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Abstract—This paper addresses optimal feedback selection for arbi-
trary pole placement of structured systems when each feedback edge is
associated with a cost. Given a structured system and a feedback cost
matrix, our aim is to find a feasible feedback matrix of minimum cost
that guarantees arbitrary pole placement of the closed-loop structured
system. The same problem but with uniform costs has been considered
recently, but the claim and the NP-hardness proof there has subtle flaws:
we mention this briefly in our paper and then prove the NP-hardness
of the feedback selection problem using a reduction from the weighted
set cover problem. We next prove the polynomial time constant factor
inapproximability of the problem by showing that a constant factor
approximation for the problem does not exist, unless the weighted set
cover problem can also be approximated within a constant factor. We
study a subclass of systems whose directed acyclic graph constructed
using the strongly connected components of the state digraph is a line
graph and the state bipartite graph has a perfect matching. We propose
a polynomial time algorithm based on dynamic programming principles
for optimal feedback selection on this class of systems. Further, over
the same class of systems we relax the perfect matching assumption,
and provide a polynomial time 2-optimal solution using a minimum cost
perfect matching algorithm.

Index Terms—Linear structured systems, Arbitrary pole placement,
Linear output feedback, Minimum cost control selection.

1. INTRODUCTION

In this paper we address optimal output feedback selection for
arbitrary pole-placement in large-scale dynamical systems. Given
a dynamical system, finding an output feedback that guarantees
arbitrary pole-placement of the closed-loop system is an important
design problem in control. In many large-scale systems, including
biological systems, electronic circuits, transportation, World Wide
Web, social communication, power grids and multi-agent systems,
the exact link weights of the graph are not known. Hence, many
papers use the topological characteristics of the network for analysing
them. Moreover, the size of these networks are large, that efficient
frameworks for solving various optimization problems on these
networks are indispensable. We refer to [1], [2] and references therein
to note the applicability of structural analysis to several real networks
(see after Theorem 1 for an elaboration of specific applications).

Consider structured matrices Ā, B̄ and C̄ whose entries are ?’s and
0’s that represent an equivalence class of control systems whose sys-
tem dynamics is governed by ẋ = Ax+Bu, y =Cx, where A ∈Rn×n,
B ∈Rn×m and C ∈Rp×n has the same structure as that of Ā, B̄ and C̄
respectively. Here, R denotes the set of real numbers and we assume
that m and p are of the order of n. More precisely,

Ai j = 0 whenever Āi j = 0, and

Bi j = 0 whenever B̄i j = 0, and

Ci j = 0 whenever C̄i j = 0. (1)

Any triple (A,B,C) that satisfies (1) is referred as a numerical
realization of the structured system (Ā, B̄,C̄). Let P ∈ Rm×p denotes
the feedback cost matrix, where Pi j is the cost for feeding the jth

output to the ith input. It may not be feasible to connect all the outputs
to all the inputs. When infeasible, we model this by considering
cost of such a connection to be infinite. To denote the feedback
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connections made, we use matrix K̄ ∈ {0,?}m×p, where K̄i j = ?, if
jth output can be fed to ith input. Now the cost of K̄ denoted by
P(K̄) is given by P(K̄) = ∑(i, j):K̄i j=? Pi j. For a given K̄ we define,
[K] := {K : Ki j = 0, if K̄i j = 0}.

Definition 1. The structured system (Ā, B̄,C̄) and the feedback matrix
K̄ is said to have no structurally fixed modes if there exists a numeri-
cal realization (A,B,C) of (Ā, B̄,C̄) such that ∩K∈[K]σ(A+BKC)= φ ,
where σ(T ) denotes the set of eigenvalues of a square matrix T .

If a structured system has no structurally fixed modes (SFMs),
then arbitrary pole placement is possible for almost all numerical
realizations of it using output feedback. A numerical realization of a
structured system with no SFMs that does not allow arbitrary pole-
placement lies in a thin1 set. The strength of this analysis is that
it requires only the zero/non-zero pattern of the system to study an
equivalence class of systems whose sparsity patterns are the same.
Using the structural framework we aim to design an optimal K̄ for
a given (Ā, B̄,C̄). Then, for almost all numerical realizations of the
structured system, it is guaranteed that there exists a feedback matrix
of the given structure which allows arbitrary pole-placement.

In this paper our aim is to find a minimum cost K̄ such
that the closed-loop system (Ā, B̄,C̄, K̄) has no SFMs. Specifi-
cally, we wish to solve the following optimization problem: given
(Ā, B̄,C̄) and a feedback cost matrix P, let Ks := {K̄ ∈ {0,?}m×p :
(Ā, B̄,C̄, K̄) has no SFMs}. Note that Ks consists of all possible
feedback structured matrices K̄ such that the closed-loop system
(Ā, B̄,C̄, K̄) has no SFMs.

Problem 1. Given a structured system (Ā, B̄,C̄) and feedback cost
matrix P, find K̄? ∈ arg min

K̄∈Ks

P(K̄).

We refer to Problem 1 as the minimum cost feedback selection
problem for arbitrary pole placement. This problem has received
attention since a few decades ago ([4], [5]) and more recently in
[6], [7]. In fact, a special case of the above problem, namely when
all the edges have uniform cost, and the state bipartite has a perfect
matching and inputs and outputs are dedicated2, has been considered
in [6], but a key ‘inference’ from a lemma ([6, Lemma 4]) to the
main result ([6, Theorem 5]) has a subtle flaw3. We elaborate on this
later below in Section 2-B. This paper deals with the non-uniform
cost version with non-dedicated inputs and outputs.

Let p? = P(K̄?) denote the optimal cost of Problem 1. For a
structured system (Ā, B̄,C̄) with feedback cost matrix P, without loss
of generality, we assume that Ks is non-empty. Specifically, K̄ f ∈Ks,
where K̄ f

i j = ? for all i, j. Notice that if Ks is empty, then for every
K̄, the closed-loop structured system (Ā, B̄,C̄, K̄) has SFMs and if
p? = +∞, then we say that arbitrary pole placement is not possible
for that structured system.

1A non-trivial algebraic variety is ‘thin’ and a set of measure zero. See [3]
for more details.

2An input (output, resp.) is said to be dedicated, if it can actuate (sense,
resp.) a single state only.

3Note that, [6, Lemma 4] is indeed correct but its use as a special case in
[6, Theorem 5] is where the flaw exists.



In this paper, we show the hardness of the above problem using the
weighted set cover problem. In addition we also show the polynomial
time constant factor inapproximability of the problem. Specifically,
we have the following result as one of our main result (see Section 3).

Theorem 1. Consider a structured system (Ā, B̄,C̄) with n states
and feedback cost matrix P. Then, there does not exist a polynomial
time algorithm for solving Problem 1 that has approximation ratio
(1−o(1)) logn.

See Section 3 for the proof. For the rest of this paper we will
use inapproximability to refer to polynomial time constant factor
inapproximability.

