution to the KYP
LMI for strongly passive systems. Second, we show existence
of impulsive lossless trajectories in these systems, although, as
mentioned above, these systems do not admit any slow lossless
trajectories as per the existing theory. We briefly summarise the
contributions of this paper next.

In this paper, we focus on strongly passive SISO systems. For
such systems, the KYP LMI takes the form[

ATK + KA KB − CT

BTK − C 0

]
� 0. (2)

We call this the singular KYP LMI. The problem of solv-
ing singular KYP LMIs is not new. Besides SDP-based LMI
solvers, there are at least two known theoretical methods in the
literature for solving singular KYP LMIs. In one of these meth-
ods, spectral factorisation technique (see Anderson & Vong-
panitlerd, 2006, Section 6.5; Willems & Trentelman, 1998) is
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used. A short-coming of this method is that it can characterise
only slow lossless trajectories. Hence, for strongly passive sys-
tems, this method asserts that there are no lossless trajectories
for any nonzero initial conditions (Trentelman et al., 2009).
We overcome this short-coming in this paper and show that
such systems do admit ‘fast’ lossless trajectories for every initial
condition (Theorem 5.3).

The other method is a generalisation of the ARE/
Hamiltonianmatrixmethod, that is commonly used for the reg-
ular case, to the singular case. In this method, the issue of non-
invertibility of D + DT is circumvented by looking into a more
fundamental object called the Hamiltonian pencil. The notion
of invariant subspaces in the regular case, likewise, gets substi-
tuted by a more fundamental object called deflating subspaces
(Reis, 2011; Reis, Rendel, & Voigt, 2015; Van Dooren, 1981).
Our approach is similar to this approach in that we, too, use
theHamiltonian pencil extensively to bring out themain results.
However, it is important to note here that we do not use prop-
erties of deflating subspaces for solving the singular KYP LMI.
Instead, we show that a much simpler construction, based on
Markov parameters of the strongly passive system, leads to a
closed-form formula for the unique solution of the singular
KYP LMI corresponding to the system (Theorem 3.1). The
above-mentioned observation (Lemma 3.2) concerningMarkov
parameters of strongly passive systems plays a crucial role in this
paper. This result also helps us in showing that the solution to
the KYP LMI for the case of strongly passive systems is unique
(Theorem 3.1). Interestingly, in this paper, we probe even fur-
ther into the Hamiltonian pencil. We look into the dynamical
system whose singular descriptor state-space equation is given
by the Hamiltonian pencil. This singular descriptor dynamical
system is known to be the result of an interconnection of the
system and its adjoint (Jugade, Pal, Kalaimani, & Belur, 2017).
Because of the singular descriptor nature, the interconnected
system admits half-line impulsive solutions. We show in this
paper (Theorem 5.3) that, these impulsive half-line solutions are
‘lossless’, which generalises the well-known fact for regular pas-
sive systems that solutions in the intersection of the system and
its adjoint are lossless (Trentelman et al., 2009, Theorem 3.4).

The rest of the paper is organised as follows. The following
section contains the notation and preliminaries required for this
paper. Section 3 contains the first main result of the paper. In
this main result, we propose a closed-form solution of the sin-
gular KYP LMI for a strongly passive SISO system and show
that this solution is unique. Based on the first main result, an
algorithm (Algorithm 1) to compute the storage function of a
strongly passive system is proposed in Section 4. Further, we
also compare the algorithm with standard LMI solvers in this
section. In Section 5, we establish the link between this unique
solution and lossless trajectories of a strongly passive system.
Concluding remarks are presented in Section 6.

2. Notation and preliminaries

We use symbols N, R and C for the sets of natural, real and
complex numbers, respectively. The symbol R+ denotes the set
of non-negative real numbers. The symbol R

n×p denotes the
set of matrices with n rows and p columns, where the elements
are fromR. We useR[s] andR(s), respectively, for denoting the

sets of polynomials and rational functions in one-variable swith
coefficients from R. Likewise, we use R[s]n×p and R(s)n×p for
the sets of n × p matrices with elements from R[s] and R(s),
respectively. The symbol C∞(R,Rn) stands for the space of all
infinitely differentiable functions from R to R

n. For brevity, we
use the symbolC∞ to denote the setC∞(R,R).We use the sym-
bolC∞|R+ to represent the set of all functions fromR+ toR that
are restrictions of smooth (C∞) functions to R+, i.e.

C∞|R+ := {w : R+ → R | ∃v ∈ C∞ such that w = v|R+}.
Symbol col(B1,B2, . . . ,Bn) represents a matrix of the form⎡⎣ B1

B2
...
Bn

⎤⎦ and det(A) represents the determinant of the matrix A.

Symbol img(A) is used to denote the subspace spanned by the
columns of matrix A. The degree of a polynomial p(s) ∈ R[s]
is denoted by deg(p(s)). A block diagonal matrix G is rep-
resented as diag(G1, . . . ,Gm), where each of G1, . . . ,Gm are
square matrices of possibly different sizes. We use the symbol
A = [amn]m,n=0,1,...N−1 to represent3 a matrix A ∈ R

N×N with
element amn in the (m + 1)-st row and (n + 1)-st column. Sym-
bol 0n ∈ R

n is used for the vector having all elements equal to
zero and symbol 0n×n ∈ R

n×n is used to denote a zero matrix
of size n × n. The symbol δ represents the Dirac delta impulse
function and δ(i) represents the ith distributional derivative of
δ with respect to t. We use the symbol σ(A) to denote the set
of eigenvalues ofA (including multiplicity). Next we give a brief
review of various preliminary concepts required for this paper.

As introduced in Section 1, a system with minimal i/s/o
representation

d
dt
x = Ax + Bu, y = Cx + Du, where A ∈ R

n×n,B,CT

∈ R
n×p and D ∈ R

p×p, (3)

is said to be passive if there exists a non-negative defi-
nite K = KT ∈ R

n×n such that K satisfies the KYP LMI (1).
Further, it is also known in the literature that for all
(x, u, y) ∈ C∞(R,Rn+2p) that satisfies Equation (3), any solu-
tion K of the KYP LMI (1) satisfies the following inequality (see
Trentelman &Willems, 1997):

d
dt

(xTKx) � 2uTy for all t ∈ R. (4)

Inequality (4) is known as the dissipation inequality and the
quadratic term (xTKx) is called a storage function of the passive
system4 under consideration (Willems & Trentelman, 1998).
Thus the solutions of the KYP LMI (1) induce the storage func-
tions of a passive system. Henceforth, we use the term ‘storage
function’ to alsomean a solutionmatrixK of theKYPLMI.Note
that a stable system with transfer function matrix G(s) is pas-
sive if and only if both the following statements hold (Anderson
& Vongpanitlerd, 2006, Section 2.7):

(1) G(s) is analytic on the open right half of the C-plane.
(2) For all ω ∈ R such that jω is not a pole of G(s):

G(jω) + G(−jω)T � 0. (5)
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As mentioned earlier, our main object of study in this paper
is a special class of passive SISO systems, which we call strongly
passive systems. We define such systems next.

Definition 2.1 (strong passivity): A passive SISO system with
transfer function G(s) (with no common poles and zeros) is
called strongly passive if the numerator of G(s) + G(−s) is a
nonzero constant.

