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Lossless Systems Storage Function: New Results
and Numerically Stable and Non-Iterative

Computational Methods
Ashish Kothyari , Cornelis Praagman, and Madhu N. Belur

Abstract— In this paper, we formulate and prove new results
in the context of storage functions for lossless systems: we
use these results to propose new algorithms to compute the
storage function. The computation of the storage function for the
lossless case is not possible using conventional algebraic Riccati
equation-based algorithms, though the storage function itself is
well-defined. This is because a certain “regularity condition” on
the feedthrough term in the i/s/o representation of the lossless
system does not hold. We formulate new results about the
storage function matrix for the lossless case and use them
to propose non-iterative and stable algorithms to compute the
storage function directly from different representations of the
given system, namely, a kernel representation, transfer function,
and the i/s/o representation of the system. Across the methods,
for randomly generated transfer functions, we compare: 1) the
computational effort (in flops); 2) the computation time using
numerical experiments; and 3) the computational error.

Index Terms— Algebraic Riccati equation (ARE), subspace
intersection algorithms, Zassenhaus algorithm, lossless positive
real systems.

I. INTRODUCTION

FOR many physical systems, the energy that can be
extracted from the system is atmost the energy supplied to

the system. A system like this is called a dissipative system in
the literature. In [26], a dissipative system is defined using
a so-called storage function. Loosely speaking, the storage
system quantifies the available amount of internally stored
energy which may be recovered from the system. The central
question is how to calculate the stored energy within the
system at a specific moment. It is well-known that for linear
systems with quadratic supply rates, the storage function is
a quadratic function of the states of the system. For strictly
dissipative systems this function can be calculated by solving
an Algebraic Riccati Equation (ARE). But for a special class
of dissipative systems, namely lossless (or energy conservative
systems), this is not possible as the ARE does not exist for
such systems.

Lossless systems are those where for every system trajec-
tory, the energy that can be extracted out of the system is
exactly the amount supplied to the system. In the literature,
the notion of ‘conservative systems’ has also been linked
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Fig. 1. Lossless systems corresponding to the transfer function G(s) = 3s
s2+1

.
(a) An LC circuit. (b) A friction-less spring-mass system.

Fig. 2. A section of a transmission line.

to so-called ‘path-independence’ of work done along any
system trajectory: see [27], [30]. For this paper, we distinguish
between “conservative” and “lossless” systems as follows.
When the extracted and supplied energies are equal with
respect to a general notion of power, then we use the term
‘conservative’, while we use ‘lossless’ when dealing with
the specific notion of power defined by the so-called ‘pas-
sivity/positive real supply rate’: 2uT y, where u is the input
and y is the output. Electrical circuits consisting of ideal
inductors and/or capacitors have lossless behavior. Generally,
lossless systems are also often a good approximation for many
systems with very low resistance. A mechanical analogue for
a lossless electrical system is a system consisting of only
springs and masses. For example, consider the lossless system

with transfer function G(s) = 3s
s2+1

. This corresponds to, for

example, an LC tank circuit with C = 1
3 F and L = 3H or a

spring-mass system with mass M = 1
3 kg and spring constant

k = 1
3 N/m (see Figure 1). The notion of ‘losslessness’ for the

examples in Figure 1 is defined with respect to the following
definitions of power: voltage×current for the LC-tank circuit
and force×velocity for the spring-mass system.

Lossless systems have been widely studied in the literature
(see [25], [28]). LC tank circuits like the one described
in Figure 1 are used for carrier frequency generation
(see [10], [18], [19]). Moreover, transmission lines having
very low resistance are analysed as an LC ladder circuit
(see [29]). A section of a lossless 2-line transmission line
(shown in Figure 2) resembles a two port LC network where
L is the inductance per unit length and C is the capacitance
per unit length of the line.
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As mentioned earlier, for dissipative systems, the solutions
to the Algebraic Riccati Equation (ARE) can be interpreted
as storage functions. The ARE has widespread applications in
both network theory (see [1, P. 259]) and in optimal control
problems (see [2], [15]). For a dissipative system with a i/s/o
representation of the form ẋ = Ax + Bu, y = Cx + Du,
the existence of the ARE depends on the nonsingularity of
the term (D + DT ), which we call a “regularity condition”.
Lossless systems admit a storage function, but, as mentioned
earlier, calculation by conventional ARE solvers is not possible
as the regularity condition (nonsingularity of D + DT ) is not
satisfied. On the other hand, computing the storage function
by solving the corresponding Linear Matrix Equality (LME,
see Proposition 1 for its definition), where no condition on the
feedthrough term is required, is not practical either, for again,
conventional methods like interior point methods fail in solv-
ing the LME for the lossless case due to lack of interior points
to work with (for more details, see [5]). Hence, in this paper
we propose new results and numerically stable algorithms to
compute the storage function for a lossless system.