Though Problem 1 is NP-hard and even approximating it within
a multiplicative factor of O(logn) is not feasible in polynomial time
on general systems, we give an O(n3) algorithm based on dynamic
programming for a special class of systems: those in which the
directed acyclic graph (DAG) obtained by condensing the strongly
connected components (SCCs) of the state digraph to vertices (see
Section 2 for more details) form a line graph4. The motivation for
considering this structure comes from cascade or series connected
systems. Irreducible5 systems connected in cascade have line graph
structure. This connection is also referred as chain graph, and radial
graph, and path graph in the literature.

The line graph topology is useful in many applications including
vehicle platooning control [8], [9], [10], multi-level voltage source
inverters (VSI) [11], assembly lines and series of processing plants.
While line graph topology is vitally assumed in VSI and other appli-
cations, due to paucity of space we elaborate on vehicle platooning
control. Platoon formation control of vehicles has been recognized as
a potential strategy for improving traffic efficiency, enhancing road
safety and reducing fuel consumption [9]. The goal of longitudinal
platoon control is to ensure that all the vehicles move in the same
lane and at the same speed with a pre-specified inter-vehicle distance.
Platoon control adjusts vehicle spatial distribution such that roadway
utilization is maximized while collision is eliminated. Many control
methodologies have been applied, including PID controllers, state
feedback, adaptive control, state observers, among others, with safety,
string stability, and team coordination as the most common objectives
[8]. It is helpful to have results/algorithms for the line graph topology
case, since as we know, the general topology case is NP-hard and
also inapproximable to constant factor in polynomial time.

For systems with line graph topology, we consider two different
cases: (i) when the state bipartite graph (see Section 2 for more
details) has a perfect matching, and (ii) when the state bipartite
graph does not have a perfect matching. Note that there exists a
wide class of systems called as self-damped systems [12] that have a
perfect matching in the state bipartite graph, for example consensus
dynamics in multi-agent systems and epidemic dynamics. All systems
with invertible state matrices have a perfect matching in their state
bipartite graph. For the class of systems whose state bipartite graph
does not have a perfect matching but the DAG of SCCs is a line
graph, we give an O(n3) algorithm based on dynamic programming
and minimum cost perfect matching that gives a 2-optimal solution
to Problem 1. Note that if the DAG of SCCs has a spanning tree
that is a line graph, our results hold (see Remark 2 and Figure3). We
have the following theorem (see Section 4 for the proof) as another
main result.

Theorem 2. Consider a structured system (Ā, B̄,C̄) and a feedback
cost matrix P given as input to Algorithms 2 and 3. Let the DAG of

4A directed line graph is a graph which is a directed path starting at the
root vertex and ending at the tip vertex.

5A system is said to be irreducible if its digraph is strongly connected.

SCCs of the state digraph be a line graph and p? denote the optimal
cost of Problem 1. Then,
(i) if state bipartite graph has a perfect matching, then output K̄a of

Algorithm 2 is an optimal solution to Problem 1, i.e., P(K̄a) =
p?.

(ii) if state bipartite graph does not have a perfect matching, then
output K̄ab of Algorithm 3 is a 2-optimal solution to Problem 1,
i.e., P(K̄ab)6 2 p?.

The organization of the paper is as follows: in Section 2 we discuss
graph theoretic preliminaries used in the sequel, few existing results,
related work in this area and our key contributions. In Section 3
we show the NP-hardness of the problem using a reduction of the
weighted set cover problem. We also give the negative approximation
result of the problem in this section. In Section 4 we discuss two
special classes of linear dynamical systems. For the first class of sys-
tems considered we give a polynomial time optimal algorithm based
on dynamic programming for solving Problem 1. For the second
class of systems, we give a polynomial time 2-optimal approximation
algorithm for solving Problem 1. In Section 5 we explain our dynamic
programming based algorithms given in Section 4 through illustrative
examples. Finally, Section 6 contains some concluding remarks.

2. PRELIMINARIES AND RELATED WORK

In this section we first discuss few graph theoretic preliminaries
and existing results. Subsequently, we discuss the related work in the
area of feedback selection problem and then describe the contribution
of our paper.

A. Preliminaries and Existing Results

We define the state digraph D(Ā) := (VX ,EX ) where VX =
{x1, . . . ,xn} and an edge (x j,xi) ∈ EX if Āi j 6= 0. Thus a directed
edge (x j,xi) exists if state x j can influence state xi. We next define
the system digraph D(Ā, B̄,C̄) := (VX ∪VU ∪VY ,EX ∪EU ∪EY ), where
VU = {u1, . . . ,um} and VY = {y1, . . . ,yp}. An edge (u j,xi) ∈ EU if
B̄i j 6= 0 and an edge (x j,yi) ∈ EY if C̄i j 6= 0. Thus a directed edge
(u j,xi) exists if input u j can actuate state xi and a directed edge
(x j,yi) exists if output yi can sense state x j. Then the closed-loop
system digraph D(Ā, B̄,C̄, K̄) := (VX ∪VU ∪VY ,EX ∪EU ∪EY ∪EK),
where (y j,ui) ∈ EK if K̄i j 6= 0. Here a directed edge (y j,ui) exists if
output y j can be fed to input ui.

A digraph is said to be strongly connected if for each ordered
pair of vertices (vi,vk) there exists a path from vi to vk. A strongly
connected component (SCC) is a subgraph that consists of a maximal
set of strongly connected vertices. Using the SCCs of D(Ā) we
construct a directed acyclic graph (DAG), where each node in the
DAG is an SCC of D(Ā). Also, the edges in the DAG are such that,
there exists an edge between two nodes in the DAG if and only if
there exists an edge in D(Ā) that connects two states in those SCCs.
For the state digraph D(Ā), SCCs are characterized as follows.

Definition 2. An SCC is said to be linked if it has atleast one
incoming or outgoing edge from another SCC. Further, an SCC is
said to be non-top linked (non-bottom linked, resp.) if it has no
incoming (outgoing, resp.) edges to (from, resp.) its vertices from
(to, resp.) the vertices of another SCC. Non-top/non-bottom linked
SCCs are also referred as source/sink SCCs in the literature.

Now using the closed-loop system digraph D(Ā, B̄,C̄, K̄) the fol-
lowing result has been shown [13].

Proposition 1 ([13], Theorem 4). A structured system (Ā, B̄,C̄) have
no structurally fixed modes with respect to an information pattern
K̄ if and only if the following conditions hold: a) in the digraph
D(Ā, B̄,C̄, K̄), each state node xi is contained in an SCC which



includes an edge from EK , and b) there exists a finite node disjoint
union of cycles6 Cg = (Vg,Eg) in D(Ā, B̄,C̄, K̄), where g belongs to
the set of natural numbers such that VX ⊆ ∪gVg.