From Definition 2.1, it is clear that a necessary condition for
a SISO system� to be strongly passive isD= 0. This also recon-
firms the fact that a SISO system� with strong passivity admits
a singular KYP LMI of the form (2). For the example shown
in Figure 1, note that G(s) + G(−s) = (1/C)/(s + 1/RC) +
(1/C)/(−s + 1/RC) = (−2/RC2)/(s2 − 1/R2C2).

Lossless trajectories and adjoint systems: Given a system �

with transfer function matrix G(s) and a minimal i/s/o rep-
resentation as in Equation (3), its adjoint is defined to be the
system with a minimal i/s/o representation ż = −ATz + CTe
and f = BTz − DTe. (The adjoint of a system is also known as
the dual and the orthogonal complement in the literatureVan der
Schaft &Rapisarda, 2011.)We use the symbol�adj to represent
the adjoint of the system �. We ‘interconnect’ the two systems
� and�adj such that u= e and y= f. The new system obtained
from this interconnection has a first-order representation of the
form⎡⎣In 0 0

0 In 0
0 0 0

⎤⎦
︸ ︷︷ ︸

E

⎡⎣ẋż
u̇

⎤⎦ =
⎡⎣A 0 B
0 −AT CT

C −BT (D + DT)

⎤⎦
︸ ︷︷ ︸

H

⎡⎣xz
u

⎤⎦ . (6)

We use the symbol �Ham to represent this interconnected sys-
tem; the subscript ‘Ham’ in the symbol�Ham stands for ‘Hamil-
tonian’ and the pencil (sE − H) ∈ R[s] is called Hamiltonian
pencil. It is a fact that for passive systemswithD + DT > 0 elim-
ination of the variable u leads to a state-space representation of
�Ham given by

d
dt

[
x
z

]
=
[
A − B(D + DT)−1C B(D + DT)−1BT
−CT(D + DT)−1C −(A − B(D + DT)−1C)

] [
x
z

]
.

(7)

The system matrix in Equation (7) is called a Hamiltonian
matrix H. This Hamiltonian matrix and its suitable invariant
subspaces are used to compute storage functions of the system
� (see Kučera, 1991). Note that, in this paper, all passive systems
that satisfy the feedthrough regularity condition such that their
correspondingHamiltonianmatrixH has no eigenvalues on the
imaginary axis are called regularly passive systems. For regu-
larly passive systems, it is known that degree of det(sE − H) =
2n (see Trentelman et al., 2009, Theorem 3.6). The roots of
det(sE − H) happen to be the eigenvalues of the Hamiltonian
matrix H of Equation (7). In such a case, one of the standard
methods to compute the solution of KYP LMI involves parti-
tioning the set of the roots of det(sE − H) into two sets each of
cardinality n subject to certain conditions (see Kučera, 1991).

Such sets are called Lambda sets.5 Bases of the n-dimensional
invariant subspaces of theHamiltonianmatrix corresponding to
each of these Lambda sets are used to compute storage functions
of the system: see Van Dooren (1981) for a detailed exposition.
For easy reference, we present this method to compute storage
functions of regularly passive systems as a proposition next. The
significance of our main result (Theorem 3.1) is the close paral-
lel with the statements below, though the concepts involved in
the proposition are very different.

Proposition 2.2: Consider a regularly passive system � with an
i/s/o representation as given in Equation (3) and let the corre-
sponding Hamiltonian matrixH be as given in Equation (7). Let
� be a Lambda-set of det(sI − H). Suppose the n-dimensional
H-invariant subspace corresponding to � is given by

V := img

[
V1
V2

]
, where V1,V2 ∈ R

n×n. (8)

Then the following statements are true.

(1) V1 is invertible.
(2) K := V2V−1

1 is symmetric.
(3) K is a solution to the ARE: ATK + KA + (KB − CT)(D +

DT)−1(BTK − C) = 0.
(4) xTKx is a storage function of the system �, i.e. d

dt (x
TKx)

� 2uTy for all (x, u, y) ∈ C∞(R,Rn+p+p) that satisfy
Equation (3).

On the other hand, for a strongly passive SISO system�, the
system �Ham has the following first-order representation⎡⎣In 0 0

0 In 0
0 0 0

⎤⎦⎡⎣ẋż
u̇

⎤⎦ =
⎡⎣A 0 B
0 −AT CT

C −BT 0

⎤⎦⎡⎣xz
u

⎤⎦ . (9)

Note that for strongly passive SISO systems, u cannot be
expressed as a linear combination of x and z, and hence, �Ham
cannot be brought into the state-space form of Equation (7).
Therefore, �Ham in this scenario is a singular descriptor sys-
tem. Further, a strongly passive system � does not admit an
ARE of the form given in Statement (3) of Proposition 2.2
due to nonsingularity of D + DT . Computation of det(sE −
H) using Schur complement with respect to the top-left block
diag(sIn − A, sIn + AT) reveals that the numerator of G(s) +
G(−s) and det(sE − H) is the same (upto sign). Hence, for
strongly passive SISO systems (sE − H) is a unimodular matrix,
i.e.det(sE − H) is a nonzero constant. Therefore, with strongly
passive SISO systems, partitioning of the roots of det(sE − H)

is not possible. This means that Proposition 2.2 is not applicable
to strongly passive SISO systems. So a relevant question is: how
to compute storage functions of such systems then? We answer
this in the next section, and the answer eventually leads us to
the claimed closed-form solution of the singular KYP LMI for
strongly passive SISO systems. To summarise, given a strongly
passive SISO system �, the following statements are true.

(1) det(sE − H) ∈ R\0, i.e. (sE − H) is unimodular and the
system � has no spectral zeros (see Endnote 1).



INTERNATIONAL JOURNAL OF CONTROL 5

(2) The system�Ham corresponding to� does not contain any
exponential trajectories (slow trajectories).

(3) The system � does not satisfy the feedthrough regularity
condition and hence does not admit an ARE.

On the contrary, for a regularly passive SISO system �, the
following statements are true.

(1) det(sE − H) ∈ R[s]\0, i.e. (sE − H) is a regular pencil6
and degree of det(sE − H) = 2n, i.e. the system� has 2n
spectral zeros.

(2) The system�Ham corresponding to� contains slow trajec-
tories of dimension 2n.

(3) The system� satisfies the feedthrough regularity condition
and therefore admits an ARE.

3. Storage functions of strongly passive SISO systems

We now state and prove our first main result, Theorem 3.1. The
theorem provides closed-form solutions of the singular KYP
LMI (2) for strongly passive SISO systems.

Theorem 3.1: Consider a strongly passive SISO system� with a
minimal i/s/o representation d

dt x = Ax + Bu, y = Cx,where A ∈
R

n×n,B,CT ∈ R
n. Define

Â :=
[
A 0
0 −AT

]
, B̂ :=

[
B
CT

]
and Ĉ := [

C −BT
]
.

Define further W := [̂B ÂB̂ · · · Ân−1B̂] ∈ R
2n×n and

partition W =:
[
X1
X2

]
, where X1,X2 ∈ R

n×n.
Then the following statements are true.