Algorithms for the computation of the storage function for
the lossless case involves computing the storage function either
directly from a state space representation or from a transfer
function representation of the system (see [1, P. 287] and [5]).
These algorithms involve steps which are computationally
intensive. In this paper, we first obtain results which allow
us to compare two different first order representations and
compute the storage function for the given lossless system.
Then, using these results, we propose an algorithm to compute
the storage function directly from what is called a ‘kernel
representation’ (see Definition 1). We then provide stable
and numerically improved algorithms for the cases when the
computation of the storage function is done starting from a
transfer function or an i/s/o representation.

The paper is organized as follows. Section II summarizes the
preliminaries required in the paper. In Section III we propose
an algorithm to compute the storage function starting from
a given kernel representation. In Section IV, we propose an
algorithm for computing the storage function from a given
transfer function. In Section V, we formulate algorithms that
are an improvement over the dual/adjoint method proposed
in [5]. Section VI contains a comparison of the algorithms
proposed in the paper and in the literature, based on their
computational time and numerical accuracy. Some concluding
remarks are presented in Section VII. Appendices A and B
contain a summary of results and proofs used in Algorithm 1.
Appendix C contains numerical examples to illustrate the
algorithms presented in the paper. The rest of this section is
devoted to notation.

The notation used in the paper is standard. The sets R and C

denote the fields of real and complex numbers respectively.
The set R[s] denotes the ring of polynomials in s with real
coefficients. The set R

w×p[s] denotes all w× p matrices with
entries from R[s]. We use • when a dimension need not be
specified: for example, R

w×• denotes the set of real constant
matrices having w rows. The space C∞(R, R

w) stands for the
space of all infinitely often differentiable functions from R to
R
w, and D(R, R

w) stands for the subspace of all compactly
supported functions in C∞(R, R

w).

II. PRELIMINARIES

In this section we give a brief introduction to various
concepts that are required to solve the problem addressed in
the paper.

A. The Behavioral Approach

We begin with some essentials of the behavioral approach
in control systems. A more detailed explanation can be found
in [16].

Definition 1: A behavior B is defined as the subspace of
C∞(R, R

w) consisting of all solutions to a set of linear ordi-
nary differential equations with constant coefficients, i.e., for
R(s) ∈ R

•×w[s]
B :=

{
w ∈ C∞(R, R

w) | R

(
d

dt

)
w = 0

}
. (1)

The variable w in equation (1) is called the manifest
variable and the set of linear differential behaviors with w
manifest variables is denoted as Lw. Equation (1) is called a
kernel representation of the behavior B ∈ Lw and written as
B = ker R( d

dt ). The polynomial matrix R(s) is assumed to
have full row rank (without loss of generality, see [16, Ch. 6])
which guarantees the existence of a nonsingular block P(s)
such that R(s)T = [

P(s) Q(s)
]
, where T ∈ R

w×w is a
permutation matrix. Conforming to this partition of R(s)T , w

is partitioned into input and output as T T w =
[

y
u

]
, where

u is input and y is output. Such a partition is called an
input-output partition of the behavior. Note that this partition
is not unique. An input-output partition is called proper if
P−1 Q is a matrix of proper rational functions, i.e. for each
entry, the numerator degree is atmost its denominator degree.
The number of components of the input depends only on B
and not on the input/output partition. The number of input
components of B is denoted as m(B), and is called the
input cardinality. The number of components in the output
is called the output cardinality and is denoted as p(B). For a
behavior B ∈ Lw, with a kernel representation R( d

dt )w = 0,
where R(s) ∈ R

p×w[s] is a full row rank polynomial matrix,
we have p(B) = rank R(s) = p and m(B) = w − p:
see [16, Definition 3.3.1].

In the behavioral approach, a system is nothing but its
behavior and thus the terms behavior/system are used inter-
changeably in this paper. We now define another important
concept required in the paper: controllability of the system.

Definition 2: A behavior B is said to be controllable if for
every w1, w2 ∈ B there exists w3 ∈ B and τ > 0 such that

w3(t) =
{
w1(t) for t � 0,

w2(t) for t � τ.