Condition a) can be checked in O(n2) operations [14] by finding
all SCCs in D(Ā, B̄,C̄, K̄) and verifying if each of them has atleast
one feedback edge in it. Condition b) can be checked in O(n2.5)
[14] operations using the information path condition given in [13].
If D(Ā) is a single SCC, then the graph is said to be irreducible. In
such a case satisfying condition a) in Proposition 1 is trivial as any
single (yi,u j) edge is enough to satisfy the required. Then, solving
Problem 1 simplifies to satisfying condition b) optimally which
is polynomial [15]. Define B(Ā, B̄,C̄, K̄) := (VX ′ ∪VU ′ ∪VY ′ ,VX ∪
VU ∪VY ,EX ∪ EU ∪ EY ∪ EK ∪ EU ∪ EY), where VX ′ = {x′1, . . . ,x′n},
VU ′ = {u′1, . . . ,u′m}, VY ′ = {y′1, . . . ,y′p} and VX = {x1, . . . ,xn}, VU =
{u1, . . . ,um} and VY = {y1, . . . ,yp}. Also, (x′i,x j) ∈ EX ⇔ (x j,xi) ∈
EX , (x′i,u j) ∈ EU ⇔ (u j,xi) ∈ EU , (y′j,xi) ∈ EY ⇔ (xi,y j) ∈ EY and
(u′i,y j)∈ EK⇔ (y j,ui)∈ EK . Moreover, EU include edges (u′i,ui) for
i = 1, . . . ,m and EY include edges (y′j,y j) for j = 1, . . . , p. Given a
bipartite graph GB := (V,Ṽ ,E), where V ∩ Ṽ = φ and E ⊆ V × Ṽ , a
matching M is a collection of edges M ⊆ E such that no two edges
in M share a common end point. For |V |= |Ṽ |, if |M|= |V |, then M
is said to be a perfect matching, where |D| denotes the cardinality
of a set D. Using the bipartite graph construction given above [13],
a matching condition for checking condition b) is given in [16].

Proposition 2 ([16], Theorem 3). Consider a closed-loop structured
system (Ā, B̄,C̄, K̄). Then, the bipartite graph B(Ā, B̄,C̄, K̄) has a
perfect matching if and only if all state nodes are spanned by disjoint
union of cycles in D(Ā, B̄,C̄, K̄).

In a special case, if the state bipartite graph B(Ā) := (VX ′ ,VX ,EX )
has a perfect matching, then all state nodes lie in node disjoint cycles
that consists of only xi’s. Thus condition b) is satisfied even without
using any feedback edge. Summarizing, in general given a closed-
loop structured system (Ā, B̄,C̄, K̄) we can check if the system has
SFMs or not in O(n2.5) computations. Unlike checking for SFMs,
designing minimum cost feedback matrix such that the closed-loop
system does not have SFMs is computationally hard. Now we discuss
some related work in this area.

B. Related Work and Contributions

In this section, we discuss only the relevant literature. Structural
analysis for various other problems can be found in [17] and
references therein, while [18] addresses optimal sensor selection in
structured systems with a perfect matching in B(Ā).

The concept of fixed modes under feedback structural constraints
is introduced in [19] and the concept of structurally fixed modes is
introduced in [20]. There are necessary and sufficient graph theoretic
conditions for checking the existence of SFMs in structured systems
[13]. In this paper, optimal selection of a feedback matrix for arbitrary
pole placement is our main focus. Next we describe existing work in
this area.

Feedback selection for arbitrary pole placement is considered in
[4], [5], [15], [21], [6] and [16]. Reference [4] considers sparsest
feedback selection for a given structured system (Ā, B̄,C̄). The authors
proposed a method for finding the minimum set of feedback edges by
determining the minimum number of inputs and outputs, which itself
is an NP-hard problem to solve [22]. Reference [5] considers optimal
feedback selection when each feedback edge is associated with a
cost and proposes an algorithm that gives a sub-optimal solution.
However, the approach given there is by solving an NP-hard problem,

6In a digraph, a cycle is a directed path whose starting and ending vertices
are the same such that there are no node repetitions.

the multi-commodity network flow problem. In short, the scheme
given in [5] is sub-optimal and not polynomial time. Due to this, the
algorithm proposed in [4] or [5] is not a polynomial time solution to
the feedback selection problem.

Given a structured state matrix Ā, finding jointly sparsest B̄, C̄ and
K̄ such that the closed-loop system has no SFMs is considered in [21].
Finding a minimum cost input-output set and feedback matrix for a
given structured system (Ā, B̄,C̄) such that the resulting closed-loop
system has no SFMs is considered in [15], when every input, output
and feedback edge are associated with costs. However, because of
the NP-hardness of the problem, a special class of systems where
the state digraph is irreducible is studied in [15]. Given (Ā, B̄,C̄) and
costs corresponding to each input and output, finding a minimum
cost input-output set such that the resulting closed-loop system has no
SFMs is considered in [16]. Since the problem is NP-hard, the authors
of [16] proposed an order optimal polynomial time approximation
algorithm.

The papers [6], [7] considered a special case of Problem 1, namely
when B(Ā) has a perfect matching and all feedback links are of
uniform cost, and dedicated inputs and outputs. Papers [6], [7]
claimed the NP-hardness of this case and using that result claimed
the NP-hardness for the so-called non-dedicated input-output case.
However, for the uniform-cost, dedicated i/o case considered in [6],
[7], Problem 1 is not NP-hard: a key ‘inference’ from a lemma ([6,
Lemma 4]) to the main result ([6, Theorem 5]) has a subtle flaw.
While our manuscript [23] elaborates on the subtle flaw3 of [6], [7],
where we further show there that the case considered in [6], [7] is
not just not NP-hard, but in fact, of linear complexity: we provide
only a summary here. Papers [6], [7] consider only a special case of
the optimal solution in the reduction from the graph decomposition
problem. In a reduction one must ideally show that any optimal
solution to the given problem gives an optimal solution to the NP-
hard or NP-complete problem used for reduction [24, Section 1.5].
This paper differs from our work in [23] as follows.

The case considered in [6], [7] and [23] assumes n dedicated inputs
and n dedicated outputs with uniform cost feedback links. Hence the
case considered there assumes that all feedback links are feasible.
On the other hand, in this paper, we consider feedback links with
non-uniform cost and thus some feedback links are allowed to be
infeasible7. Further, there is no restriction on inputs and outputs
to be dedicated. We prove the NP-hardness of this problem using
a reduction of the weighted set cover problem. We also prove the
inapproximability of the problem.
We summarize our key contributions.
• We prove that Problem 1 is NP-hard (hardness result holds even
when B(Ā) has a perfect matching and D(Ā) has only one non-top
linked SCC).
• We prove that Problem 1 cannot be approximated in polynomial
time to a multiplicative factor (1− o(1)) logn, where n denotes the
number of states in the system.
• We give a polynomial time algorithm of complexity O(n3) for
solving Problem 1 for a special class of systems whose DAG of
SCCs is a line graph and B(Ā) has a perfect matching.
• We give a polynomial time 2-optimal approximation algorithm of
complexity O(n3) for solving Problem 1 for systems whose DAG of
SCCs is a line graph and B(Ā) does not have a perfect matching.

Using the details given in this section, now we prove the NP-
hardness of Problem 1 in the next section.

7Recall that after Problem 1 statement, we allowed edges to have costs
from R+ ∪{∞}.