(1) X1 is invertible.
(2) K := X2X−1

1 is symmetric.
(3) K is a solution to LMI (2), i.e. KB − CT = 0 and ATK +

KA � 0.
(4) K is the unique solution to LMI (2).
(5) xTKx is the storage function of the system �, i.e. d

dt
(xTKx) � 2uy for all (x, u, y) ∈ C∞(R,Rn+1+1) that satisfy
the i/s/o representation of �.

Further, if eigenvalues of A are in the open left-half of the C-
plane, then K � 0.

The significance of the above result is that the properties of
the storage functionK have close parallel to the regularly passive
case (see Proposition 2.2).However, the procedure to obtainK is
very different. The proof needsmore development andwe prove
the statements one by one.

Proof of Statement 1 of Theorem 3.1: Note that X1 =
[B AB · · · An−1B] ∈ R

n×n. Invertibility of X1 follows from
controllability of (A,B). �

To prove K is a symmetric matrix we use the concept of
Markov parameters. Recall we use 0 as the starting index for this
paper: see Endnote 3. Note that the Markov parameters of the

system � are CAkB for k = 0, 1, . . . ,n − 1: for a detailed expo-
sition refer to Antoulas (2005, Section 4.2). It is known that the
Markov parameters of a system are intrinsically linked to the
relative degree7 of the system. Interestingly, the Markov param-
eters ofG(s) + G(−s) are also related to theMarkov parameters
of� as shown in the next lemma. This is needed in the proof of
Theorems 3.1 and 5.3.

Lemma 3.2: Consider a strongly passive SISO system � with
transfer function G(s). Let a minimal i/s/o representation of �

be d
dt x = Ax + Bu and y = Cx, where A ∈ R

n×n, B,CT ∈ R
n.

Then,

CAkB − (−1)k(CAkB)T = 0 for k = 0, 1, . . . , 2n − 2.

Proof: Note that G(s) + G(−s) = C(sI − A)−1B − BT
(sI + AT)−1CT . Taking the Laplace inverse of G(s) + G(−s) we
get

h(t) := L−1(G(s) + G(−s)) = CeAtB − BTe−ATtCT . (10)

From Equation (10) it is clear that

h(t)|t=0+ = CB − BTCT

ḣ(t)|t=0+ = CAB + BTATCT

...

h(2n−2)(t)|t=0+ = CA2n−2B − (−1)2n−2BT(AT)2n−2CT .

Since the relative degree of H(s) := G(s) + G(−s) is 2n, the
initial value theorem implies that

h(t)|t=0+ = lim
s→∞ sH(s) = 0

ḣ(t)|t=0+ = lim
s→∞ s2H(s) = 0

...

h(2n−2)(t)|t=0+ = lim
s→∞ s2n−1H(s) = 0.

Therefore, CAkB − (−1)k(CAkB)T = 0 for k = 0, 1, . . . ,
2n − 2. This completes the proof of Lemma 3.2. �

Proof of Statement 2 of Theorem 3.1: We need to prove that
X2X−1

1 is symmetric, i.e. X2X−1
1 = (X2X−1

1 )T , i.e. XT
1 X2 =

XT
2 X1. Hence, proving Statement 2 of Theorem 3.1 is equivalent

to proving XT
1 X2 − XT

2 X1 = 0.
Let XT

1 X2 − XT
2 X1 =: [Jαβ]α,β=0,1,2,...,n−1. Here

X1 = [
B AB · · · An−1B

]
and

X2 = [
CT −(CA)T · · · (−1)n−1(CAn−1)T

]
.

Therefore, for α,β = 0, 1, 2, . . . ,n − 1

Jαβ = (−1)β[(CAα+βB)T − (−1)α+β(CAα+βB)]

Using Lemma 3.2, it is easy to see that Jαβ = 0 for α,β =
0, 1, 2, . . . ,n − 1. Therefore, XT

1 X2 − XT
2 X1 = 0. This proves

that X2X−1
1 is symmetric. �
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To prove Statement 3 of Theorem 3.1, we need the following
simple matrix result.

Lemma 3.3: Consider A ∈ R
n×n and B,CT ∈ R

n. Define
X1,X2 ∈ R

n×n such that

X1 :=
[
B AB · · · An−1B

]
and

X2 :=
[
CT −(CA)T · · · (−1)n−1(CAn−1)T

]
.

Then

X2X−1
1 AkB = (−1)k(CAk)T for every k = 0,1, . . . , n-1.

Proof: Note that X2X−1
1 AkB = X2[B AB · · · An−1B]−1AkB =

X2col(0k, 1, 0n−k−1). Therefore, X2X−1
1 AkB is the (k + 1)-st

element of X2, i.e. (−1)k(CAk)T . Therefore, X2X−1
1 AkB =

(−1)k(CAk)T . This completes the proof of Lemma 3.3. �

Proof of Statement 3 of Theorem 3.1: We first prove thatKB −
CT = 0. Lemma 3.3 applied to the case k = 0 gives X2X−1

1 B =
CT . Thus we have KB − CT = 0.

Next we prove that ATK + KA � 0. Instead of directly prov-
ingATK + KA � 0, we shall prove thatXT

1 (ATK + KA)X1 � 0.
Since X1 is invertible, ATK + KA � 0 if and only if XT

1 (ATK +
KA)X1 � 0. This is true because congruence transformation on
a symmetric matrix preserves its signature. Let us first define
XT
1 (ATK + KA)X1 =: [Tαβ]α,β=0,1,...,n−1. Therefore

Tαβ = BT(Aα)T(ATK + KA)AβB

Note that

Tαβ = BT(Aα)T(ATK + KA)AβB

= (BT(Aα+1)T)(KAβB) + (BT(Aα)TK)(Aβ+1B)

Using Lemma 3.3, we have

KAαB = (−1)α(CAα)T and KAβB = (−1)β(CAβ)T

for α,β = 0, 1, 2, . . . ,n − 1. Hence, Tαβ =

(Aα+1B)T((−1)β(CAβ)T) + ((−1)α(CAα)T)T(Aβ+1B)

= (−1)β(CAα+β+1B)T + (−1)α(CAα+β+1B)

= (−1)α(CAα+β+1B − (−1)α+β+1(CAα+β+1B)T).

For every (α,β) ∈ {0, 1, . . . ,n − 1}2 \ {(n − 1,n − 1)} we can
infer the following from Lemma 3.2: Tαβ = 0. We now
check for α = n − 1 and β = n − 1. Recall the expression for

T(n−1)(n−1) =
(−1)(n−1)(CA2n−1B − (−1)2n−1(CA2n−1B)T)

= −(−1)n(CA2n−1B + (CA2n−1B)T) (11)

Since� has been assumed to be strongly passive, it follows from
Equation (5) that for all ω ∈ R,

G(jω) + G(−jω)T � 0 i.e. ω2n(G(jω) + G(−jω)T) � 0.

Therefore,

lim
ω→∞ ω2n(G(jω) + G(−jω)T) � 0. (12)

Note that G(s) + G(−s)T admits an infinite series expansion at
s = ∞ of the following form:

G(s) + G(−s)T = C(sI − A)−1B + BT(−sI − AT)−1CT

=
∞∑
k=0

1
sk+1 (CAkB − (−1)k(CAkB)T).

Using Lemma 3.2, we have

G(s) + G(−s)T =
∞∑

k=2n−1

1
sk+1 (CAkB − (−1)k(CAkB)T).

