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Abstract—This paper deals with minimum cost constrained
input selection (minCCIS) for state space structured systems.
Our goal is to optimally select an input set from the given inputs
such that the system is structurally controllable when the set
of states that each input can influence is pre-specified and each
input has a cost associated with it. This problem is known to be
NP-hard. Firstly, we give a flow-network based novel necessary
and sufficient graph theoretic condition for checking structural
controllability. Using this condition we propose a polynomial
reduction of the problem to a known NP-hard problem: the
minimum-cost fixed-flow problem (MCFF). Subsequently, we
show that approximation schemes of MCFF directly apply to
the minCCIS problem. Using the special structure of the flow-
network constructed for the structured system, we formulate a
polynomial time approximation algorithm based on minimum
weight bipartite matching problem and a greedy scheme for
solving the MCFF problem on the system flow-network. The
proposed algorithm gives a so-called ∆-approximate solution to
MCFF, where ∆ denotes the maximum in-degree of input vertices
in the flow-network of the structured system.

Index Terms—Structural controllability, Minimum input struc-
tural controllability, Maximum flow problem, Minimum-cost
fixed-flow problem, Approximation algorithms.

1. INTRODUCTION

We consider a control system ẋ = Ax+Bu, where A is the
state matrix and B is the input matrix. We assume that the exact
entries of A and B are not known, rather only the location
of the zero entries is known. Further, each input has a cost
associated with it. Our aim in this paper is to choose a subset
of inputs that keeps the system controllable while minimizing
the cost.

A. Problem Formulation
Let Ā, B̄ be matrices of dimensions n×n, n×m respectively

whose entries are either ? or 0. We say that Ā and B̄
structurally represent state and input matrices of a control
system ẋ = Ax+Bu where A and B satisfy:

Ai j = 0 whenever Āi j = 0, and
Bi j = 0 whenever B̄i j = 0. (1)

We refer to matrices A and B that satisfy (1) as a numerical
realization of Ā and B̄ respectively and (Ā, B̄) as a structured
system. Thus (Ā, B̄) represents a class of control systems
corresponding to all possible numerical realizations. The key
idea in structural controllability is to determine controllability
of the class of control systems represented by (Ā, B̄) [1]. We
have the following definition.
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Definition 1.1. The structured system (Ā, B̄) is said to be
structurally controllable if there exists at least one numerical
realization (A,B) such that (A,B) is controllable.

Structural controllability can be verified in polynomial
time [2]. In this paper, we first propose an alternate flow-
network based condition to establish structural controllability.
Subsequently, for structurally controllable systems, we develop
algorithms based on this flow-network to find optimal solutions
to the optimization problem considered below. Let (Ā, B̄) be
structurally controllable. ConsiderW ⊆{1, . . . ,m} and let B̄W
be the restriction of B̄ to columns only in W . Furthermore,
let K := {W : (Ā, B̄W ) is structurally controllable}. The set
K is non-empty, since for W = {1, . . . ,m}, (Ā, B̄W ) = (Ā, B̄)
is structurally controllable. Given a structurally controllable
structured system (Ā, B̄) and non-negative cost vector pu,
where entry pu( j), j = 1,2, . . . ,m, indicates the cost of ac-
tuating the jth input, the minimum cost constrained input
selection (minCCIS) problem consists of finding a minimum
cost input set such that the system is structurally controllable.
Specifically, we wish to solve the following optimization: for
any I ∈K, define p(I) = ∑ j∈I pu( j).

Problem 1.2. Given a structurally controllable structured
system (Ā, B̄) and pu( j), j = 1,2, . . . ,m, find

I? ∈ arg min
I∈K

p(I),

where K := {W : (Ā, B̄W ) is structurally controllable}.

Let p? := p(I?). Thus, p? denotes the minimum cost for
constrained input selection that ensures structural controlla-
bility. If costs are non-zero and uniform, then Problem 1.2
is referred as minimum constrained input selection (minCIS)
problem. In this paper, we formulate minCCIS as an instance
of minimum-cost fixed-flow problem (MCFF), where the ob-
jective is to minimize the cost associated with the flow.

Note that in recent time structural controllability has at-
tained significant interest on account of its applicability in di-
verse areas that include biological systems, electronic circuits,
transportation, World Wide Web, social communication, power
grids and robotics. For example, in a gene regulatory network
the aim is to control the dynamics of cellular processes [3].
We refer to [3], [4], [5] and references therein to note the
applicability of these concepts to several real networks.

B. Related Contribution
Structural controllability is a well studied area since its

introduction in [2]. The key motivation then for studying
system properties using their structural pattern instead of their
exact numerical realization was that in many practical cases



the exact values of the parameters in the system description are
not accurately known and controllability if lost, is often over
a “thin set”. Recently this area has regained interest because
of its wide range of applications including social networks,
biological networks, power grids and robotics. For instance,
the problem of identifying the minimum number of inputs
required to achieve structural controllability is considered and
maximum matching condition is given in [6]. The sparsest
input design problem when the input matrix is unconstrained
is addressed for the single input case in [7] and for the multi-
input case in [8], [9], [10]. For a detailed reading on various
research done in this area, see [11] and references therein.

This paper deals with minimum cost input selection for a
given structured system when the input matrix and the cost of
each input is specified. The NP-hardness of this problem when
the costs are non-zero and uniform is proved in [12]. However,
for a subclass of systems where the state bipartite graph (see
Section 2 for more details) has a perfect matching and the
inputs are ‘dedicated’ (i.e., a diagonal input matrix) with
uniform costs, the minCCIS problem is in P and this case is
considered in [12]. Similarly, if the state digraph (see Section 2
for more details) is ‘irreducible’,1 then the minCCIS problem
is no longer NP-hard and this case is considered in [13].
However, minimum constrained input selection problems are
not addressed in their full generality. Reducing these problems
to the standard NP-hard problems with good approximation
schemes was posed as an open problem in [12]. In this
paper, we reduce the minCCIS problem to the minimum-
cost fixed-flow (MCFF) problem and present a polynomial
time approximation algorithm for approximating the MCFF
problem on the system flow-network. Note that in this work
we do not impose any assumption on the structured system
and the problem is considered in its full generality.