In the paper we represent the set of all controllable behav-
iors with w variables as Lw

cont. Analogous to the PBH test,
a behavior B with a minimal kernel representation B =
ker R( d

dt ) is controllable if and only if R(λ) has constant
rank for all λ ∈ C. One of the ways by which a behavior B
can be represented if B is controllable is the so-called ‘image
representation’. For M(s) ∈ R

w×•[s]:

B :=
{
w ∈ C∞(R, R

w)|∃� ∈ C∞(R, •) s.t. w = M(
d

dt
)�

}
.

(2)

If M(λ) has full column rank for all λ ∈ C, then the image
representation is said to be an observable image representation

For a behavior B ∈ Lw, we define the supply rate as:
Q�(w) = wT �w, � ∈ R

w×w. The supply rate is the rate
of supply of energy to the system. Throughout the paper,
we assume that for the given behavior B ∈ Lw, w = 2m, where



KOTHYARI et al.: LOSSLESS SYSTEMS STORAGE FUNCTION 4351

m is both the input and output cardinality (see Footnote 1 for
a justification) of the system. Also, for behaviors B ∈ Lw,
we deal with supply rates induced by real symmetric constant

nonsingular matrices � =
[

0 Im
Im 0

]
only (Im is the identity

matrix of dimension m), though many of the results can be
generalized for other supply rates as well. For a behavior
B ∈ Lw, where w = 2m and with an input/output partition

as w =
[

y
u

]
, the supply rate induced by � =

[
0 Im
Im 0

]

corresponds to the passivity/positive real supply rate 2uT y.
Thus, a lossless system is defined as follows:

Definition 3: A system B ∈ Lw, with1 w = 2m, is called

lossless with respect to the supply rate � =
[

0 Im
Im 0

]
if:

∫
R

wT
[

0 Im
Im 0

]
wdt =

∫
R

2uT ydt =0 for all w∈B∩D(R, R
w).

B. The Algebraic Riccati Equation (ARE)

Consider a proper input-output partition (u, y) for a con-
trollable dissipative behavior B ∈ Lw (w = 2m), with the
following minimal i/s/o representation:

ẋ = Ax + Bu, y = Cx + Du, (3)

where A ∈ R
n×n, B, CT ∈ R

n×m and D ∈ R
m×m. If the

system B is lossless w.r.t. the supply rate wT �w, then there
exists a matrix K = K T ∈ R

n×n such that the following
equation holds:

wT �w= d

dt
x T K x, for all w=

[
y
u
x

]
satisfying equation (3).

Here x T K x is defined as the storage function of the system B.
One of the results relating the storage function of a control-
lable behavior and the Linear Matrix Inequality (LMI) is the
Kalman-Yakubovich-Popov (KYP) lemma. For easy reference
we present the KYP lemma in the next proposition.

Proposition 1: [26] A behavior B ∈ Lw
cont (w = 2m), with

a minimal i/s/o representation as in equation (3) is dissipative

w.r.t. the supply rate wT �w (� =
[

0 Im
Im 0

]
) if and only if

there exists a solution K = K T ∈ R
n×n to the LMI.[

AT K + K A K B − CT

BT K − C −(D + DT )

]
� 0. (4)

Further, xT K x is the stored energy corresponding to
K = K T ∈ R

n×n.
For systems with D + DT > 0, the Schur complement
with respect to D + DT in LMI (4) provides us with the
algebraic Riccati inequality: AT K + K A + (K B − CT )
(D + DT )−1(BT K − C) � 0.

C. Static Relations and Storage Function
In [5], an algorithm was proposed to compute the storage

function by extracting the ‘static relations’ existing between
the state vectors of the system B and the state vectors of
the �-orthogonal complement of B (see [27] for definition

1The positive real property (Proposition 1) only applies to square transfer
functions, i.e for systems with equal number of inputs and outputs: hence the
assumption w= 2m.

of a �-orthogonal complement). The following result helps
in computation of the storage function starting from an i/s/o
representation of B.