From inequality (12) then we get

lim
ω→∞ ω2n(G(jω) + G(−jω)T)

= lim
ω→∞

⎛⎝ω2n
∞∑

k=2n−1

1
(jω)k+1 (CAkB − (−1)k(CAkB)T)

⎞⎠� 0.

(13)

Note that we have utilised the fact that the expansion ofG(jω) +
G(−jω)T at ω = ∞ remains valid even after multiplication by
ω2n because G(s) + G(−s)T has relative degree 2n. Rewriting
inequality (13), we get

lim
ω→∞

ω2n

(jω)2n−1+1 (CA2n−1B − (−1)2n−1(CA2n−1B)T)

+ lim
ω→∞

∞∑
k=2n

ω2n

(jω)k+1 (CAkB − (−1)k(CAkB)T) � 0.

Hence, we have

(−1)n(CA2n−1B + (CA2n−1B)T) � 0. (14)

Using inequality (14) in Equation (11), we get

T(n−1)(n−1) � 0.

Thus, we have

XT
1 (ATK + KA)X1 =

[
0(n−1)×(n−1)

T(n−1)(n−1)

]
= diag(0,T(n−1)(n−1)) ∈ R

n×n. (15)

Since T(n−1)(n−1) � 0, it follows that XT
1 (ATK + KA)X1 � 0,

and hence (ATK + KA) � 0. This completes the proof of State-
ment 3 of Theorem 3.1. �
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Proof of Statement 4 of Theorem 3.1: To prove the uniqueness
of K, we first claim that any solution K = KT of the singu-
lar KYP LMI (2) satisfies KAαB = (−1)α(CAα)T for any α ∈
{1, . . . ,n − 1}. We prove it using principle of mathematical
induction and Lemma 3.2.

Base case: α = 1. Note that for any solutionK of the LMI (2),
we have

ATK + KA � 0 and KB − CT = 0. (16)

Therefore, using Equation (16), we have

ATK + KA � 0 =⇒ BT(ATK + KA)B � 0

=⇒ (AB)T(KB) + (KB)T(AB) � 0

=⇒ (CAB)T + CAB � 0 (17)

From Lemma 3.2, customised to k= 1, we have (CAB)T +
CAB = 0. Therefore, BT(ATK + KA)B = 0. Since ATK + KA
� 0, we have

BT(ATK + KA)B = 0 =⇒ (ATK + KA)B = 0

=⇒ ATKB + KAB = 0

=⇒ ATCT + KAB = 0

=⇒ KAB = −(CA)T . (18)

Induction case. We assume KA(α−1)B = (−1)(α−1)(CA(α−1))T

and we want to show that KAαB = (−1)α(CAα)T . From
Equation (16), we have

ATK + KA � 0 =⇒ (A(α−1)B)T(ATK + KA)(A(α−1)B) � 0

=⇒ (AαB)TKA(α−1)B + (KA(α−1)B)TAαB � 0

=⇒ (AαB)T(−1)(α−1)(CA(α−1))T

+ (−1)(α−1)(CA(α−1))AαB � 0

=⇒ (−1)(α−1)((CA2α−1B)T + (CA2α−1B)) � 0. (19)

Using Lemma 3.2 in Equation (19), we have for α ∈
{1, 2, . . . ,n − 1},

((CA2α−1B)T + (CA2α−1B)) = 0

=⇒ (A(α−1)B)T(ATK + KA)(A(α−1)B) = 0. (20)

Once again, since ATK + KA � 0, we infer from Equation (20)

(ATK + KA)A(α−1)B = 0

=⇒ (−1)(α−1)AT(CA(α−1))T + KAαB = 0

=⇒ KAαB = (−1)α(CAα)T . (21)

Thus, by the principle of mathematical induction and
Lemma 3.2, we infer that for any solution K of the singular
KYP LMI (2), KAαB = (−1)α(CAα)T for α ∈ {1, 2, . . . ,n − 1}.
Writing the matrix equation KB − CT = 0 and Equations (21)
together in matrix form, we have

KX1 = X2, (22)

where X1 = [B AB · · ·A(n−1)B] and X2 = [CT − (CA)T · · ·
(−1)(n−1)(CA(n−1))T]. We now prove the uniqueness of K. Let

K and K̂ be two solutions of the singular KYP LMI correspond-
ing to the passive system �. From Equation (22), we know
that

KX1 = X2 and K̂X1 = X2

Therefore, (K − K̂)X1 = 0. From Statement 1 of Theorem 3.1,
X1 is invertible and thus we infer that K − K̂ = 0 =⇒ K = K̂.
Thus,K is the unique solution of the singular KYP LMI (2). This
completes the proof of Statement 4 of Theorem 3.1 �

Proof of Statements 5 of Theorem 3.1: From Statement 3 of
Theorem 3.1 it is clear that K is a solution of the singular KYP
LMI (2). Therefore, xTKx is a storage function of�. This proves
Statement 5 of Theorem 3.1.

Lastly, if A has eigenvalues in the open left-half of the C-
plane, then K is the solution of the Lyapunov inequality ATK +
KA � 0, and hence, we must have K � 0.

This completes the proof of Theorem 3.1. �

Thus we have constructed a closed-form formula for the
unique solution of the singular KYP LMI corresponding to a
strongly passive SISO system.

Remark 3.4: Note that for controllable, lossless systems, the
singular KYP LMI (2) reduces to ATK + KA = 0 and KB −
CT = 0 (see Anderson & Vongpanitlerd, 2006, Section 6.5). For
the K defined in Statement (2) of Theorem 3.1, it is evident
that KB − CT = 0 by Lemma 3.3. Further, it is known that for
a lossless SISO system, G(jω) + G(−jω) = 0 for all ω ∈ R+
(see Anderson & Vongpanitlerd, 2006, Theorem 2.7.4). There-
fore, T(n−1)(n−1) in Equation (11) is zero and this proves that
ATK + KA = 0. Thus, K defined in Theorem 3.1 is the solution
of the singular KYP LMI for lossless systems too. This shows
that Theorem 3.1 is applicable to lossless systems as well. Thus
as a special case of our algorithm obtained from Theorem 3.1,
we retrieve a known algorithm to compute storage functions
of lossless systems: see Anderson and Vongpanitlerd (2006,
Section 6.5).

4. Algorithmic aspects and illustrative example

At the very outset of this section, we present the algorithm to
compute the storage function of a strongly passive system based
on Theorem 3.1.

Algorithm 1 Algorithm to compute the storage function of a
strongly passive system.
Input: A ∈ R

n×n,B,CT ∈ R
n.

Output: K = KT ∈ R
n×n.

1: Construct Â :=
[
A 0
0 −AT

]
and B̂ :=

[
B
CT

]
.

2: Construct W := [̂
B ÂB̂ · · · Ân−1B̂

] ∈ R
2n×n

3: PartitionW asW =:
[
X1
X2

]
, where X1,X2 ∈ R

n×n

4: Compute the storage function: K = X2X−1
1 ∈ R

n×n
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Now that we have the algorithm to compute the storage func-
tion of a strongly passive system, we discuss the algorithmic
aspects of Algorithm 1 next. Note that each step in Algorithm 1
can be efficiently implemented using certain standard algo-
rithms (Watkins, 2002). We use these standard algorithms to
compute the total flop count of Algorithm 1 in Table 1.