C. Summary of Contribution and Organization of the Paper
This paper develops an algorithm for finding a minimum (in

the sense of cost) input set for structural controllability when
the sparsity pattern of the input matrix B is specified.

Our key contributions are as follows:
• We formulate a new graph theoretic necessary and sufficient
condition for checking structural controllability using flow-
networks (see Theorem 3.3).
• We reduce the minimum cost constrained input selection
(minCCIS) problem to an MCFF problem in polynomial time.
• We prove that an optimal solution to the MCFF problem
corresponds to an optimal solution to the minCCIS problem
(see Theorem 4.4).
• We prove that approximation schemes for MCFF apply to
the minCCIS problem (see Theorem 4.5).
• We provide a polynomial time ∆-approximation algorithm2

to solve the minCCIS problem using the MCFF problem (see
Theorem 4.8).

The organization of this paper is as follows: in Section 2,
we explain structural controllability using concepts from graph
theory. In Section 3, we discuss a relation between structural

1A digraph is said to be irreducible if there exists a directed path between
every pair of nodes.

2A ∆-approximation algorithm is an algorithm whose solution value is at
most ∆ times that of the actual optimum value.

Ā =

[
? ? 0 0
0 ? 0 0
? ? 0 ?
0 0 0 ?

]
, B̄ =

[
? 0 ?
0 ? ?
? ? 0
0 0 ?

]
Figure 1: System (Ā, B̄)
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Figure 2: D(Ā)
controllability and maximum flow problem. Using this, a new
graph theoretic condition for checking structural controllability
is also given. In Section 4, formulation of minCCIS as a
flow problem is given. Using this formulation we obtain a
∆-approximate solution to the minCCIS problem. Finally, in
Section 5 we give the concluding remarks.

Before discussing the minimum cost flow formulation of
Problem 1.2, we explain structural controllability using con-
cepts of graph theory in the next section.

2. REVIEW OF ESSENTIAL GRAPH THEORETIC RESULTS
FOR STRUCTURAL CONTROLLABILITY

In this section we briefly describe some existing graph
theoretic concepts associated with structural controllability for
the sake of completeness (see [11] for details).

The key idea behind considering graph for studying struc-
tural controllability is because we can represent the influences
of states and inputs on each state through a directed graph.
We first construct the state digraph D(Ā) with vertex set
VX = {x1, . . . ,xn} and edge set EX , where (x j,xi) ∈ EX if
Āi j 6= 0. Presence of an edge (x j,xi) in D(Ā) indicates that
state x j of the system influences state xi. To capture the
effect of inputs, we construct the system digraph D(Ā, B̄)
with vertex set VX ∪VU and edge set EX ∪ EU . An edge
(u j,xi) ∈ EU if B̄i, j 6= 0 and we say that input u j influences
state xi. Construction of D(Ā) and D(Ā, B̄) is illustrated for
a structured system shown in Figure 1 in Figures 2 and 3b
respectively. In a structured system, a state xi is said to be
inaccessible if it is not reachable3 from any input vertex. To
check if all states are accessible, we first generate a directed
acyclic graph (DAG) associated with D(Ā) by condensing
each strongly connected component4 (SCC) of the graph to
a supernode. Thus in this DAG, vertex set comprises of all
SCCs. A directed edge exists between two nodes of DAG
if there exists a directed edge connecting vertices in the
respective SCCs in the original digraph. Using this DAG, we
have a following definition characterizing SCCs of D(Ā).
Definition 2.1. An SCC is said to be non-top linked if it has
no incoming edges to its vertices from the vertices of another
SCC.

While accessibility of all states is necessary for structural
controllability, it is not sufficient. In addition to accessibility,
we must also ensure that D(Ā, B̄) has no dilation5. Lin proved
the sufficiency of these conditions through the following result.

3A vertex vk is said to be reachable from a vertex v1 if there exists a
sequence of directed edges with all vertices distinct from v1 to vk .

4A digraph is said to be strongly connected if for each ordered pair of
vertices (v1,vk) there exists an elementary path from v1 to vk . A maximal
strongly connected subgraph of a digraph, called a strongly connected com-
ponent (SCC), is a subgraph that is strongly connected and is not properly
contained in any other subgraph that is strongly connected.

5The digraph D(Ā, B̄) is said to have dilation if there exists a set of nodes
S⊂VX whose neighbourhood node set denoted by T (S) (where node xi ∈ T (S),
if there exists a directed edge from xi to a node in S) has fewer nodes than S.



Proposition 2.2. [2, pp.207] The structured system (Ā, B̄) is
structurally controllable if and only if the associated digraph
D(Ā, B̄) has no inaccessible states and has no dilations.

Our main result requires Proposition 2.3 which needs the
following background. Given a bipartite graph GB with vertex
set V ∪ Ṽ satisfying V ∩ Ṽ = φ and edge set E satisfying
E ⊆V ×Ṽ , a matching M is a collection of edges M ⊆ E such
that no two edges in M share the same vertex. That is, for any
(i, j) and (u,v) ∈M, we have i 6= u and j 6= v, where i,u ∈V
and j,v∈ Ṽ . A perfect matching is a matching M, where |M|=
min(|V |, |Ṽ |). Given GB and a weight function w from the set
E to the set of non-negative real numbers R+, a minimum
weight perfect matching is a perfect matching M such that
∑e∈M w(e) 6 ∑e∈M′ w(e), where M′ is any perfect matching
of GB [14]. Corresponding to the state digraph D(Ā), we
associate the bipartite graph B(Ā) with vertex set VX ∪VX ′ and
edge set EX , where VX = {x1,x2, . . . ,xn}, VX ′ = {x′1,x′2, . . . ,x′n}
and (xi,x′j) ∈ EX ⇔ (xi,x j) ∈ EX . Similarly, corresponding to
the system digraph D(Ā, B̄), we associate the bipartite graph
B(Ā, B̄), with vertex set (VX ∪VU )∪VX ′ and edge set EX ∪EU .
Here, VU = {u1,u2, . . . ,um} and (ui,x′j) ∈ EU ⇔ (ui,x j) ∈ EU .
Note that D(Ā),D(Ā, B̄) are digraphs, but B(Ā),B(Ā, B̄) are
undirected graphs. Now we give the following result.