Algorithm 1 Pseudo-code for reducing the weighted set cover
problem to an instance of Problem 1

Input: Weighted set cover problem with universe U = {1, . . . ,N},
sets P = {S1, . . . ,Sr} and weight function w
Output: Structured system (Ā, B̄,C̄) and feedback cost matrix P

1: Define x1, . . . ,xN+1 and y1, . . . ,yr and u1 to be interconnected by
the following definition of Ā, B̄,C̄

2: Define a structured system (Ā, B̄,C̄) as follows:

3: Āi j←


?, for i = j, for i ∈ {1, . . . ,N},
?, for i ∈ {1, . . . ,N} and j = N +1,
0, otherwise.

4: B̄i1←

{
?, for i = N +1,
0, otherwise.

5: C̄i j←

{
?, for j ∈ Si,

0, otherwise.
6: Define feedback cost matrix P as:
7: P1 j← w( j), for j ∈ {1, . . . ,r}.
8: Given a solution K̄ to Problem 1 on (Ā, B̄,C̄), define: sets selected

under K̄, S(K̄)←{S j : K̄1 j 6= 0},
9: Weight of the set, w(S(K̄))← ∑Si∈S(K̄) w(i) .

3. HARDNESS RESULTS

In this section we prove the hardness of Problem 1 using a well
known NP-hard problem, the weighted set cover problem. For the
uniform cost case of Problem 1, one can reduce from the set cover
problem in the similar lines. Thus Problem 1 is NP-hard even when
costs are uniform. In addition to the NP-hardness of the problem, in
this paper we also prove the inapproximability of the problem, by
showing that the problem cannot be approximated to a multiplicative
factor (1− o(1)) logn, where n denotes the number of states in the
system. The NP-hardness result is obtained by reducing the weighted
set cover problem to an instance of Problem 1. We prove that the
problem is NP-hard even for the case where the state bipartite graph
B(Ā) has a perfect matching and there is only one non-top linked SCC
in D(Ā). We first detail the weighted set cover problem, denoted as
(U ,P ,w). Given universe U = {1,2, · · · ,N} of N items, r sets P =
{S1,S2, · · · ,Sr} with Si ⊂ U and

⋃r
i=1Si = U and a weight function

w : P → R, the weighted set cover problem consists of finding a set
S? ⊆ P such that ∪Si∈S?Si = U and ∑Si∈S? w(i) 6 ∑Si∈S̃ w(i) for

any S̃ that satisfies ∪Si∈S̃ = U . In order to prove the hardness of the
problem we give a reduction of a general instance of the weighted
set cover problem to an instance of Problem 1.
Algorithm 1 pseudo-code description: The pseudo-code showing a
polynomial time reduction of the weighted set cover problem to an
instance of Problem 1 is presented in Algorithm 1. Consider a general
instance of the weighted set cover problem consisting of universe U
with |U | = N, sets P = {S1, . . . ,Sr} and weight w. We construct a
structured system (Ā, B̄,C̄) that has states x1, . . . ,xN+1, input u1 and
outputs y1, . . . ,yr (Step 1). Notice that in D(Ā) every state has an
edge to itself (Step 3). In addition, state xN+1 has an edge to all
other states. Thus B(Ā) has a perfect matching, M = {(x′i,xi) for i ∈
{1, . . . ,N+1}}. Hence, condition b) in Proposition 1 is satisfied. We
consider a single input u1 that connects to state xN+1 only (Step 4).
Notice that construction of C̄ relies on P . Specifically, C̄i j = ? if
x j ∈ Si (Step 5). Finally, the cost matrix P, which gives the costs for
feeding outputs y j’s to input u1, is defined as shown in Step 7. Note
that K̄ = {K̄i j = ?, for all i, j} ∈Ks. Thus Ks is non-empty. Now we
formulate and prove the following.

x1 x2

x6

x3 x4 x5

u1

y1 y2 y3

Figure 1: Illustrative exam-
ple demonstrating construc-
tion of D(Ā, B̄,C̄) given in
Algorithm 1 for a weighted
set cover problem with U =
{1, . . . ,5}, P = {S1,S2,S3},
where S1 = {1,2}, S2 =
{2,3} and S3 = {3,4,5}.

Lemma 1. Consider the weighted set cover problem (U ,P ,w) and
a structured system (Ā, B̄,C̄) and feedback cost matrix P ∈ Rm×p

constructed using Algorithm 1. Let Ks be the set of feasible solutions
to Problem 1. For this structured system, (i) K̄ ∈ Ks if and only if
the sets selected under K̄, S(K̄) covers U and (ii) w(S(K̄)) = P(K̄).

Proof. (i) Only-if part: We assume K̄ ∈Ks and then show that S(K̄)
is a cover. Given K̄ is a solution to Problem 1. Thus, K̄ satisfies
condition a). We need to prove ∪Si∈S(K̄) = U = {1, . . . ,N}. Instead,
suppose there exists an element j ∈ U that is not covered by S(K̄).
Let S(K̄) consist of sets Si1 , . . . ,Sik and the corresponding outputs
are yi1 , . . . ,yik . Thus K̄1g = ?, for g ∈ {i1, . . . , ik}. Since element j is
not covered by S(K̄), there does not exist y ∈ {yi1 , . . . ,yik} that has
edge (x j,y). Thus x j does not satisfy condition a) in Proposition 1.
This contradicts the assumption that K̄ is a solution to Problem 1.

(i) If part: We assume that S(K̄) is a cover and then show that
K̄ ∈ Ks. Suppose not. Since B(Ā) has a perfect matching all state
nodes lie in disjoint cycles which consist of only state nodes. Thus
condition b) in Proposition 1 is satisfied without using any feedback
edge. Thus K̄ /∈ Ks implies that there exists a state x j that does
not satisfy condition a). Let K̄ ∈ {0,?}1×(N+1) have ?’s at indices
i1, . . . , ik. That means outputs yi1 , . . . ,yik are fed back to input u1. The
corresponding sets are Si1 , . . . ,Sik . Assume j 6 N. Since x j does not
satisfy condition a), there does not exist g∈{i1, . . . , ik} such that edge
(x j,yg) is present. Then, there exists no set Sg ∈ {Si1 , . . . ,Sik} such
that element j is covered. Now if j = N + 1, then {i1, . . . , ik} = φ .
Thus no output is fed back to u1 and thus S(K̄) = φ . This contradicts
the assumption that S(K̄) is a cover. Thus K̄ ∈ Ks. This completes
the proof of statement (i).

Finally, to prove (ii), we note that Step 7 in Algorithm 1 gives
w(S(K̄)) = P(K̄) and this completes the proof.

Next we give the NP-hardness result using a reduction of the
weighted set cover problem. We show that any instance of the
weighted set cover problem can be reduced to an instance of
Problem 1 such that an optimal solution to Problem 1 gives an optimal
solution to the weighted set cover problem.