From Table 1 it is evident that the total flop count for
Algorithm 1 is O(n3). Recall that as motivated in Section 1, a
standard method to compute solutions of LMI is to use semi-
definite programming (SDP) techniques. It is known in the
literature that solving an LMI using SDP techniques requires
genericallyO(n6) flops, while exploitation of certain structures
in the problemmay lead to an improvement up toO(n4.5) flops
(Vandenberghe et al., 2005). Hence, Algorithm 1 is expected to
perform faster when compared with SDP-based optimisation
packages. To demonstrate this we compare the time required
by Algorithm 1 to compute a solution of KYP LMI (2) to that
required by two standard Matlab based optimisation packages,
namely CVX: Matlab Software for Disciplined Convex Program-
ming (CVX) (Grant & Boyd, 2013) and Yet Another LMI Parser
(YALMIP) (L’ofberg, 2004). Apart from these two packages, we
also compare Algorithm 1 with the spectral factorisation tech-
nique (SFT) described in Willems and Trentelman (1998). We
use a one-variable Euclidean division algorithm to implement
this technique. We do not compare Algorithm 1 with the deflat-
ing subspace based method in Reis (2011); Reis et al. (2015)
due to the absence, to the best of our knowledge, of stan-
dard packages to implement it. The experimental setup for the
comparison of Algorithm 1with standardmethods is as follows.

Experimental setup and procedure: The experiment has been
carried out on an Intel(R) Xeon(R) computer operating at
3.50GHz with 64GB RAM using Ubuntu 16.04 LTS operat-
ing system. Numerical computational package Matlab has been
used to implement Algorithm 1 and the standard tic-toc
command of Matlab is used to record the computational time.
Execution time for the Euclidean division based spectral factori-
sation algorithm is also computed using the tic-toc com-
mand. The SDP solver used for both CVX and YALMIP is
sedumi. The predefined numerical precision for the solver
has been set to 10−12. The total computational time for CVX
is obtained by the command cvx_cputime, which includes
both CVX modelling time and solver time. Similarly, the field
yalmiptime is used to obtain the total computational time,
which includes modelling and solver time, for YALMIP.

Randomly generated transfer functions corresponding to
strongly passive systems of five different orders are used to com-
pare the computational time of Algorithm 1 with that of CVX,
YALMIP and SFT. The computation time for each order has
been averaged over 15 randomly generated transfer functions.

Table 1. Flop count of each step in Algorithm 1.

Step Operations Algorithm Flops

1 Matrix concatenation Merely bookkeeping 0
2 (n − 1) Matrix-vector

multiplication
Normal matrix-vector multiplication O(n3)

3 Matrix partitioning Merely bookkeeping 0
4 Matrix inversion Cholesky, LU, Gaussian elimination O(n3)

Matrix-matrix
multiplication

Normal matrix-matrix multiplication O(n3)

Further, in order to nullify the effect of CPU delays the compu-
tational time to calculate solutions of the KYP LMI (2) for each
transfer function is further averaged over hundred iterations.

4.1 Experimental results

Computational time: Figure 3 demonstrates the time taken to
compute the storage functions of strongly passive systems using
CVX, YALMIP, SFT and Algorithm 1. From Figure 3, it is
evident that Algorithm 1 is approximately 103 times faster com-
pared toCVX andYALMIP. Further, it is also clear that although
the execution time for Algorithm 1 is better than that of SFT, it
is comparable.

Computational error: Since SDP solvers have an inherent
numerical tolerance associated with them, the solutions of
LMI (2) found using CVX and YALMIP are within a predefined
numerical precision. However, all the operations performed
in Algorithm 1 are implementable using algorithms that are
not only numerically stable (Watkins, 2002) but also do not
admit any numerical tolerance. A few of such numerically sta-
ble algorithms are suggested in Table 1. Evidently, Algorithm1 is
better thanCVX andYALMIP from a numerical precision view-
point as well. On the other hand, since SFT-based algorithms
use matrix-matrix multiplication for its implementation, the
error associated with SFT is comparable to that of Algorithm 1.
However, one of the major drawbacks of SFT is that the solu-
tion obtained from the SFT algorithm corresponds to the KYP

Figure 3. Plot of computational time to solve KYP LMI (2) for strongly passive SISO
systems using CVX, YALMIP, SFT and Algorithm 1.

Figure 4. ARLCnetworkwith impedance transfer function asgiven in Example 4.1.
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LMI (2) when the system matrices (A,B,C) are in the con-
troller canonical form. Further, as mentioned in Section 1, SFT
does not reveal the impulsive lossless trajectories of a strongly
passive system.Unlike SFT, Theorem3.1 directly leads to a com-
plete characterisation of the impulsive lossless trajectories of a
strongly passive system: see Section 5.

Nextwe construct a family of strongly passive systems and for
one of them compute the storage function using Algorithm 1.

Example 4.1: Consider a strongly passive system with transfer
function G(s) = s2+bs+1

s3+bs2+ds+1 such that b, d ∈ R+ \ 0 and d =
1 + 1

b . For example, let b= 2 and d = 3
2 (see Figure 4. Then, an

i/s/o representation of the system is given by

d
dt
x =

⎡⎣ 0 1 0
0 0 1

−1 −1.5 −2

⎤⎦ x +
⎡⎣00
1

⎤⎦ u,

y = [
1 2 1

]
x.

Using Theorem 3.1, we constructW and obtain K as below

W =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 1 −2
1 −2 2.5
1 1 0
2 0.5 −1
1 0 −0.5

⎤⎥⎥⎥⎥⎥⎥⎦ =
[
X1
X2

]
,

K = X2X−1
1 =

⎡⎣1 1 0
2 0.5 −1
1 0 −0.5

⎤⎦⎡⎣0 0 1
0 1 −2
1 −2 2.5

⎤⎦−1

=
⎡⎣3.5 3 1

3 4.5 2
1 2 1

⎤⎦ .

Note thatATK + KA = diag(−2, 0, 0) � 0 andKB − CT = 0.

5. Impulses in lossless trajectories of strongly passive
SISO systems

In this section, we establish the relation between lossless trajec-
tories of a strongly passive SISO system and its storage function.
To do so, we need the notion of trajectories of a system, which
we define now. We first define the following function space
of impulsive-smooth distributions, and denote it by Cimp: see
Hautus and Silverman (1983) for details.

Definition 5.1: An impulsive-smooth distribution is a distri-
bution f of the form f = f1 + f2 where f1 ∈ C∞|R+ and f2 =∑k

i=0 aiδ
(i) where ai ∈ R, k ∈ N.

The symbol Cn
imp denotes the set of n-tuples of func-

tions (f1, f2, . . . , fn), where fi ∈ Cimp for all 1 � i � n. We call
(x, u, y) ∈ Cn+1+1

imp to be a trajectory in a SISO system � if it
is a distributional solution of the differential equation of �:
d
dt x = Ax + Bu and y = Cx.We define lossless trajectories next.