Proposition 2.3. [10, Theorem 2] Digraph D(Ā, B̄) has no
dilations if and only if B(Ā, B̄) has a perfect matching.

Using the two graph theoretic conditions explained in
this section, checking structural controllability of a system
has polynomial complexity [14]. However, these conditions
do not give ample insight about solving minCCIS problem.
In the next section, we give an alternate graph theoretical
condition for checking structural controllability using flow-
networks. This condition will be subsequently used to provide
an approximation algorithm for the minCCIS problem.

3. FLOW-NETWORK REFORMULATION OF STRUCTURAL
CONTROLLABILITY

In this section, we establish a relation between the structural
controllability and the maximum flow problem [15]. In the
context of structured systems, flow-networks are used previ-
ously. For instance, a minimum cost network flow problem
is used in [16] for finding an elementary i/o matching and a
primal-dual algorithm is used in [17] for finding structure at
infinity. Given a flow-network F with vertex set V , directed
edge set E, source-sink pair s, t and non-negative capacities
b(e) for every e ∈ E, we define a flow vector f : E→ R+.

Definition 3.1. In a flow-network F with vertex and edge sets
V and E respectively, a source-sink pair s, t and non-negative
edge capacities b(e), a flow vector f is said to be feasible if

(i) for every e ∈ E, f (e)6 b(e), and
(ii) for every v∈V \{s, t}, ∑e=(u,v)∈E f (e)=∑e′=(v,w)∈E f (e′).

The requirements (i) and (ii) in Definition 3.1 are called ca-
pacity constraint and flow conservation constraint respectively.
Capacity constraint ensures that the flow through each edge is
less than the edge capacity. The flow conservation constraint
ensures that at every node, except possibly the source and the
sink nodes, the flow leaving a node equals the flow entering

Algorithm 3.1 Pseudo-code for constructing the flow-network
of a structured system (Ā, B̄)

Input: Structured matrices Ā∈ {0,?}n×n and B̄∈ {0,?}n×m

Output: Flow-network F(Ā, B̄), source, sink nodes: s, t and
capacity vector b

1: Find non-top linked SCCs of D(Ā), N := {Ni}q
i=1

2: Construct flow-network F(Ā, B̄) with vertex set VF and
edge set EF as follows:

3: VF ←
{
{s, t}∪{Ni}q

i=1∪{x′k,xk}n
k=1∪{u′j,u j}m

j=1

}

4: e ∈ EF ←



(s,Ni), for i ∈ {1,2, . . . ,q},
(s,x′k), for k ∈ {1,2, . . . ,n},
(Ni,u′j), B̄r, j = ? and xr ∈Ni,

(x′k,xr), Ākr 6= 0,
(x′k,u j), B̄k j 6= 0,
(u j,u′j), for j ∈ {1,2, . . . ,m},
(u′j, t), for j ∈ {1,2, . . . ,m},
(xk, t), for k ∈ {1,2, . . . ,n}.

5: b(e)←

{
n+1, for e = (u′j, t), j ∈ {1,2, . . . ,m},
1, otherwise.

the node. We define the flow from the source to the sink under
a feasible flow vector f as

ϕ f = ∑
e=(s,v)∈E

f (e). (2)

The objective of a maximum flow problem is to find a feasible
flow vector f ? such that ϕ f ? > ϕ f for any feasible flow vector
f . It is a well studied problem and there exist many algorithms
that find the maximum flow f ? in time polynomial in the
number of nodes and edges of the flow-network. For example,
the algorithm in [18] computes f ? in O(|V ||E|). The case of
zero flow is ruled out from the rest of the paper.

In order to establish a relation between these two problems,
i.e., maximum flow and structural controllability, we first
construct the flow-network F(Ā, B̄) corresponding to the given
structured system (Ā, B̄). The pseudo-code for constructing the
flow-network F(Ā, B̄) is presented in Algorithm 3.1. Given
(Ā, B̄), we first find the digraph D(Ā), the bipartite graph
B(Ā, B̄) and the non-top linked SCCs in D(Ā), N = {Ni}q

i=1
(see Step 1). In order to avoid new symbols, with some abuse
of notation we denote the condensed version of non-top linked
SCCs using the same notation, {Ni}q

i=1. Then we define the
vertex set VF (see Step 3), edge set EF (see Step 4), source-
sink pair s, t and capacity vector b (see Step 5) as shown in
the algorithm6. The flow-network F(Ā, B̄) of a system (Ā, B̄)
given in Figure 3a is shown in Figure 3b. Note that in F(Ā, B̄),
Block-1 corresponds to the non-top linked SCCs in D(Ā) and
Block-2 is the directed version of B(Ā, B̄). The flows entering
Block-1 and Block-2 are defined as ∑e∈{(s,Ni)}

q
i=1

f (e) and
∑e∈{(s,x′k)}

n
k=1

f (e) respectively. These flows are later used in
the sequel to provide a necessary and sufficient condition for

6Note that even though VF and EF depend on (Ā, B̄), we are not making
the dependence explicit in our notations for brevity. This is because (VF ,EF )
can be obtained unambiguously given the context.
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Figure 3: Illustrative example showing system digraph D(Ā, B̄)
and flow-network F(Ā, B̄) for a structured system (Ā, B̄).

structural controllability of (Ā, B̄). A flow network with all
integer capacities satisfies the integrality theorem, which is as
follows.