Proposition 2 [5, Proposition 6.1]: Consider a control-
lable and lossless (w.r.t. the positive real supply rate) behavior
B with minimal state space representation as in equation (3).
Assuming the McMillan degree of B is n, and let R(s) :=
s E − H where

E :=
[

In 0 0
0 In 0
0 0 0

]
and H :=

⎡
⎣A 0 B

0 −AT CT

C −BT 0

⎤
⎦,

where E, H ∈ R
(2n+m)×(2n+m). Then the following statements

hold:
1) The polynomial matrix R(s) satisfies: det R(s) = 0.
2) There exists a matrix K ∈ R

n×n such that K satisfies

rank

[
R(s)

−K In 0

]
= rank R(s). (5)

where In is the identity matrix of size n and the matrix
K is unique and symmetric.

3) The matrix K = K T ∈ R
n×n of statement 2 satisfies:

d

dt
x T K x = 2uT y for all

[
y
u

]
∈ B. (6)

Some of the algorithms for the computation of the matrix K
given in [5] require the calculation of a minimal polynomial
basis2 (MPB) twice: once for an MPB, M(s) of the matrix
R(s) (equation (5)) and then an MPB for an appropriate
submatrix of M(s). In this paper, we also focus on improving
the algorithms given in [5] by avoiding the computation of
the MPB and thus making the computation of K much faster
and more accurate. Using equation (5), [−K I 0] is in the
row-span of the polynomial matrix R(s). This fact is used
to develop algorithms in Sections V-A and V-B to compute
the storage function K ∈ R

n×n for lossless systems. We next
cover some results that are used to develop such algorithms.

D. The Row-Reduced-Echelon Form and LU Factorization
A matrix A ∈ R

n×n is said to be in the row-reduced-echelon
form if the following two conditions are satisfied:

1) If row r is zero, then all rows below r are also zero.
2) If ai, j in A is the leading3 row-element (also called the

pivot) of the i th row, then the leading row-element ai+1,k
of the (i + 1)th row satisfies k > j .

A matrix can be brought to a row-reduced-echelon form by
premultiplication by unit lower triangular matrices, i.e. lower
triangular matrices with diagonal entries equal to one [8,
Ch. 3]. Due to the possibility of unacceptably large growth of
entries, we pursue the LU factorization with so-called partial
pivoting and we have:

P A = LU

where P is a permutation matrix, U is an upper triangular
matrix and L is an unit lower triangular with entries |�i, j | � 1
(see: [8, P. 115]).

2For a polynomial matrix R(s) ∈ R
p×w[s], with rank R(s) = p, let

R(s)Z(s) = 0, where Z(s) ∈ R
w×(w−p)[s] be a right nullspace basis of

R(s) and the let the column degrees of Z(s) be d1, d2, . . . , dw−p. If the
sum of all the degrees di , i ∈ {1, 2, . . . ,w − p} is minimal over the choice
of all right nullspace basis, then Z(s) is called a minimal polynomial basis
(see [11, Sec. 6.5.4]).

3ai, j in A is called the leading row-element if ai, j �= 0, and ai,� = 0 for
all � < j .
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E. Zassenhaus Sum-Intersection Algorithm for
Subspace Intersection

The Zassenhaus sum-intersection algorithm is used to calcu-
late a basis for the intersection of two subspaces. Consider two
full row rank matrices S and T with S, T ∈ R

•×n , the algo-
rithm (implemented using LU factorization) for computing
the intersection of the row spans of S and T (�S�R ∩ �T �R )
involves the following steps summarized into a result for easy
reference:

Proposition 3: Let the row spans of S, T ∈ R
•×n be

denoted by �S�R and �T �R respectively. Also let the dimension
of the subspace �S�R + �T �R be n1 and the dimension of the
intersection of the row spaces i.e. �S�R ∩ �T �R be n2, then a
basis for �S�R ∩ �T �R can be computed as follows:

1) Define W :=
[

S S
T 0

]
using matrices S and T .

2) Compute the LU factorization of W with partial
pivoting.

PW = LU

3) The rows of the submatrix U(n1+1 : n1+n2, n+1 : 2n)
form a basis for �S�R ∩ �T �R.

In Section V-A, we propose an algorithm applying the Zassen-
haus algorithm for the computation of the storage function. For
more details about the Zassenhaus algorithm, see [14].

F. Computation of Subspace Intersection Using
QR Factorization

In this section, we describe how the basis for intersection
of two subspaces can be calculated using QR factorization.
We use the following proposition in order to find the basis for
intersection of two subspaces. The proof is skipped since it is
straightforward.

Proposition 4: Let the column spans of two matrices
X, Y ∈ R

m×• be denoted by �X�C and �Y �C respectively. Let
X and Y be full column rank matrices and �X�C ∩�Y �C �= {0},
then a basis for �X�C ∩ �Y �C can be computed using the
following steps:

• Define W := [
X Y

]
.