Definition 5.2: Consider a passive SISO system � with a min-
imal i/s/o representation d

dt x = Ax + Bu and y = Cx, where
A ∈ R

n×n and B,CT ∈ R
n. Let (x, u, y) ∈ Cimp

n+1+1 be a tra-
jectory in �. Then, (x, u, y) is called a lossless trajectory if there
exists a storage function xTKx of � such that

d
dt

(xTKx) = 2uTy for all t ∈ R+. (23)

Definition 5.2 means that lossless trajectories of � are those
for which the rate of change of stored energy is equal to the
power supplied. It is crucial to note here that Definition 5.2
does not preclude the possibility of multiplication of Dirac
delta impulse δ and its derivatives with themselves. We treat
Equation (23) only formally here. By this we mean that
Equation (23) is said to hold if and only if the expression
d
dt (x

TKx) − 2uTy is zero as a function for t ∈ (0,∞), and
each of the coefficients of the monomials in the quadratic
expression involving symbols δ, δ̇, . . . , δ(k), . . . in the expression
d
dt (x

TKx) − 2uTy is zero.
Interestingly, for the regularly passive case, i.e. passive sys-

tems having minimal i/s/o representation d
dt x = Ax + Bu, y =

Cx + Du withD + DT nonsingular, it is known that�Ham con-
tains all the lossless trajectories of� (see Rapisarda, Trentelman,
& Minh, 2013). Further, these lossless trajectories are intrin-
sically linked to the storage functions of the system. Taking a
clue from this, we address the following questions on strongly
passive SISO systems in this section.

(1) Are there any nontrivial lossless trajectories of a strongly
passive SISO system?Does�Ham contain such trajectories?

(2) If there are lossless trajectories in �, in what way are they
linked with the storage functions of �?

To get to the main results of this section, we first rewrite the
first order representation of �Ham given in Equation (9) in an
output-nulling representation in the following manner:

d
dt

[
x
z

]
=
[
A 0
0 −AT

] [
x
z

]
+
[
B
CT

]
u, and

0 = [
C −BT

] [x
z

]
. (24)

Like before, we use (Â, B̂, Ĉ), as defined in Theorem 3.1, for
the system matrices of �Ham. Recall that, for a strongly pas-
sive SISO system, (sE − H) is unimodular. This means �Ham,
represented by Equation (24), is autonomous (see Hautus & Sil-
verman, 1983; Willems, Kitapci, & Silverman, 1986) and hence,
given an initial condition (x0, z0), there is a unique trajec-
tory in �Ham starting from (x0, z0). Note that these trajectories
in �Ham must be in Cimp because (sE − H) being unimodu-
lar prevents �Ham from containing full-line nonzero smooth
solutions (Dai, 1989). Now, let K be a solution of the singu-
lar KYP LMI (2) for a strongly passive system. We claim that,
for a strongly passive SISO system �, the trajectories in �Ham
subject to initial conditions in img col(I,K), provide the loss-
less trajectories in �; this is the second main result of this
paper.
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Theorem 5.3: Consider a strongly passive SISO system� with a
minimal i/s/o representation d

dt x = Ax + Bu, y = Cx,where A ∈
R

n×n and B,CT ∈ R
n. The first-order representation of �Ham is

given by Equation (24). Let K = KT ∈ R
n×n be the solution of the

corresponding singular KYP LMI (2). Let (x, z, u) ∈ Cimp
2n+1 be

a trajectory in �Ham corresponding to initial condition (x0, z0) ∈
img col(I,K). Then, the following are true

(1) The corresponding (x, u,Cx) ∈ Cimp
n+1+1 is a trajectory in

�.
(2) Further, this trajectory (x, u,Cx) is lossless in the sense of

Definition 5.2.

In order to prove this theorem we shall first characterise the
trajectories of �Ham when their initial conditions are restricted
to the subspace img col(I,K). Note that it follows from the
construction ofK in Theorem 3.1 that (x0, z0) ∈ img col(I,K)

is equivalent to (x0, z0) = ∑n−1
k=0 αkÂkB̂, where αk ∈ R for k =

0, 1, . . . ,n − 1.

Theorem 5.4: Consider a strongly passive SISO system� with a
minimal i/s/o representation d

dt x = Ax + Bu, y = Cx,where A ∈
R

n×n and B,CT ∈ R
n. Let the output-nulling representation of

�Ham be as given in Equation (24). Then the following are true:

(1) For k ∈ {1, 2 . . . ,n − 1} and αk ∈ R, consider an initial
condition (x0, z0) = αkÂkB̂. Then,⎡⎣x(t)z(t)

u(t)

⎤⎦ =
[−αk

∑k−1
i=0 (Â(k−1−i)B̂δ(i))

−αkδ
(k)

]
∈ Cimp

2n+1

(25)

is a trajectory in �Ham.
(2) For k= 0 and α0 ∈ R, consider an initial condition

(x0, z0) = α0B̂. Then, (x, z, u) = (0, 0,−α0δ) is a trajectory
in �Ham.

Proof: (1) For initial condition (x0, z0) = αkÂkB̂:

[
x(t)
z(t)

]
Unforced

= αkeÂtÂkB̂. (26)

Define s(t) to be the unit step function.8 For input u(t) =
−αkδ

(k), the forced response is

[
x(t)
z(t)

]
Forced

= −αk
dk

dtk
(eÂtB̂s(t)). (27)

We prove that

dk

dtk
(eÂtB̂s(t)) = eÂtÂkB̂s(t) +

k−1∑
i=0

Â(k−1−i)B̂δ(i). (28)

We use the principle of mathematical induction to prove it.

Base case: k= 1.

d
dt

(eÂtB̂s(t)) = eÂtÂB̂s(t) + B̂δ.

Induction step:We assume that

dk

dtk
(eÂtB̂s(t)) = eÂtÂkB̂s(t) +

k−1∑
i=0

Â(k−1−i)B̂δ(i).

We want to show that

dk+1

dtk+1 (eÂtB̂s(t)) = eÂtÂ(k+1)B̂s(t) +
(k+1)−1∑

i=0
Â((k+1)−1−i)B̂δ(i).

Now,

dk+1

dtk+1 (eÂtB̂s(t)) = dk

dtk
(eÂtÂB̂s(t) + B̂δ)

= dk

dtk
(eÂtÂB̂s(t)) + B̂δ(k)

= eÂtÂ(k+1)B̂s(t) +
k−1∑
i=0

Â(k−i)B̂δ(i) + B̂δ(k)

= eÂtÂ(k+1)B̂s(t) +
(k+1)−1∑

i=0
Â((k+1)−1−i)B̂δ(i).

We used the fact that Â commutes with eÂt in the analysis above.
This proves Equation (28) by the principle of mathematical
induction. Therefore, adding the forced and unforced responses
(Equations (26) and (27)), we get that the overall response due to
the initial condition (x0, z0) = αkÂkB̂ and input u(t) = −αkδ

(k)

is given by [
x(t)
z(t)

]
= −αk

k−1∑
i=0

Â(k−1−i)B̂δ(i). (29)

Thus the trajectory (25) satisfies equation
[ ẋ
ż
] = Â

[ x
z
]+ B̂u

(Equation (24)). Now we check whether this trajectory satisfies
the output-nulling equation within (24).