Proposition 3.2. [19] If all capacities in a flow-network are
integers, then there exists an integer maximum flow solution.

The following result relates structural controllability and
maximum flow problems.

Theorem 3.3. Consider a structured system (Ā, B̄) with n
states and q non-top linked SCCs in D(Ā). Then, (Ā, B̄) is
structurally controllable if and only if the maximum flow ϕ f ?

in the flow-network F(Ā, B̄) is equal to q+n.

Proof. Recall the integrality theorem given in Proposition 3.2.
Since b(e) ∈ Z+ without loss of generality, we assume that
the optimal flow vector f ? is an integer valued function from
the edge set EF .
Only-if part: We assume that (Ā, B̄) is structurally controllable
and show that the maximum flow is equal to q+n, i.e., ϕ f ? =
q+n. For ease of understanding, we first outline the key steps:
Step (i) We use structural controllability to deduce a perfect
matching in B(Ā, B̄) and accessibility of all xi’s in D(Ā, B̄).
Step (ii) We construct a flow vector f with flow ϕ f = q+n.
Step (iii) We then show f satisfies the capacity constraint.
Step (iv) We finally prove that the flow is conserved at all
nodes except source s and sink t.
Step (i): Assume (Ā, B̄) is structurally controllable. Then by
Propositions 2.2 and 2.3, all the states are accessible and
there exists a perfect matching in B(Ā, B̄). All states being
accessible implies that all non-top linked SCCs are connected
to some input vertex. Denote by u(Ni) an input that connects
to some state in a non-top linked SCC Ni. There can be many
inputs connecting to a vertex in Ni, we choose any one of them
as u(Ni). Furthermore, since B(Ā, B̄) has a perfect matching,
say M, for every vertex x′k there exists a unique yk ∈VX ∪VU
such that (x′k,yk)∈M. Now, we construct a feasible flow vector
f for the flow-network F(Ā, B̄) such that ϕ f = q+ n. This
would prove the required as ϕ f ? > ϕ f . However, since the
maximum outflow through source is q+n, ϕ f ? = ϕ f .
Step (ii): Construct a flow vector f in F(Ā, B̄) as follows:
a. f ((s,v)) = 1 for every v ∈ {N1, . . . ,Nq}∪{x′1, . . . ,x′n},
b. f ((Ni,u′(Ni))) = 1 for every i ∈ {1, . . . ,q},
c. f ((x′k,yk)) = 1, for every k ∈ {1, . . . ,n},

d. if yi ∈VU , then f ((yi,y′i)) = 1, else f (yi, t) = 1, and
e. f ((u′j, t)) = |{i : u j = u(Ni)}|+ f ((u j,u′j)), where |D| de-
notes the cardinality of set D.

From Step (ii-a) and equation (2), it follows that ϕ f = q+n.
Step (iii): Thus, it suffices to show that f is feasible. First,
we show that f satisfies the capacity constraint. Note from
Steps (ii-a) to (ii-d), each edge except that emanating from
nodes u′j’s has unit flow. Thus, for these edges f (e) = b(e) =
1. Now we show that the capacity constraint is satisfied for
the edges (u′j, t) as flow through all other edges is at most
one. Edges (u′j, t) considered in construction Step (ii-e) are
shown to be in EF . By construction of F(Ā, B̄), each of these
edges has capacity n+ 1. Since q 6 n and since u′j can have
unit capacity incoming edges only from u j and N1, . . . ,Nq,
the total flow coming in u′j is bounded above by n+ 1. This
concludes that f satisfies the capacity constraint.
Step (iv): To see that f satisfies the flow conservation con-
straint, note that the flow being pushed in Step (ii-a) is pushed
out in Steps (ii-b) and (ii-c), subsequently this flow is further
pushed to sink t in Steps (ii-d) and (ii-e). Thus, f is feasible.
If part: Here we assume ϕ f ? = q+n and show that the system
(Ā, B̄) is structurally controllable by proving that both the
accessibility and no-dilation conditions are satisfied.

Assume ϕ f ? = q + n in the flow-network F(Ā, B̄). Since
there are exactly q+n edges, each with capacity one, emanat-
ing from the source vertex s, each of these edges should carry
exactly one unit flow. Since f ? is a feasible flow vector, it
satisfies flow conservation at each node in VF \{s, t}. Specif-
ically, the flow conservation is satisfied at nodes N1, . . . ,Nq
and x′1, . . . ,x

′
n. Thus, for every Ni, there exist u′j such that

(Ni,u′j)∈ EF . Thus, all non-top linked SCCs are connected to
atleast one input. This ensures that all states are accessible.

Furthermore, on account of flow conservation at nodes
x′1, . . . ,x

′
n and flow integrality, there exists yk ∈ VX ∪VU such

that f ?((x′k,yk))= 1. Since the capacity of outgoing edges from
each node in VX ∪VU is one, it follows that yk1 6= yk2 unless
k1 = k2. Now, note that the set {(x′k,yk) : k = 1, . . . ,n} is a
matching in B(Ā, B̄). Since there exists a perfect matching in
B(Ā, B̄), there are no dilations in D(Ā, B̄). This proves the
required using Propositions 2.2 and 2.3.

The following result about certain subsets of inputs also
yielding structural controllability follows from Theorem 3.3 by
observing that the maximum flow through F(Ā, B̄W f ) = q+n.

Corollary 3.4. Consider F(Ā, B̄) and any feasible flow vector
f such that ϕ f = q+ n and define W f = { j : f (u′j, t) > 0}.
Then, (Ā, B̄W f ) is structurally controllable.