Theorem 3. Consider a weighted set cover problem and let (Ā, B̄,C̄)
and P be the structured system and the feedback cost matrix con-
structed using Algorithm 1 respectively. Let K̄? be an optimal solution
to Problem 1 and S(K̄?) be the cover corresponding to K̄?. Then,
(i) S(K̄?) is feasible and an optimal solution to the weighted set
cover problem, and (ii) Problem 1 is NP-hard.

Proof. Given a general instance of the weighted set cover problem,
we first construct a structured system (Ā, B̄,C̄) and feedback cost
matrix P using Algorithm 1. Here we prove that an optimal solution
to Problem 1 gives an optimal solution to the weighted set cover
problem. Let K̄ be a feasible solution to Problem 1. Using Lemma 1
the sets selected under K̄, S(K̄) covers U . Hence, S(K̄) is a feasible
solution to the weighted set cover problem. For proving optimality,
we use a contradiction argument. Let K̄? be an optimal solution to
Problem 1. From Lemma 1, S(K̄?) covers U and P(K̄?) =w(S(K̄?)).
Thus S(K̄?) is a feasible solution to the weighted set cover problem.



To prove optimality, we show that w(S(K̄?))6w(S) for any S that
satisfies ∪Si∈SSi = U . In other words, an optimal solution to Prob-
lem 1 gives an optimal solution to the weighted set cover problem.
Suppose not. Then there exists a cover S̃ such that w(S̃)<w(S(K̄?)).
Let S̃ consist of sets {Si1 ,Si2 , . . . ,Sik} and the corresponding outputs
are {yi1 ,yi2 , . . . ,yik}. Note that there is only one input u1. Connecting
{yi1 ,yi2 , . . . ,yik} to u1 satisfies condition a) in Proposition 1. This is
because for any non-bottom linked SCC, say Bk = xk, there is some
y∈ {yi1 ,yi2 , . . . ,yik} connecting xk. So, u1→ xN+1→ xk→ y→ u1 is a
cycle and hence xN+1 and xk belong to the same SCC that has y→ u1
edge. Since Bk is arbitrary, condition a) holds. So, {yi1 ,yi2 , . . . ,yik}
is a feasible solution, and has a cost given by the cost of the set
cover. Thus for ˜̄K = { ˜̄K1 j = ? : j ∈ {i1, . . . , ik}}, P(˜̄K) < P(K̄?).
This contradicts the assumption that K̄? is an optimal solution to
Problem 1. This proves that an optimal solution to Problem 1 gives
an optimal solution to the weighted set cover problem.

To prove (ii), use Lemma 1 and since any optimal solution to
Problem 1 gives an optimal solution to the weighted set cover
problem, Problem 1 is NP-hard.

Remark 1. Problem 1 is NP-hard even when the feedback links are
of uniform costs: use Algorithm 1 with all weights=1, to show the
NP-hardness of the problem. This reduction corresponds to minimum
set cover problem.

Note that for the structured system (Ā, B̄,C̄) constructed in Algo-
rithm 1, the bipartite graph B(Ā) has a perfect matching. Thus all state
nodes lie in a cycle that consists of only xi’s and thus condition b)
in Proposition 1 is satisfied. Thus Theorem 3 implies that satisfying
condition a) optimally itself is NP-hard even for systems that has a
single non-top linked SCC.

The following lemma shows that an approximate solution to
Problem 1 on the structured system constructed using Algorithm 1
gives an approximate solution to the weighted set cover problem.

Lemma 2. Consider the weighted set cover problem and the struc-
tured system (Ā, B̄,C̄) and cost matrix P constructed in Algorithm 1.
For every ε > 1, if there exists an ε-optimal solution to Problem 1,
then there exists an ε-optimal solution to the weighted set cover
problem.

Proof. The proof of this lemma has two parts: (i) we show that an
optimal solution K̄? to Problem 1 gives an optimal solution S(K̄?) to
the weighted set cover problem, and (ii) we show that, if P(K̄)6 ε p?,
then w(S(K̄))6 ε w(S?).

Note that (i) is proved in Theorem 3. For proving (ii) we use
Lemma 1. Given

p(K̄) 6 ε p?,

w(S(K̄)) 6 ε p? = ε w(S(K̄?)) = ε w(S?).

This completes the proof.

Next we prove that Problem 1 cannot be approximated in polyno-
mial time to a constant factor. The inapproximability result holds even
for systems whose state bipartite graph B(Ā) has a perfect matching
and D(Ā) has a single non-top linked SCC.
Proof of Theorem 1: The set cover problem cannot be approximated to
factor (1−o(1)) logN, where N denotes the cardinality of the universe
[25]. Thus the weighted set cover problem also cannot be approxi-
mated to factor (1−o(1)) logN since set cover is a special case where
all weights are non-zero and uniform. However, by Lemma 2, if there
exists an approximation algorithm that gives an ε-optimal solution
to Problem 1 for a structured system constructed using Algorithm 1,
then it gives an ε-optimal solution to the weighted set cover problem.
Thus, since weighted set cover cannot be approximated to factor

C1 C2 Ci C j C`

Figure 2: The DAG of SCCs in D(Ā) of a structured system

(1− o(1)) logN, Problem 1 also cannot be approximated even for
this special case. Hence, the inapproximability holds for the general
structured systems also. This completes the proof of Theorem 1.

4. LINE GRAPH SYSTEMS

In this section, we consider Problem 1 on two special classes
of systems. We first present a polynomial complexity algorithm
based on dynamic programming to solve Problem 1 for one class of
systems. Then we give a polynomial time 2-optimal approximation
algorithm for the second class of systems for solving Problem 1 using
the dynamic programming algorithm proposed and a minimum cost
perfect matching algorithm. We consider structured systems whose
directed acyclic graph (DAG) obtained by condensing SCCs in D(Ā)
into nodes is a line graph. In other words, the DAG constructed after
condensing SCCs in D(Ā) to super nodes and connecting these super
nodes whenever there exists an edge connecting two states in those
SCCs is a directed path as shown in Figure 2.

Let {C1, . . . ,C`} denote the ordered set of SCCs in D(Ā). Note
that in this graph there is exactly one non-top linked SCC, C1, and
exactly one non-bottom linked SCC, C`. We further assume that
B(Ā) has a perfect matching. Thus condition b) in Proposition 1
is satisfied and hence solving Problem 1 optimally is equivalent to
satisfying condition a) optimally. Note that connecting an output y
that is connected to C` to an input u that is connected to C1 may
not be optimal to satisfy condition a) as this connection can be very
expensive when compared to the rest of the connections. Further, an
optimal solution may consist of connections that cover some of the
SCCs multiple times. This can happen if satisfying condition a) is
cheaper that way when compared to others.

If the feedback costs are uniform, then Problem 1 is trivial. In that
case since C1 is the only non-top linked SCC and C` is the only
non-bottom linked SCC, connecting an output y that connects to C`

to an input u that connects to C1 will satisfy condition a). Similarly,
if the digraph D(Ā) is irreducible, that is D(Ā) is a single SCC, then
too the solution is trivial. In that case connecting (y j,ui) where Pi j is
the smallest entry in the matrix P is optimal. Thus optimal solution
K̄? for this case has ? only at one location, i.e., K̄?

i j. Figure 2 shows
a schematic diagram of the line graph whose vertices are SCCs in
D(Ā). We prove that Problem 1 can be solved in polynomial time
for this class of systems.