Ĉ
[
x
z

]
= −Ĉ

(
αk

k−1∑
i=0

(Â(k−1−i)B̂δ(i))

)

= −αk

k−1∑
i=0

(ĈÂ(k−1−i)B̂δ(i)). (30)

From Lemma 3.2, ĈÂ	B̂ = 0 for 	 ∈ {0, 1, 2, . . . ,n − 1}. There-
fore, the right-hand side of Equation (30) is equal to 0. Hence,
the trajectory in Equation (25) satisfies Equation (24) for k ∈
{1, 2, . . . ,n − 1}.

(2) When k= 0 i.e. (x0, z0) = α0B̂ and u(t) = −α0δ, from
Equations (26) and (27) we have[

x(t)
z(t)

]
= α0eÂtB̂ − α0eÂtB̂ = 0.

Clearly, Ĉ
[ x
z
] = 0. Therefore, (0, 0,−α0δ) is a trajectory in

�Ham.
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This completes the proof of Theorem 5.4. �

Since �Ham is a linear system, from Theorem 5.4, it is clear
that the trajectory in �Ham, corresponding to initial condition
(x0, z0) = ∑n−1

i=0 αiÂîB, can be characterised as

[
x(t)
z(t)

]
= −

[
X1
X2

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 δ δ(1) δ(2) · · · δ(n−2)

0 0 δ δ(1) · · · δ(n−3)

0 0 0 δ · · · δ(n−4)

...
...

...
... · · · ...

0 0 0 0 · · · δ

0 0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸




×

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α0
α1
α2
α3
...

αn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

α

, (31)

u(t) = − [δ δ(1) δ(2) · · · δ(n−1)]α, (32)

where X1 = [
B AB · · · An−1B

]
, X2 = [CT − (CA)T · · ·

(−1)n−1(CAn−1)T].
Note that, since (sE − H) is a unimodularmatrix, it is known

that the trajectories of �Ham are a linear combinations of δ

and its derivatives (see Dai, 1989). This conforms with our
observation manifested in Equations (31) and (32). Recall that
�Ham was obtained by interconnecting � with its adjoint �adj

(see Section 2). Therefore, it is expected that (x, u) from Equa-
tions (31) and (32) would satisfy the differential equation of �

in a distributional sense. We explicitly show this in Table 2. It is
important to note here that since we are dealing with solutions
defined over the half-line R+, the function that is zero for all
t ∈ R+ and the function defined as

x(t) =
{
x0 at t = 0−,
0 at t > 0,

are the same in the distributional sense. However, the distribu-
tional derivative of x(t) turns out to be−x0δ, and hence depends
on the initial condition x0. We utilise this fact crucially while
preparing Table 2. Now we prove Theorem 5.3.

Proof of Theorem 5.3:

(1) Note that (x0, z0) ∈ img col(I,K) means that (x0, z0) =∑n−1
k=0 αkÂkB̂ for αk ∈ R. Since � is a linear system, from

Table 2 it is clear that (x, u) satisfies the input-state equation
d
dt x = Ax + Bu of �. Further, the output equation of � is
y=Cx. Therefore, (x, u,Cx) is a trajectory in �.

(2) From Equation (31), we have

x(t) = −X1
α. (with 
 ∈ R
n×n

defined in Equation (31)) (33)

Recall thatK = KT ∈ R
n×n is a solution to the KYP LMI. Eval-

uating d
dt (x

TKx) and utilising the fact that d
dt x = Ax + Bu we

get

d
dt

(xTKx) = ẋTKx + xTKẋ

=
[
x
u

]T [ATK + KA KB − CT

BTK − C 0

] [
x
u

]
+ 2uTCx.

Since K = KT ∈ R
n×n is a solution of the KYP LMI, KB −

CT = 0. Further, y=Cx. Therefore,

d
dt

(xTKx) = xT(ATK + KA)x + 2uTy. (34)

Using Equation (33) in Equation (34), we get d
dt (x

TKx) =
αT
TXT

1 (ATK + KA)X1
α + 2uTy.
Recall from Equation (15), we have XT

1 (ATK + KA)X1 =
diag(0,T(n−1)(n−1)), where T(n−1)(n−1) ∈ R. Since the first
column and the last row of 
 contain only zeros, it is easy to
see that αT
Tdiag(0,T(n−1)(n−1))
α = 0. Thus xT(ATK +
KA)x = 0 in Equation (34) and we have

d
dt

(xTKx) = 2uTy.

Therefore, by Definition 5.2, the trajectories (x, u,Cx) are
lossless. �

Using Theorem 5.3, one can now formally assert that there
indeed are nontrivial (impulsive) lossless trajectories in�, albeit
there are no nontrivial slow lossless trajectories. These impul-
sive lossless trajectories can be foundwhenwe restrict the initial
conditions of�Ham to the subspaceimg col(I,K). For the reg-
ularly passive case, the lossless trajectories are exponential in
nature (see Rapisarda et al., 2013). However, for strongly pas-
sive SISO case, all lossless trajectories are impulsive in nature.
Hence, we call these trajectories fast lossless trajectories.

From Table 2, it is clear that there are many scenarios
when we encounter products of δ and its derivatives while
evaluating the power supply 2uTy or the stored energy xTKx.
Multiplication of δ and its derivatives has been defined in

Table 2. Table to show the validity of ( d
dt )x = Ax + Bu for different initial conditions.

x0 x(t) u(t) ( d
dt )x Ax + Bu

α0B 0 −α0δ −α0Bδ −α0Bδ
α1AB −α1Bδ −α1δ

(1) −α1Bδ(1) − α1ABδ −α1ABδ − α1Bδ(1)

α2A2B -α2(Bδ(1) + ABδ) -α2δ
(2) -α2(Bδ(2) + ABδ(1) + A2Bδ) −α2(ABδ(1) + A2Bδ + Bδ(2))

...
...

...
...

...
αn−1An−1B −αn−1

∑n−2
i=0 An−2−iBδ(i) −αn−1δ

(i) −αn−1
∑n−1

i=0 An−1−iBδ(i) −αn−1
∑n−1

i=0 An−1−iBδ(i)
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(Fuchssteiner, 1984; Trenn, 2009). Such multiplications are
defined in the literature using Fuchssteiner multiplication. How-
ever, physical interpretation of the products of δ and its deriva-
tives is an open question to the best of our knowledge. We do
not dwell into the physical interpretation of such products here.
However, for a special case of Theorem 5.3, it is possible to
rule out such products and therefore get a physical interpreta-
tion of lossless trajectories. We report it below as a corollary to
Theorem 5.3.

Corollary 5.5: Consider a strongly passive SISO system � with
a minimal i/s/o representation d

dt x = Ax + Bu, y = Cx, where
A ∈ R

n×n and B,CT ∈ R
n. Let the initial condition x0 of � be

from img(B), i.e. x0 = α0B for α0 ∈ R. Then, there exists a loss-
less trajectory (x, u, y) in � with initial condition x0. This lossless
trajectory is given by (0,−α0δ, 0).

We skip the proof of this corollary as it directly follows from
Statement 2 of Theorem 5.3. We compute explicitly the loss-
less trajectories of a parallel RC circuit in the example presented
next.