Remark 3.5. The above result allows for obtaining a subset
of all possible inputs that are enough to retain controllability
of the structured system from the obtained flow vector. Con-
versely, the structural controllability of the system with a given
subset of inputs, say W , can be checked using Theorem 3.3
for any flow-network F(Ā, B̄W ).

Constructing the flow-network F(Ā, B̄) corresponding to a
structured system (Ā, B̄) has O(n2) complexity7 and checking

7Finding SCCs has O(n2) complexity and other constructions in Algo-
rithm 3.1 are of linear complexity [14].



structural controllability using the maximum flow formulation
has O(n3) complexity [18], where n denotes the number of
states in the system. However, using the two conditions from
the literature (i.e., accessibility and no-dilation), structural
controllability can be checked with complexity O(n2.5). Even
though complexity is slightly higher in our case, the flow-
network constructed above is useful in two ways: (a) for
checking if a given system is structurally controllable and (b)
to optimize the input set for solving the minCCIS problem. In
order to use F(Ā, B̄) to optimize the number of inputs for the
minCCIS problem, we augment the maximum flow problem
with some additional features, called the minimum-cost fixed-
flow problem. This is elaborated in Section 4.

4. APPROXIMATING THE MINCCIS PROBLEM

In this section, we augment the flow-network with a cost
for edge usage in order to solve the minCCIS problem.
Specifically, we show that solving an MCFF problem (see for
example [20]) on a flow-network we design is equivalent to
solving the minCCIS problem.

A. Minimum Controllability Problem as MCFF
We first describe the MCFF problem for completeness and

subsequently demonstrate its utility for solving the minCCIS
problem. A MCFF problem takes as input a directed flow-
network F(V,E), with vertex set V , edge set E, source-sink
pair s, t, non-negative capacities b(e), non-negative costs c(e)
for e ∈ E and flow requirement ϕmin. Then, the solution to
MCFF(ϕmin) is a feasible flow vector f ?M such that ϕ f ?M

> ϕmin
and ∑e∈E: f ?M(e)>0 c(e)6 ∑e∈E: f (e)>0 c(e), for any feasible flow
vector f . Thus, MCFF(ϕmin) solves the following constrained
optimization:

Problem 4.1. Minimize: ∑
e∈E: f (e)>0

c(e)

Subject to: (1) f is a feasible flow vector, and
(2) ϕ f > ϕmin.

Any feasible solution to Problem 4.1 is referred to as a
feasible solution to MCFF(ϕmin). Note that MCFF(ϕmin) has
a feasible solution if and only if ϕ f ? > ϕmin.

To establish a relation between the MCFF and the minCCIS
problems, we formulate minCCIS as an instance of MCFF
such that an optimal solution f ?M to MCFF corresponds to
an optimal solution to minCCIS. Given a structured system
(Ā, B̄) and a cost vector pu, such that each entry pu( j), for
j = 1,2, . . . ,m, corresponds to the cost associated with each
input, we consider flow-network F(Ā, B̄) augmented with cost
vector c (referred to as F(Ā, B̄,c) in the sequel) as follows:

c(e)←

{
pu( j), for e = (u′j, t), j ∈ {1,2, . . . ,m},
0, otherwise.

(3)

On this flow-network, we solve MCFF(q+ n). We have the
following preliminary result.

Lemma 4.2. A structured system (Ā, B̄) is structurally con-
trollable if and only if MCFF(q+ n) has a feasible solution
on F(Ā, B̄,c).
Proof. Only-if part: Here we will prove that if (Ā, B̄) is
structurally controllable, then MCFF(q + n) has a feasible

solution on F(Ā, B̄,c). By Theorem 3.3 we know that if (Ā, B̄)
is structurally controllable, then the maximum flow through
F(Ā, B̄) equals q+n. Thus there exists a feasible flow vector f
of F(Ā, B̄,c) such that ϕ f > q+n. Thus f is indeed a feasible
solution to MCFF(q+n). This completes the only-if part.
If part: Here we will prove that if there exists a feasible solu-
tion to MCFF(q+n) on F(Ā, B̄,c), then (Ā, B̄) is structurally
controllable. A feasible solution to MCFF(q+n) is a feasible
flow vector f such that ϕ f > q + n. Since ϕ f > q + n, the
maximum flow vector f ? in F(Ā, B̄,c) gives ϕ?

f > q+n. Thus
by Theorem 3.3, the structured system (Ā, B̄) is structurally
controllable. This completes the proof.

Henceforth, we consider a structurally controllable system
(Ā, B̄) with n states and q number of non-top linked SCCs in
D(Ā). Let f be any feasible solution to MCFF(q+n). Define,

I f := { j : f (u′j, t)> 0}, and (4)

c f := ∑
e: f (e)>0

c(e). (5)

Also define c? = c f ?M
as the optimal cost for MCFF(q+n) on

F(Ā, B̄,c). Using (4) and (5), we now describe how a solution
to minCCIS can be obtained from a feasible solution f of
MCFF(q+n). For a given f , if j ∈ I f , then we propose to use
input u j. Following result holds.

Lemma 4.3. If f is a feasible solution to MCFF(q + n)
on F(Ā, B̄,c), then (Ā, B̄I f ) is structurally controllable and
p(I f ) = c f .

Proof. Since f is a feasible solution to MCFF(q + n) on
F(Ā, B̄,c), f is also a feasible solution to MCFF(q+n) on the
flow-network F(Ā, B̄I f ). Now by Lemma 4.2 the structured
system (Ā, B̄I f ) is structurally controllable. Finally, p(I f )= c f
follows from equations (4), (5) and the cost definition given
by equation (3).

Now we prove the equivalence between minCCIS and
MCFF(q+n) through the following theorem.