For this section the following assumption holds.

Assumption 1. The DAG of SCCs in D(Ā) is a line graph.

We propose a polynomial time algorithm for solving Problem 1
for structured systems when the bipartite graph B(Ā) has a perfect
matching and Assumption 1 holds. The proposed algorithm is a
dynamic programming algorithm. Since B(Ā) has a perfect match-
ing, the algorithm aims at achieving condition a) in Proposition 1
optimally. The pseudo-code of the proposed scheme is presented in
Algorithm 2.

Consider a structured system (Ā, B̄,C̄) and cost matrix P. We
denote the SCCs in D(Ā) as {C1, . . . ,C`}. We define Uk as the set of
inputs that connect to some states in Ck (see Step 2). Similarly, we
define Yk as the set of outputs that are connected from some states
in Ck (see Step 3). Now we have the following definition.

Definition 3. An SCC Ck is said to be covered if condition a) is
satisfied for all states in Ck. In other words, an edge (y j,ui) covers
Ck if all the state nodes in Ck lie in an SCC with edge (y j,ui).



Algorithm 2 Dynamic programming based pseudo-code for solving
Problem 1 on structured systems when B(Ā) has a perfect matching
and Assumption 1 holds

Input: Structured system (Ā, B̄,C̄), feedback cost matrix P
Output: Feedback matrix K̄a

1: {C1, . . . ,C`} are the SCCs in D(Ā)
2: Uk←{ui : B̄ri = ? and xr ∈ Ck}
3: Yk←{y j : C̄ jr = ? and xr ∈ Ck}
4: Uk←∪k

i=1Ui
5: Yk←∪`i=kYi
6: W ([0])← 0, S0← φ

7: for k = 1, . . . , ` do
8: W ([k])← min cost to keep {C1, . . . ,Ck} in cycles
9: Ak←{(y j,ui) : y j ∈ Yk and ui ∈Uk}

10: tk(i)←minq{ui ∈Uq : (y j,ui) ∈ Ak}
11: W ([k])←min(y j ,ui)∈Ak

{Pi j +W ([tk(i)−1])}
12: If W ([k]) = Pvw +W ([z]), then Sk ← (yw,uv)∪Sz, where

v ∈ {1, . . . ,m}, w ∈ {1, . . . , p} and z ∈ {1, . . . ,k}
13: end for
14: K̄a←{K̄a

i j = ? : (y j,ui) ∈S`}

Note that connecting a ui ∈Uk to some y j ∈Yk covers Ck. However,
in addition to these there are other feedback edges that can cover Ck.
To characterize all the feedback edges that cover SCC Ck, we define
sets Uk and Yk. Here Uk consists of all inputs that are connected to
some states in C j’s for j 6 k. Similarly, Yk consists of all outputs that
are connected from some states in C j’s for j > k. Thus Ak, as defined
in equation (2), consists of all edges that cover SCC Ck (see Step 9
of Algorithm 2). The use of dynamic programming in Algorithm 2
is based on the following lemma.

Lemma 3. Consider a structured system (Ā, B̄,C̄) and cost matrix
P given as input to Algorithm 2. Let K̄? be an optimal solution to
Problem 1 and S ? = {(y j,ui) : K̄?

i j = ?}. Define

Ak := {(y j,ui) : y j ∈ Yk and ui ∈Uk}. (2)

Then, for every k ∈ {1, . . . , `}, S ?∩Ak 6= φ .

Proof. Given K̄? is an optimal solution to Problem 1 and S ? is the
corresponding set of minimum cost feedback edges. Thus edges in
S ? cover SCCs C1, . . . ,C`. The sets Uk and Yk in Algorithm 2 are
constructed in such a way that the set Ak consists of all possible
feedback edges that can cover SCC Ck. Suppose S ? ∩ Ak = φ .
Then, the edges in S ? do not cover Ck. Thus K̄? does not satisfy
condition a) in Proposition 1. Hence, K̄? /∈ Ks. This contradicts the
assumption that K̄? is an optimal solution to Problem 1. Thus for all
k, S ?∩Ak 6= φ .

Now for (y j,ui) ∈ Ak, tk(i) is defined as the lowest index q such
that ui ∈Uq (see Step 10). Thus tk(i) 6 k. The significance of tk(i)
is that edge (y j,ui) ∈ Ak not only covers SCC Ck, but also covers
all the SCCs Ctk(i), . . . ,Ck. Hence if (y j,ui) is present in the set
of edges that cover C1, . . . ,Ck, then the rest of the edges need to
cover only C1, . . . ,Ctk(i)−1. Now W ([k]) given in Step 11 of the
algorithm denotes the minimum cost for covering C1, . . . ,Ck and Sk
denotes the corresponding feedback edges (see Step 12). The dynamic
programming step of the algorithm proceeds as follows.

For k = 1, we start at SCC C1. To cover C1, we will pick an edge in
A1 that is of the least cost. Thus S1 consists of a single edge which
is from A1. Now we cover C1, C2 together. Thus an edge in A2 will
be present. This edge will connect an output y j ∈ Y2 to an input ui
in U2. Suppose ui ∈U2 and ui /∈U1. Then edge (y j,ui) covers only

C2 and not C1. Thus the optimal cost to cover C1,C2 is Pi j +W ([1]).
Else if ui ∈U2, then SCCs C1,C2 are covered. Then the optimal cost
to cover C1,C2 is Pi j. Finally, the minimum cost to cover C1,C2 is
obtained by finding minimum over all edges in A2. A generic dynamic
programming equation is given in Step 11 of Algorithm 2. Sk keeps
track of the edges required to cover C1, . . . ,Ck with the minimum
cost. Every stage of the dynamic programming algorithm is updated
using Steps 10 and 11. Now the optimal solution to Problem 1 is
obtained using the edges present in S` as shown in Step 14. For
showing the optimality of Algorithm 2, now we prove Theorem 2 (i).
Proof of Theorem 2 (i): We prove (i) using an induction argument.
The induction hypothesis is that W ([k]) is the minimum cost to cover
SCCs C1, . . . ,Ck and Sk is the corresponding optimal set of feedback
edges.

Base step: we consider k = 1 as the base step. For k = 1, U1 =U1.
Thus tk(i) = 1. Hence, W ([1]) = min(y j ,ui)∈A1

{Pi j}. Note that here
A1 consists of all possible edges that can result in making all state
nodes in C1 lie in an SCC with a feedback edge. In other words
all possible feedback edges that can cover C1. Thus the algorithm
selects an optimal edge in A1 such that all state nodes in C1 lie in
an SCC with that feedback edge. Suppose (y j,ui) is chosen. Then
clearly ui ∈ U1 and y j ∈ Yq for some q > 1. Thus condition a) is
satisfied for all states in C1 optimally. This proves the base step.