• Use QR factorization of W T to find a full column rank
matrix N such4 that NW T = 0 and rank N = dim�X�C ∩
�Y �C .

• Partition NT in accordance with W as NT :=
[

X̂
Ŷ

]
.

• Columns of Z := X X̂ form a basis for �X�C ∩ �Y �C .
In Section V-B, we propose an algorithm which incorporates
the content of this section to compute the storage function.

III. TWO VARIABLE POLYNOMIAL MATRIX

FACTORIZATION AND COMPUTATION

OF STORAGE FUNCTION

In this section we provide an algorithm for computing the
storage function of a lossless behavior B ∈ Lw

cont (w = 2m),
directly from its kernel representation R( d

dt )w = 0, where

4Let A =: QR where R =
[

R1
0

]
, with R1 full row rank and upper

triangular, and Q an orthogonal matrix of appropriate dimensions. Let the
columns of Q corresponding to the zero rows in R be N . Then N satisfies
N T A = 0.

R(s) ∈ R
m×w[s] is full row rank. Row-reducedness.5 of

R(s) helps in the procedure, hence we assume this without
loss of generality6 In order to compute the storage function,
we compare two first order representations of the given
system B, one given by Proposition 5 which is formulated
directly from a given kernel representation, and the second
given by Proposition 6, which contains information of the
storage function of the system B. See Appendix A for
Propositions 5 and 6. In the following subsection, we describe
the construction and properties of certain matrices which are
required for the computation of the storage function. Since
these results are of independent interest, we present them here.

A. Polynomial Matrix Factorization and Input/Output
Partition for Lossless Systems

We first describe steps for obtaining the polynomial matrix
Y (s) in the minimal factorization of the two variable poly-

nomial �(ζ, η) =: R(−ζ )−R(η)
ζ+η where �(ζ, η) = Y (ζ )T X (η)

(see Appendix A, Proposition 5) without any numerical com-
putation. The matrix Y (s) is required for the computing the
storage function (see Step 4 of Algorithm 1). The initial steps
are based on [20, Remark 2.7]. Note that the coefficient matrix
�̃ ∈ R

mN×wN for the two variable polynomial �(ζ, η) is equal
to:

�̃=

⎡
⎢⎢⎢⎢⎣

−R1 −R2 . . . −RN−1 −RN
R2 R3 . . . RN 0
...

...
. . .

...
...

(−1)N−1 RN−1 (−1)N−1 RN 0 . . . 0
(−1)N RN 0 0 . . . 0

⎤
⎥⎥⎥⎥⎦

Thus we have:

�(ζ, η) = [
Im Imζ . . . Imζ N−1

]
�̃

⎡
⎢⎢⎣

Iw
Iwη
...

IwηN−1.

⎤
⎥⎥⎦ (7)

Now, rewriting equation (7), we obtain �(ζ, η) = Ỹ (ζ )T X̃(η),

where the matrix Ỹ (s)T := [−Im Ims . . . (−1)N ImsN−1
]

and

X̃(s) =

⎡
⎢⎢⎢⎢⎣

R1 + R2s + · · · + RN sN−1

R2 + R3s + · · · + RN sN−2

...
RN−1 + RN s

RN

⎤
⎥⎥⎥⎥⎦.

Notice that

X̃(s) =

⎡
⎢⎢⎢⎣

σ+(R(s))
σ 2+(R(s))

...
σ N+ (R(s))

⎤
⎥⎥⎥⎦

where σ+ : R[s] → R[s] is the shift-and-cut operator
(see [20]). The factorization �(ζ, η) = Ỹ (ζ )T X̃(η) may not

5 Let the matrix Rhr ∈ R
m×w be defined as the matrix whose j th row

contains the highest degree coefficients of the j th row of R(s) ∈ R
m×w[s],

j = 1, · · · ,m. The matrix R(s) is called row-reduced if Rhr is full row rank.
A polynomial matrix P(s) is called column-reduced if P(s)T is row-reduced.

6If R(s) ∈ R
m×•[s] is a full row rank polynomial matrix, there exists a

unimodular matrix U(s) ∈ R
m×m[s] such that the matrix U(s)R(s) =: R̂(s)

is row-reduced.
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be minimal in general as there may be redundant rows in
X̃(s). In our case, since R(s) is assumed to be row-reduced,
redundancies of rows in X̃(s), if any, are only due to zero rows.
The construction of a minimal factorization of �(ζ, η) is given
by the following lemma. Proof for the lemma follows from the
steps described above.