Theorem 4.4. Consider a structured system (Ā, B̄) with n
states and q non-top linked SCCs in D(Ā). The flow-network
F(Ā, B̄,c) can be constructed in O(n2) computations. Further,
for an optimal flow vector f ?M of MCFF(q+n) on F(Ā, B̄,c),
I f ?M

= { j : f ?M((u′j, t)> 0)} is an optimal solution to minCCIS.
Moreover, the optimal cost of minCCIS equals the optimum
cost of MCFF(q+n), i.e., p? = c?.

Proof. Constructing the flow-network F(Ā, B̄) has complexity
O(n2). In addition to this we define a cost vector c and flow
requirement ϕmin to construct F(Ā, B̄,c). Since these are each
of linear complexity, we conclude that complexity involved in
constructing the flow-network F(Ā, B̄,c) is O(n2).

We now prove that p? = c?. Let f ?M be an optimal flow
vector for MCFF(q+n) on F(Ā, B̄,c). Note that by definition
c f ?M

= c?, and by Lemma 4.3 c? = p(I f ?M
). Now we show

that I f ?M
is an optimal solution to minCCIS. First, we argue

that I f ?M
is a feasible solution to minCCIS, i.e. I f ?M

∈ K.
It follows from Lemma 4.3 that the system (Ā, B̄I f?M

) is
structurally controllable. Thus, I f ?M

∈ K. Suppose I f ?M
is not

an optimal solution to minCCIS. Then there exists I ∈K such



that p(I) < p(I f ?M
). Consider the flow-network F(Ā, B̄I).

By Theorem 3.3, there exists a feasible flow vector f in
F(Ā, B̄I) such that ϕ f > q+n. Since F(Ā, B̄I) is a sub-graph
of F(Ā, B̄), f is also a feasible flow vector in F(Ā, B̄) with
ϕ f > q+ n. We note that I f ⊆ I . Thus, from Lemma 4.3,
c f 6 p(I) < p(I f ?M

) = c?. This contradicts optimality of f ?M .
Thus, I f ?M

is an optimal solution to minCCIS. Finally, p? = c?

follows from Lemma 4.3 and optimality of I f ?M
for minCCIS.

This completes the proof.

Thus given an instance of minCCIS, we construct F(Ā, B̄,c)
and reduce8 it to an MCFF as discussed. After solving
MCFF(q + n), we get an optimal flow f ?M . From f ?M , we
get back the corresponding optimal solution to minCCIS,
I? = I f ?M

= { j : f ?M(u′j, t)> 0}, i.e., the minimum cost incur-
ring set of inputs selected under f ?M . Unfortunately, MCFF
is also a known NP-hard problem. However, it is a well
studied problem as it relates to many fields including job-shop
scheduling, transportation networks and computer networks
[21]. For MCFF, approximation algorithms in addition to many
good heuristics exist (see [22] and references therein). One
can potentially use these existing algorithms to obtain an
approximate solution to minCCIS. However to do this an
approximate solution to the MCFF problem must yield an
approximate solution to the minCCIS problem. We establish
this next.

Theorem 4.5. Let ε > 1 and let f be any feasible solution
to MCFF(q+ n) on F(Ā, B̄,c). Suppose c? and p? are the
optimum costs of MCFF(q + n) and minCCIS respectively.
Then c f 6 ε c? implies p(I f )6 ε p?.

Proof. The result follows from Lemma 4.3 and Theorem 4.4.
However, for completeness we explain the proof. Since f is a
feasible solution to MCFF(q+n) on F(Ā, B̄,c), by Lemma 4.3,
p(I f ) = c f . Also, by Theorem 4.4, p? = c?. Since c f 6 ε c?,
we get p(I f )6 ε c? = ε p?.

Note that a feasible solution f that satisfies the condition
in Theorem 4.5 is called an ε-optimal solution or an ε-
approximate solution. In the next section, we obtain an ap-
proximation algorithm for MCFF(q+n) on F(Ā, B̄,c).

B. An Approximation Algorithm for MCFF on F(Ā, B̄,c)
MCFF over general graphs are shown to be hard to ap-

proximate [20], [23]. The best known algorithm gives a ϕmin-
approximate solution to MCFF(ϕmin) [20]. Note that in our
case ϕmin = q+n and thus the approximation factor is linear in
n, which is not desirable. Next we propose a polynomial com-
plexity ∆-approximate solution to MCFF(q+n) on F(Ā, B̄,c),
where ∆ is the maximum in-degree of nodes u′j’s in F(Ā, B̄,c).
Note that 1 < ∆ 6 q+1.

Problem 4.6. Consider a flow-network F(Ā, B̄,c) and define
the following Linear Program (LP):
Minimize: ∑

e∈EF

c(e) f (e)

Subject to: (1) f is a feasible flow vector, and
(2) ϕ f > q+n.

8A polynomial reduction of Problem A into Problem B helps in obtaining
a solution to Problem A from a solution to Problem B in number of
computations that is at most polynomial in the size of the input data.

Problem 4.6 is a well studied flow problem, the minimum
cost flow problem (MCFP) [15]. The key difference between
the MCFF problem and the MCFP is that in the former, the
cost incurred does not depend on the flow through an edge,
rather the cost depends only on whether the edge is used;
however in the latter, the cost increases linearly with the flow
through the edge. MCFP can be solved in polynomial time
[24]. Let the value of the objective function in Problem 4.6 for
a feasible flow vector be C f and let COPT denote the minimum
value of the objective function of Problem 4.6. Also, let f ?LP
be the corresponding optimal flow vector, i.e. COPT 6 C f for
any feasible solution f of the LP. The following preliminary
result holds as a direct consequence of [15, Theorem 9.8].

Lemma 4.7. Let f ?LP be an optimal flow vector for Prob-
lem 4.6. Then, for every e ∈ EF , f ?LP(e) ∈ Z.

In Theorem 4.8, we obtain a relation between the cost of the
inputs selected under f ?LP and the optimal cost of MCFF(q+n).