Induction step: for the induction step we assume that the op-
timal cost to cover SCCs C1, . . . ,Ck−1 are W ([1]), . . . ,W ([k− 1])
respectively. Also, the corresponding edge sets are S1, . . . ,Sk−1
respectively.

Now we will prove that W ([k]) is the minimum cost to cover
C1, . . . ,Ck and Sk is the corresponding feedback edge set. Note that
Ak consists of all feedback edges that can cover Ck. Thus an edge in
Ak has to be used for covering Ck. Let (y j,ui)∈ Ak. Note that (y j,ui)
not only covers Ck but also covers Ctk(i), . . . ,Ck. Thus the optimal
cost to cover C1, . . . ,Ck using (y j,ui) is Pi j +W ([tk(i)−1]). Notice
that W ([k]) is found after performing a minimization over all edges
in Ak. Since tk(i)6 k and we assumed that the induction hypothesis
is true for C1, . . . ,Ck−1, W ([k]) is the minimum cost for covering
C1, . . . ,Ck. Further, Sk is the union of that edge (y j,ui) ∈ Ak that
is selected in the minimization step and Stk(i)−1. Thus Sk is the
corresponding set of edges of W ([k]). This completes the proof of
Theorem 2 (i).

Next we consider a class of structured systems where only As-
sumption 1 holds, i.e., the bipartite graph B(Ā) does not have a
perfect matching. Since B(Ā) does not have a perfect matching,
condition b) in Proposition 1 also has to be satisfied using the
feedback connections. In this case, we propose a two stage algorithm.
The proposed algorithm uses the dynamic programming algorithm
explained above and a minimum cost perfect matching algorithm [14].
The dynamic programming algorithm gives solution K̄a that satisfies
condition a). The minimum cost perfect matching algorithm gives a
solution K̄b that satisfies condition b). We prove that combining these
together we get a 2-optimal solution to Problem 1.

The pseudo-code for solving Problem 1 on a structured system
where only Assumption 1 holds is presented in Algorithm 3. Firstly,
an optimal set of feedback edges that satisfy condition a) in Propo-
sition 1 is obtained using the dynamic programming algorithm given
in Algorithm 2. Let K̄a denote the feedback matrix obtained as
solution to the dynamic programming algorithm (see Step 1). Note
that this feedback matrix may not guarantee condition b). To satisfy
condition b) we run a minimum cost perfect matching algorithm on
the bipartite graph B(Ā, B̄,C̄, K̄P) with cost function defined as shown
in Step 5. Let M? be an optimal matching obtained and K̄b is the
feedback matrix selected under M? (see Step 8). From Proposition 2,
K̄b satisfies condition b) in Proposition 1. Note that feedback matrix



Algorithm 3 Pseudo-code for solving Problem 1 on structured
systems where Assumption 1 holds

Input: Structured system (Ā, B̄,C̄) and feedback cost matrix P
Output: Feedback matrix K̄ab

1: Find feedback matrix satisfying condition a) using Algorithm 2,
say K̄a

2: Define K̄P←{K̄P
i j = ? : Pi j 6= ∞}

3: Construct the bipartite graph B(Ā, B̄,C̄, K̄P) = ((VX ′ ,VX ∪VU ∪
VY ),EX ∪EU ∪EY ∪EKP ∪EU∪EY) as described in Section 2

4: For e ∈ EX ∪EU ∪EY ∪EKP ∪EU∪EY define:

5: Cost, c(e)←

{
Pi j, for e = (u′i,y j) ∈ EKP ,

0, otherwise.
6: Find minimum cost perfect matching of B(Ā, B̄,C̄, K̄P) under cost

c, say M?

7: Find feedback matrix satisfying condition b) optimally using M?,
say K̄b

8: K̄b←{K̄b
i j = ? : (u′i,y j) ∈M?}

9: K̄ab←{K̄ab
i j = ? if either K̄a

i j = ? or K̄b
i j = ?}

K̄ab obtained by taking element wise union of K̄a and K̄b (see
Step 9) satisfies both the conditions in Proposition 1 and hence is
a feasible solution to Problem 1. We have the following corollary
using Steps 5 and 8 of Algorithm 3.

Corollary 1. Let M be a perfect matching in B(Ā, B̄,C̄, K̄) and
K̄(M) := {K̄(M)i j = ? : (u′i,y j) ∈M} be the feedback matrix selected
under M. Then, c(M) = P(K̄(M)).

Now we give the proof of Theorem 2 (ii).
Proof of Theorem 2 (ii): For proving (ii), let K̄? be an optimal solution
to Problem 1 with cost p?. Thus K̄? satisfies both the conditions in
Proposition 1. Thus the optimal cost for satisfying each condition
individually is atmost p?. Thus p? > P(K̄a) and p? > P(K̄b). Hence,
2 p? > P(K̄a)+P(K̄b). Thus P(K̄ab)6 2 p?.

The following theorem gives complexities of the two algorithms
proposed in this paper for solving Problem 1.

Theorem 4. Consider a structured system (Ā, B̄,C̄) with n number
of states and cost matrix P. Then, both Algorithm 2 and Algorithm 3
each have complexity O(n3).

Proof. Finding the SCCs in D(Ā) has O(n2) complexity. Let m, p
denote the number of inputs and outputs in the structured system.
Then each stage of Algorithm 2 has to compute atmost mp number
of values and has to find the least value amongst them. Note that
m = O(n) and p = O(n). Thus each stage of the algorithm is of
complexity O(n2). The maximum number of iterations required is
the number of SCCs in D(Ā) which is atmost n. Thus complexity of
Algorithm 2 is O(n3).

Algorithm 2 has complexity O(n3) and the minimum cost perfect
matching algorithm has complexity O(n2.5). Combining both, Algo-
rithm 3 has complexity O(n3) and this completes the proof.

Remark 2. In the DAG of SCCs of D(Ā), if there exists a spanning
tree that is a line graph, then all the analysis and results discussed in
this paper still hold. Figure 3 shows a schematic diagram of DAG of
SCCs of D(Ā) of such a system. In such a case, one needs to look at
only that particular spanning tree for solving Problem 1. This gives a
generalization of the structured systems that are studied in this paper.

In the next section we explain the dynamic programming algorithm
proposed in the paper using an illustrative example.

C1 C2 C3 C4 C5 C6

Figure 3: The line graph DAG corresponding to D(Ā)
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Figure 4: Digraph D(Ā, B̄,C̄) of the structured system considered for
demonstrating Algorithm 2

5. ILLUSTRATIVE EXAMPLES

In this section we describe the proposed dynamic algorithm using
an example. Figure 4 shows the digraph of a structured system whose

cost matrix is given by P1 =

[
2 10 100
7 8 5
9 5 50
10 11 13

]
.