Lemma 1: Construct X (s) from X̃(s) (equation (7)) by
removing its zero rows and construct Y (s) from Ỹ (s) by
removing the rows of Ỹ (s) corresponding to the zero rows
of X̃(s). Then, for the two variable polynomial �(ζ, η),
a minimal factorization is �(ζ, η) = Y T (ζ )X (η).

In order to compute the storage function, we also require
an input/output partition for B; this can be determined with
the help of a minimal7 output-nulling representation of B.
In Proposition 5, the output-nulling representation obtained
in equation (14) is minimal if RN is full row rank, but this
is not true for the general case. Hence we first describe the
steps for obtaining a minimal output-nulling representation
from the representation given in equation (14). First assume
R(s) has rows permuted appropriately to have row degrees
di , i ∈ {1, 2, . . . ,m} arranged as d1 � d2 � · · · � dm where
dm = N . From Lemma 1, we observe that:

• The first set of zero row(s) of X̃(s) are contained in the
submatrix σ

d1+1
+ (R(s)) of X̃(s).

• The columns corresponding these zero row(s) are the
columns of the submatrix (−1)d1+1 Imsd1 of Ỹ (s)T which
are removed for the construction of Y (s).

Now consider the first order representation (E, F, G) in equa-
tion (13) and the submatrices Rd1 , Rd2 , and so on of G and
Y T

d1
, Y T

d2
, and so on of E . Note that

• Corresponding to the row(s) having highest degree d1 in
Rd1 , we have zero row(s) in Y T

d1
.

• Corresponding to the row(s) having the highest degree d2
in Rd2 , we have zero row(s) in Y T

d2
and so on.

Hence, using a suitable permutation matrix P ∈
R
m(N+1)×m(N+1), (E, F, G) obtained in equation (13) is

transformed as:[
Y 

0

]
d

dt
x +

[
F 


1
F 


2

]
x +

[
R


Rhr

]
w = 0 (8)

where Rhr is the highest row degree coefficient matrix upto

sign and P E =
[

Y 

0

]
, P F =

[
F 


1
F 


2

]
and PG =

[
R


Rhr

]
. Since

the matrix E is full column rank (as Y (ζ )T X (η) is a minimal

factorization), multiplying equation (8) by the matrix

[
L1 0
0 Im

]

where L1 is any left inverse of Y 
, we obtain:

d

dt
x = −L1 F 


1x − L1 R
w and 0 = −F 

2x + −Rhrw (9)

Note that Lemma 1 and the steps described above work
even if the given system B is not lossless. In the lossless
case, one can use the minimal output-nulling representation
in equation (9) to define a proper input/output partition for a
lossless system B which is required for the computation of
the storage function. Further note that the permutation matrix
corresponding to an input/output partition for the lossless sys-
tem B may not be unique, but some interesting properties are
hold for all such permutation matrices. Since these properties

7For a controllable behavior B, an output-nulling representation
(A, B, C, D) is called minimal if (C, A) is observable and the matrix D is
full row rank [22, Proposition 8.5].

are of independent interest, we formulate and prove them in
the following lemma.

Lemma 2: Consider a behavior B ∈ Lw
cont, with w = 2m,

lossless with respect to the supply rate � =
[

0 Im
Im 0

]
and

having a minimal output-nulling representation:

ẋ = Ax + Bw, 0 = Cx + Dw.

where A ∈ R
n×n, B, CT ∈ R

n×m and D ∈ R
m×w. Let the

permutation matrix Tw =
[

y
u

]
, T ∈ R

w×w, be such that

(u, y) is a proper input/output partition for B. Partition T

into

[
T11 T12
T21 T22

]
such that Ti j ∈ R

m×m for i, j ∈ {1, 2}. Then

Ti j satisfy:

1) Ti j = T T
i j for i, j ∈ {1, 2}.

2) T11 = T22 and T12 = T21.
Proof: For proving the above lemma, we crucially use a

result from [24, Lemma 14] after the following manipulation
on C and D which shows that wT �w = 0 for all w ∈ ker(D).