Theorem 4.8. The flow vector f ?LP is a ∆-approximate solution
of MCFF(q+n), i.e. c f ?LP

6 ∆c?, where ∆ is the maximum in-
degree for nodes in {u′1, . . . ,u′m}.

Proof. Let COPT be the optimal value of the LP and given c?

is the optimal cost of MCFF(q+ n). Note that b(e) = 1 for
every e ∈ EF \{(u′j, t)}m

j=1. Thus, the total flow carried by any
e ∈ EF is at most ∆ under any feasible flow vector f . Hence,
we have the following:

COPT = ∑
e

f ?LP(e)c(e)6 ∑
e

f ?M(e)c(e), (6)

= ∑
e: f ?M(e)>0

f ?M(e)c(e)6 ∆ ∑
e: f ?M(e)>0

c(e) = ∆c?. (7)

The inequality in equation (6) follows as f ?M is a feasible
solution to the LP. The inequality in equation (7) follows as
f (e) 6 ∆ for every edge e and every feasible flow vector f .
Thus, COPT 6 ∆c?. The cost of the inputs selected under f ?LP

c f ?LP
= ∑

e: f ?LP(e)>0
c(e)6 ∑

e: f ?LP(e)>0
f ?LP(e)c(e) =COPT. (8)

The inequality in equation (8) follows as if f ?LP(e) > 0, then
f ?LP(e)> 1 by Lemma 4.7. Thus, COPT 6 ∆c? and c f ?LP

6COPT.
Thus by combining both the inequalities we get, c f ?LP

6COPT 6
∆c?. This completes the proof.

Remark 4.9. Note that the number of non-top linked SCCs is
atmost n. Thus, in the worst case ∆ = O(n). This corresponds
to states being decoupled. However, in practical systems the
states interact and as a result the number of non-top linked
SCCs is usually much smaller than n [4]. In such cases, the
above algorithm gives a tighter approximation.

There exist various polynomial time algorithms for solving
Problem 4.6 [15], [24]. The algorithm in [24] has complexity
O(`4 log`) on a generic flow-network with ` nodes. However,
because of the special structure of the flow-network F(Ā, B̄,c),
Problem 4.6 can be solved using a simpler algorithm that
incorporates a minimum weight perfect matching algorithm
and a greedy scheme. We describe the pseudo-code of this two-
stage procedure in Algorithm 4.1. In Stage 1 of Algorithm 4.1,
we run a minimum weight perfect matching on B(Ā, B̄) with



Algorithm 4.1 Pseudo-code for solving Problem 4.6 using
minimum weight maximum matching and a greedy scheme

Input: Structured system (Ā, B̄), input cost vector pu and
flow-network F(Ā, B̄,c)
Output: Flow vector fA constructed using Algorithm 4.2
with inputs MA and SA.
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ag

e
2
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1: Construct B(Ā, B̄) and each edge e define

2: w(e)←

{
0, for e = (xr,x′k),
pu( j), for e = (u j,x′k).

3: Find minimum weight perfect matching of B(Ā, B̄)
under weight function w, say MA

4: for i = 1 to q do
5: u(Ni) ∈ argminu j :(Ni,u′j)∈EF

pu( j)
6: SA←{(Ni,u′(Ni))}q

i=1
7: end for

Algorithm 4.2 Pseudo-code for constructing flow vec-
tor f from perfect matching M and set of edges S =
{(Ni,u′(Ni))}q

i=1

Input: Perfect matching M and edge set S
Output: Flow vector f

1: XM ←{xr : (xr,x′k) ∈M}
2: UM ←{u j : (u j,x′k) ∈M}
3: US←{u j : (Ni,u′j) ∈ S}
4: Define the flow vector f as

5: f (e)←



1, for e ∈ {(s,x′k),(x′k,xr),(xr, t)},
for k = 1, . . . ,n and xr ∈ XM,

1, for e ∈ {(s,x′k),(x′k,u j),(u j,u′j)},
for k = 1, . . . ,n and u j ∈ UM,

1, for e ∈ {(s,Ni,),(Ni,u′j)},
for i = 1, . . . ,n and u j ∈ US,

∑
n
k=1 ∑

m
j=1 I{(x′k,u j)∈M}+∑

q
i=1 ∑

m
j=1 I{(Ni,u′j)∈S},

for e = (u′j, t), for j = 1, . . . ,m,

0, otherwise.

weights defined as shown in Step 2. Let MA be a matching
obtained as solution of Stage 1 (see Step 3). In Stage 2, we
perform a greedy selection to connect all the non-top linked
SCCs to some input. To achieve this for all Ni’s, i∈ {1, . . . ,q},
we greedily assign the least cost input from the set of all
inputs that has an edge to some state in Ni (see Step 5).
Let the least cost input corresponding to Ni be u(Ni). We
define SA = {(Ni,u′(Ni))}q

i=1 (see Step 6). Finally, we use
Algorithm 4.2 to construct a flow vector fA based on MA and
SA. We prove the optimality of the constructed flow vector fA
after stating the following supporting lemmas.

Lemma 4.10. Given any valid inputs M and S of Algo-
rithm 4.2, let f denote the output flow vector. Then f is a
feasible solution to the LP given in Problem 4.6. Moreover,
the value

C f =
n

∑
k=1

m

∑
j=1

pu( j)I{(x′k,u j)∈M}+
q

∑
i=1

m

∑
j=1

pu( j)I{(Ni,u′j)∈S}, (9)

where IA is the indicator function on subset A ⊂ EF .

Proof. From the construction of f as per Algorithm 4.2, it
follows that f satisfies both flow conservation and capacity
constraint on F(Ā, B̄,c). Thus, f is feasible in F(Ā, B̄,c).
Moreover, note that f (e) = 1 for every e that emanates from
the source vertex s. Hence ϕ f = q+n. This shows that f is a
feasible solution to the LP given in Problem 4.6.