There are four SCCs each one represents state digraph of systems
connected in cascade, for example vehicles in vehicle platoon control:
C1 = {x1,x2,x3}, C2 = {x4,x5}, C3 = {x6} and C4 = {x7,x8,x9,x10}.
Also, B(Ā) has a perfect matching. Here U1 = {u1,u2}, U2 = {u2},
U3 = {u3}, U4 = {u3,u4}. Similarly, Y1 = {y1}, Y2 = φ , Y3 =
{y2} and Y4 = {y3}. Subsequently, U1 = {u1,u2}, U2 = {u1,u2},
U3 = {u1,u2,u3} and U4 = {u1,u2,u3,u4}, Y1 = {y1,y2,y3}, Y2 =
{y2,y3}, Y3 = {y2,y3} and Y4 = {y3}. Also, W ([0]) = 0 and S0 = φ .

For k = 1 our aim is to cover SCC C1. The inputs and outputs
that can achieve this are U1 and Y1 respectively. Thus, W ([1]) =
min{P11 +W ([0]), P12 +W ([0]), P13 +W ([0]), P21 +W ([0]), P22 +
W ([0]),P23 +W ([0])} = min{2 + 0,10 + 0,100 + 0,7 + 0,8 + 0,5 +
0}= 2 and S1 = (y1,u1).

For k = 2 our aim is to cover SCC C2. The inputs and out-
puts that can achieve this are U2 and Y2 respectively. Thus,
W ([2]) =min{P12+W ([0]), P13+W ([0]), P22+W ([0]), P23+W ([0])}
= min{10+0,100+0,8+0,5+0}= 5 and S2 = (y3,u2).

For k = 3 our aim is to cover SCC C3. The inputs and outputs
that can achieve this are U3 and Y3 respectively. Thus, W ([3]) =
min{P12 +W ([0]), P13 +W ([0]), P22 +W ([0]), P23 +W ([0]), P32 +
W ([2]), P33 +W ([2]) } = min{10+0,100+0,8+0,5+0,5+5,50+
5}= 5 and S3 = (y3,u2).

For k = 4 our aim is to cover SCC C4. The inputs and out-
puts that can achieve this are U4 and Y4 respectively. Thus,
W ([4]) =min{P13+W ([0]), P23+W ([0]), P33+W ([2]), P43+W ([3])}
= min{100+ 0,5+ 0,50+ 5,13+ 5} = 5 and S4 = (y3,u2). Thus
connecting (y3,u2) is an optimal connection in this example. Thus

K̄a =

[
0 0 0
0 0 ?
0 0 0
0 0 0

]
is an optimal solution to Problem 1.

Figure 5 shows the digraph of a structured system whose cost

matrix is given by P2 =

[
10 2 500
199 1000 25
200 99 37

]
. We demonstrate Algorithm 3

here using this example. There are four SCCs each one represents
state digraphs of systems connected in cascade, for example vehicles
in vehicle platoon control: C1 = {x1,x2,x3}, C2 = {x4}, C3 =
{x5,x6,x7,x8} and C4 = {x9,x8,x10,x11,x12,x13}. Also, B(Ā) does
not have a perfect matching. Here U1 = {u1}, U2 = φ , U3 = {u2},
U4 = {u3} and Y1 = {y1}, Y2 = {y2}, Y3 = {y1,y2,y3} and Y4 = {y3}.
Subsequently, U1 = {u1}, U2 = {u1}, U3 = {u1,u2} and U4 =
{u1,u2,u3}, Y1 = {y1,y2,y3}, Y2 = {y1,y2,y3}, Y3 = {y1,y2,y3} and
Y4 = {y3}. Also, W ([0]) = 0 and S0 = φ .
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Figure 5: Digraph D(Ā, B̄,C̄) of the structured system considered for
demonstrating Algorithm 3

For k = 1 our aim is to cover SCC C1. The inputs and outputs
that can achieve this are U1 and Y1 respectively. Thus, W ([1]) =
min{P11 +W ([0]), P12 +W ([0]), P13 +W ([0]) } = min{10+ 0,2+
0,500+0}= 2 and S1 = (y2,u1).

For k = 2 our aim is to cover SCC C2. The inputs and outputs
that can achieve this are U2 and Y2 respectively. Thus, W ([2]) =
min{P11 +W ([0]), P12 +W ([0]), P13 +W ([0])} = min{10 + 0,2 +
0,8+0,500+0}= 2 and S2 = (y2,u1).

For k = 3 our aim is to cover SCC C3. The inputs and outputs
that can achieve this are U3 and Y3 respectively. Thus, W ([3]) =
min{P11 +W ([0]), P12 +W ([0]), P13 +W ([0]), P21 +W ([2]), P22 +
W ([2]), P23 +W ([2]) } = min{10+0,2+0,500+0,199+2,1000+
2,25+2}= 2 and S3 = (y2,u1).

For k = 4 our aim is to cover SCC C4. The inputs and outputs
that can achieve this are U4 and Y4 respectively. Thus, W ([4]) =
min{P13 +W ([0]), P23 +W ([2]), P33 +W ([3]),} = min{500+0,25+
2,37+2}= 27 and S4 = {(u2,y3),(y2,u1)}. Thus connecting (y3,u2)

is an optimal connection in this example. Thus K̄a =

[
0 ? 0
0 0 ?
0 0 0

]
is an

optimal solution to Problem 1.
Now we find a minimum cost perfect matching in B(Ā, B̄,C̄, K̄) un-

der cost matrix P2. M? = {(x′1,x2), (x′2,x1), (x′3,x3), (x′4,x4), (x′5,x8),
(x′6,x5), (x′7,x6), (x′8,x7), (x′9,x10), (x′10,x12), (x′11,x11), (x′12,u3),
(x′13,x13), (u′1,u1), (u′2,u2), (u′3,y3), (y′1,y1), (y′2,y2), (y′3,x9)}. The

corresponding K̄b =

[
0 0 0
0 0 0
0 0 ?

]
. Thus K̄ab =

[
0 ? 0
0 0 ?
0 0 ?

]
. This completes

the discussion of Algorithm 3 using the example given in Figure 5.

6. CONCLUSION AND FUTURE WORK

This paper deals with feedback selection of structured systems
for arbitrary pole placement when each feedback edge is associated
with a cost. Our aim is to optimally select minimum cost feedback
matrix such that arbitrary pole placement is possible. We proved
that this problem cannot be solved in polynomial time unless P
= NP. In this paper we give a reduction of a well studied NP-
hard problem, the weighted set cover problem, to an instance of
Problem 1. We also show that Problem 1 cannot be approximated
in polynomial time to factor (1− o(1)) logn, where n denotes the
number of states in the system. Due to the NP-hardness and the
polynomial time inapproximability of the problem, we considered a
special class of systems, where the directed acyclic graph of SCCs
of D(Ā) is a line graph and B(Ā) has a perfect matching. We gave a
polynomial time optimal algorithm based on dynamic programming
for solving Problem 1 on this class of systems. Further, we studied
another special class of systems after relaxing the perfect matching
assumption, and gave a 2-optimal polynomial time algorithm for
solving Problem 1 on this class of systems. Systems consisting
of cascade connected irreducible subsystems satisfy the assumed
topology. Finding a good approximation algorithm for a general
system is a topic of future research.
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