Example 5.6: Consider the strongly passive SISO system �

with transfer function G(s) = 1
s+1 as shown in Figure 5 (with

R = 1�,C= 1F). An i/s/o representation of the system is d
dt x =

−x + u and y= x, where x = vc. Using Theorem 3.1, we have

X1 = B = 1 and X2 = CT = 1.

Therefore, it is evident that the storage function for this circuit is
K = X2X−1

1 = 1. Note that subject to the initial condition z0 =
Kx0 = α0, the trajectories of the system � are u(t) = −δα0 for
t � 0 and x(t) = α0 for t= 0, and x(t) = 0 for t > 0.

From Corollary 5.5, we claim these trajectories are lossless.
We show the validity of Equation (23) for these trajectories
next.

• At t = 0−, we have

d
dt

(xTKx) = 2ẋTx = −2δα2
0 , and 2uTy = −2δα2

0 .

• At t> 0, we have

d
dt

(xTKx) = 0, and 2uTy = 0.

Thus we have d
dt (x

TKx) = 2uTy for all t � 0.

Figure 5. A parallel RC network with Z(s) = G(s) = R/(1 + sRC).

Physically, it means that for a parallel RC circuit of the form
given in the example with the capacitor initially charged to α0,
if one discharges the capacitor very fast, i.e. in the limit of a
sequence of exponential decays: instantaneously,9 then it is pos-
sible to extract the capacitor’s entire stored energy (α0Kα0 =
α2
0) through the port. This is the optimal discharging policy for

the parallel RC circuit in Figure 5. On the other hand, nonzero
dissipation at the resistorR is inevitable if one does not discharge
instantaneously. Similarly for the case of charging also, unlike
regularly passive systems, with the same amount of energy, i.e.
α2
0 the capacitor can be charged from rest toα0, as well, provided

charging is done instantaneously.

Remark 5.7: Consider a strongly passive SISO system� with a
minimal i/s/o representation d

dt x = Ax + Bu, y=Cx. Let K be
the unique storage function of �. Assume �Ham to be the sys-
tem formed by the interconnection of � and �adj. Note that,
corresponding to any initial condition x0 of�, the vector [ I

K ]x0
is an initial condition of �Ham. As given in Theorem 5.3, it fol-
lows that corresponding to such an initial condition in �Ham,
there exists a lossless trajectory in �. Although it seems restric-
tive to choose the initial conditions of �Ham from the subspace
img col(I,K) to obtain lossless trajectories in �, as far as the
system � is concerned, its initial conditions x0 are still free.
Hence, for every initial condition x0 of � there exists a lossless
trajectory in�. Theorem 5.3 and Theorem 5.4 above shows that
all these lossless trajectories are impulsive.

6. Concluding remarks

In this paper, we dealt with an extreme case of passivity, namely,
strongly passive SISO systems, where the system has no finite
spectral zeros. We first proposed a closed-form formula of a
solution to the singular KYP LMI corresponding to a strongly
passive SISO system (Theorem 3.1). We then showed that
this solution is unique (Theorem 3.1). In both these results
a property of the Markov parameters of strongly passive sys-
tems played a crucial role (Lemma 3.2). Note that, when the
feedthrough regularity condition is satisfied, i.e. D + DT > 0,
the Hamiltonian matrix provides the suitable n-dimensional
invariant subspaces needed for computation of K. Interestingly,
we have shown in this paper that, for strongly passive SISO sys-
tems, where the feedthrough regularity condition is violated,
a construction very much akin to this can be provided by a
suitable arrangement of the controllability and observability
matrices. In order to illustrate the main result Theorem 3.1, we
also constructed a family of third order strongly passive systems
and found the storage function for one member of this family
following the construction presented in Theorem 3.1.

We further showed that this unique solution of the singular
KYP LMI (storage function) of a strongly passive SISO system
is intrinsically linked with the lossless trajectories of the system.
We showed that, if the initial condition of the system formed
by interconnection of the primal system � and its adjoint�adj

(this interconnected system is denoted by �Ham), are restricted
to the subspace img col(I,K), we get lossless trajectories of�.
Note that, since these special initial conditions of the intercon-
nected system �Ham are of the form (x0, z0) ∈ img col(I,K),
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the projection of the subspaceimg col(I,K) on the primal sys-
tem’s state-space is full. Therefore, for every initial condition x0
in the primal system there exists a lossless trajectory. We char-
acterised these lossless trajectories and showed that strongly
passive SISO systems admit only fast lossless trajectories.

It is noteworthy that, all the main results in this paper are
not specific to only passivity; analogous results hold for other
notions of power supply as well, e.g. bounded-realness, LQR
problem and so on. In this paper, we do not delve deeper into
this analogy; this will be the topic of our immediate future work.
Also, the results presented in this paper are restricted to only
SISO systems. While the essential ideas presented in this paper
are suspected to hold for MIMO systems also, it remains to
show formally the corresponding results for MIMO systems.
We plan to present these extensions elsewhere in a future paper.
Interestingly, between the two extremities, i.e. strongly passive
systems and regularly passive systems, there exists a class of
passive systems that admit finite spectral zeros, but of cardinal-
ity less than double the system’s order. These passive systems,
too, do not admit the ARE/Hamiltonian matrix because they
do not satisfy the feedthrough regularity condition. Likewise,
finding solutions to singular KYP LMIs corresponding to these
passive systems is equally challenging. An extension of the con-
struction given in this paper is suspected to exist even for these
systems as well. This will be taken up as a topic of our future
research.

Notes

1. For a system, having equal number of inputs and outputs, with trans-
fer function G(s), the spectral zeros are defined to be the zeros of the
determinant of the rational function matrix G(s) + G(−s)T .

2. Optimisation algorithms begin with an initial guess of the unknown
variable and generate a sequence of improved estimates. Such algo-
rithms terminate when the ‘distance’ (gap) between these estimates are
within a specified tolerance.

3. Conventionally, the elements of any matrix A, i.e. amn are indexed as
m, n = 1, 2, . . . ,n. However, to match the indexing to the exponent of
A in the controllability matrix and Markov parameters (used in the
proof of the main results of this paper), we use 0 as the starting index.

4. In this paper, since we focus only on fast solutions, we do not dwell
on stability and therefore, we relax the non-negativity requirement of
xTKx, i.e. positive semi-definiteness of K: the link with stability can be
seen in (Willems & Trentelman, 1998, Theorem 6.3).

5. Let the characteristic polynomial ofH be denoted asX (s). A Lambda-
set � ⊂ σ(H), if it exists, is the set of roots of a polynomial p(s) ∈
R[s] such that X (s) = p(s)p(−s) with p(s) and p(−s) coprime (sets
are counted with multiplicity).

6. A matrix pencil (sP − Q) is called regular if det(sP − Q) �= 0.
7. Relative degree of a rational function n(s)/d(s) is defined as

(deg [d(s)] − deg [n(s)]).
8. The unit step function s(t) is defined as s(t) = 1 for t � 0 and s(t) =

0 for t < 0.
9. Instantaneous discharge of capacitor C (by a controller at the port,

which is, in this case ‘short’) can be viewed as a limit of a sequence
of exponentially decaying extractions, with increasing magnitudes of
decay rates. This paper focusses on the limiting case of a sequence
of exponential trajectories: in the limit we have fast trajectories.
These fast trajectories being lossless is the key inference from our
analysis.
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