To see this, suppose T w =
[

y
u

]
, T ∈ R

w×w, is a proper

input/output partition for B. Also let ẋ = A
x + B 
u, y =
C 
x + D
u be a corresponding i/s/o representation. The matrix
C 
 can be constructed from C and D as follows. Since D is full
row rank, we have DT = [

D11 D12
]

where D11, D12 ∈ R
m×m

and D12 is nonsingular. Thus C 
 := −D−1
12 C . Since the system

is lossless with respect � =
[

0 Im
Im 0

]
, we have wT �w =

2uT y = d
dt x T K x , where K ∈ R

n×n is the storage function.
Hence, we have wT �w = (A
x+B 
u)T K x+x T K (A
x+B 
u).
Using the LME (equation (4)), we obtain wT �w = 2uT C 
x .
Corresponding to the set of w
s that lie in the nullspace of the
matrix D, we have Cx = 0. Thus, wT �w = 0 for all w ∈
ker(D). This allows us to apply [24, Lemma 14] to our case.
Let Di be the i th column of the matrix D. Then there exists
a selection of m linearly independent columns {c1, c2, . . . , cm}
of the matrix D, such that for all 1 � i � m, either Di or Di+m
belongs to {c1, c2, . . . , cm}, but not both Di and Di+m. Thus
the permutation matrix T swaps the i th and (i + m)th row of
the vector w depending upon whether the (i +m)th is taken as
input or not. Thus every matrix T has the following structure:

T =

⎧⎪⎪⎨
⎪⎪⎩

Ti,i =1 and T(i+m),(i+m) =1, if i th and (i +m)th rows
are not swapped

Ti,(i+m) =1 and T(i+m),i =1, if i th and (i +m)th rows
are swapped

Thus, T11 = T22, T12 = T21 and Ti j = T T
i j for i ,

j ∈ {1, 2}. �

B. Computation of the Storage Function

We focus on the computation of the storage function, and
hence in this section, we give only a gist of the results used to
formulate Algorithm 1: the relevant results and proofs are in
Appendices A and B. We obtain a first order representation for
the given behavior B using Proposition 5 (from [20]). While
Proposition 5 provides a first order representation for any
behavior, for lossless systems, there exists another first order
representation given by Proposition 6 (from [17]) containing
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information about the storage function. By comparing both
these representations (see Theorem 1 below), we obtain the
storage function. See Appendix A for Proposition 5 and
Proposition 6. We first state the following result which helps
later in the extraction of the storage function using Theorem 1.
See Appendix A for the definition of certain terms used in the
results below.

Lemma 3: For a behavior B ∈ Lw
cont, with a row-reduced

minimal kernel representation R(s) ∈ R
m×w[s] of degree N, let

R(s)T = [
P(s) −Q(s)

]
, P(s), Q(s) ∈ R

m×m[s] be a proper
input-output partition. Let x := Xw(

d
dt )w, Xw(s) ∈ R

n×w[s]
be the minimal state map constructed using the shift and
cut map and let a minimal factorization of the two variable
polynomial �(ζ, η) be �(ζ, η) =: Y (ζ )T Xw(η) (Lemma 1).

Define M(s) := T

[
Q(−s)T

P(−s)T

]
and X�(s) := Xw(s)M(s) and

expand Y (s) = Y0 + Y1s + · · · + YN−1sN−1 . Suppose, B is

lossless w.r.t. the supply rate induced by � =
[

0 Im
Im 0

]
, then

the following hold.
1) The degree of X�(s) is N − 1.
2) Let X�(s) = X�

0 + X�
1s + X�

2s2 + · · · + X�
N−1sN−1, then

the matrices X̂ , Ŷ ∈ R
mN×n defined as:

X̂ :=

⎡
⎢⎢⎢⎣

(X�
0)

T

(X�
1)

T

...
(X�

N−1)
T

⎤
⎥⎥⎥⎦, Ŷ :=

⎡
⎢⎣

Y T
0
...

Y T
N−1

⎤
⎥⎦

have the same left nullspace, i.e. for any v ∈ R
mN ,

vT X̂ = 0 ⇔ vT Ŷ = 0.

Proof: See Appendix B for the proof of Lemma 3. �
We now use the above lemma to prove the following result

which helps to determine the unique storage function for a
given lossless system. The following result is one of the main
results of this paper.