Now, note that since costs are non-zero only for the
edges between u′j and t. Also, c((u′j, t)) = pu( j). Thus, C f =

∑
m
j=1 pu( j) f ((u′j, t)). The flow value f ((u′j, t)) equals the sum

of the flows coming from edges (u j,u′j) and (Ni,u′j). Note
that the second term in equation (9) corresponds to the total
cost contributed by the flow from edges (Ni,u′j). Now, if the
flow on (u j,u′j) is greater than zero, then it has to come from
some edge (x′k,u j) ∈ M. Thus, the first term in equation (9)
corresponds to the total cost contributed by the flow from
edges (u j,u′j). This proves the required.

Lemma 4.11. The sets MA and SA given by Algorithm 4.1
satisfies the following:
(1) For any perfect matching M of B(Ā, B̄),

n

∑
k=1

m

∑
j=1

pu( j)I{(x′k,u j)∈MA} 6
n

∑
k=1

m

∑
j=1

pu( j)I{(x′k,u j)∈M}.

(2) For any set S = {(Ni,y′i) : yi ∈VU ,(Ni,y′i) ∈ EF}q
i=1,

q

∑
i=1

m

∑
j=1

pu( j)I{(Ni,u′j)∈SA} 6
q

∑
i=1

m

∑
j=1

pu( j)I{(Ni,u′j)∈S}.

Proof. The result is an immediate consequence of the way
in which the Algorithm 4.1 constructs MA and SA. Here, (1)
follows since MA is a minimum weight perfect matching in
B(Ā, B̄) and (2) follows since set SA is obtained by greedily
selecting a minimum cost input corresponding to each non-top
linked SCC Ni.

Using the above lemmas we prove the following result.

Theorem 4.12. Let C fA be the value of the objective function
in Problem 4.6 for a flow vector fA constructed using Algo-
rithm 4.2 and let COPT be the optimal value of the LP. Then
C fA =COPT.

Proof. First, observe from Lemma 4.10 that fA is a feasible
solution to the LP described in Problem 4.6. Thus, C fA >COPT.
Now, we get the result if we can show COPT > C fA . Let f ?LP
be the optimal flow vector. Define, the following sets:

M? = {(x′j,y j) : f ?LP((x
′
j,y j))> 0,y j ∈VX ∪VU},

S? = {(Ni,u′j) : f ?LP(Ni,u′j)> 0 for some i ∈ {1, . . . ,q}}.

Note that M? is a perfect matching in B(Ā, B̄). Also, S? has an
outgoing edge from every non-top linked SCC to some input
u′j. Note that f ?LP can be thought as a flow vector constructed
from (M?,S?) using Algorithm 4.2. Now the result follows
from (9) and Lemma 4.11.

Note that though we showed approximation using greedy
scheme, any heuristics can also be used. The following result
quantifies complexity of Algorithm 4.1.



Lemma 4.13. Algorithm 4.1, which computes an approximate
solution to the minCCIS problem, has complexity O(n3), where
n denotes the number of states in the structured system (Ā, B̄).

Proof. Stage 1 of Algorithm 4.1 where we solve a minimum
weight perfect matching has complexity O(n3) [14]. Stage 2 of
Algorithm 4.1 where a greedy scheme is employed to connect
all non-top linked SCCs has O(n2) complexity, since q=O(n)
and m = O(n). From the two stages we get MA and SA.
Construction of flow vector fA using MA and SA given in
Algorithm 4.2 is of linear complexity. Thus, Algorithm 4.1
has complexity O(n3).

C. Special Cases

In this subsection, we discuss two special cases of Prob-
lem 1.2. Consider the case when B(Ā) has a perfect matching.
Note that Problem 1.2 is NP-hard over this special class of
structured systems also [12]. We give the following approxi-
mation result for this class of systems.

Corollary 4.14. Suppose there exists a perfect matching in
B(Ā). Then, an optimal solution to Problem 4.6, where flow
f ?LP is to be computed for an MCFP, is a (∆−1)-approximate
solution to MCFF(q+n), i.e. c f ?LP

6 (∆−1)c?.

Now consider the case when D(Ā) is irreducible. Then,
Problem 1.2 is in P and the following result holds.

Corollary 4.15. Suppose D(Ā) is irreducible. Then an optimal
solution to Problem 4.6, where flow f ?LP is to be computed for
an MCFP, gives an optimal solution to MCFF(q+ n). Also,
c f ?LP

= c?.

Remark 4.16. By duality between controllability and observ-
ability in linear time invariant systems, all the analysis and
results discussed in this paper are directly applicable to the
minimum cost constrained output selection problem.

5. CONCLUSION

This paper addressed minimum cost constrained input se-
lection (minCCIS) problem for structural controllability. We
studied minCCIS on a general structured system, which is a
known NP-hard problem [12]. In this paper, we provided a new
graph theoretic necessary and sufficient condition based on
flow-networks for checking structural controllability (Theorem
3.3). The link between structural controllability and flow-
based-networks is one of our central contributions in this
paper. Then we obtained a polynomial reduction of minCCIS
to an NP-hard variant of the maximum flow problem: the
minimum-cost fixed-flow problem (MCFF). We showed that
an optimal solution to MCFF corresponds to an optimal
solution to minCCIS (Theorem 4.4). We also showed that
approximation schemes available for solving MCFF can be
used to solve minCCIS (Theorem 4.5). Using the special
structure of the flow-network constructed from the structured
system (Ā, B̄), we proposed an approximation algorithm to
solve minCCIS. In our main result (Theorem 4.8) we gave
a polynomial time algorithm that obtains a ∆-approximate

solution to minCCIS. Needless to elaborate the same result
holds for structural observability of (C̄, Ā) and the minimum
sensor selection problem. Further, the results are applicable to
discrete time systems too.
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