Theorem 1: Consider a behavior B ∈ Lw
cont, with a kernel

representation R( d
dt )w = 0, R(s) ∈ R

m×w[s], with R(s) row-
reduced and with degree equal to N. Let x := Xw(

d
dt )w,

Xw(s) ∈ R
n×w[s] be the minimal state map constructed

using the shift and cut map and let a minimal factorization
of �(ζ, η) (see Appendix A) be �(ζ, η) =: Y (ζ )T Xw(η).
Assume, R(s)T = [

P(s) −Q(s)
]
, P(s), Q(s) ∈ R

m×m[s] be
a proper input/output partition for the behavior B, where
T ∈ R

w×w is a permutation matrix. Define M(s), X�(s), X̂
and Ŷ as in Lemma 3 and define K := X̂†Ŷ with X̂† any
left inverse of X̂ . Suppose B is lossless w.r.t. the supply rate

� =
[

0 Im
Im 0

]
then,

1) K ∈ R
n×n defined above is symmetric, i.e. K = K T ,

and
2) xT K x is the unique storage function, i.e. K satisfies

d
dt x T K x = 2uT y for all

[
y
u

]
∈ B.

Proof: From the kernel representation R(s) and using
Proposition 5, we formulate a minimal first order representa-
tion for B: E1 ẋ +F1x +G1w = 0, E1, F1 ∈ R

(N+1)m×n, G1 ∈
R

(N+1)m×w, where x is the state variable. The polynomial
matrix R(s) can be written as R(s) = [

P(s) −Q(s)
]

T T .
Since M(s) is an observable image representation, we use

M(s) and Proposition 6 to formulate another first order
representation for B: E2 ż + F2z + G2w = 0, E2, F2 ∈
R

(N+1)m×n, G2 ∈ R
(N+1)m×w, where z is the state variable.

The state variable x is obtained as x = Xw(
d
dt )w and is

minimal. Also, the state variable z is obtained as z = X�(
d
dt )�

and is minimal. We also know that X�(s) = Xw(s)M(s),
hence x = z. Since first order representation (E1.F1, G1) and
(E2, F2, G2) are both minimal and ker(

[
d
dt E1 − F1 G1

]
) and

ker(
[

d
dt E2 − F2 G2

]
) are equal, the matrices (E1, F1, G1)

and (E2, F2, G2) are related as:

E1 = L E2, F1 = L F2 and G1 = LG2

for some nonsingular L ∈ R
(N+1)m×(N+1)m. Now we focus on

the matrices G1 and G2. The matrix G1 equals:

G1 =

⎡
⎢⎢⎢⎢⎣

−R0
R1

−R2
...

(−1)N+1 RN

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

[−P0 Q0]T T

[P1 −Q1]T T

[−P2 Q2]T T

...
...

[(−1)N+1 PN (−1)N QN ]T T

⎤
⎥⎥⎥⎥⎥⎦

.

Similarly, the matrix G2 equals:

G2 = −

⎡
⎢⎢⎢⎢⎢⎣

MT
0

MT
1

MT
2
...

MT
N

⎤
⎥⎥⎥⎥⎥⎦

� =

⎡
⎢⎢⎢⎢⎢⎣

[−P0 Q0]T T

[P1 −Q1]T T

[−P2 Q2]T T

...
...

[(−1)N+1 PN (−1)N QN ]T T

⎤
⎥⎥⎥⎥⎥⎦

.

Since G1 = G2, we conclude that matrix L is the identity
matrix and hence, we have E1 = E2. Since the construction
E2 involves the storage function K corresponding to the state
map X�(s) (see Proposition 6), we have:

K = Z

⎡
⎢⎣

Y T
0
...

Y T
N−1

⎤
⎥⎦

where Z is some left inverse of the matrix X̂ =
[ X�

0 X�
1 ... X�

N−1 ]T . Note that the matrix X̂ is full column
rank because the state map X�(s) is minimal. Since the left
nullspaces of matrix X̂ and Ŷ (Ŷ = [ Y0 ... YN−1 ]T ) are the same
(Lemma 3), the matrix K is unique and K = X̂†Ŷ and X̂† can
be any left inverse of X̂ . Since, in the matrix K is required to
be symmetric in the formulation of Proposition 6 and also of
[17], hence K obtained here is also symmetric. �

We propose an algorithm to compute the storage function
for the given lossless system B starting from a kernel rep-
resentation of the given system and a proper input/output
partition.

IV. MATRIX FRACTION DESCRIPTION AND TWO

VARIABLE POLYNOMIAL MATRIX FACTORIZATION

BASED COMPUTATION OF THE

STORAGE FUNCTION

In this section, we introduce an algorithm to compute the
storage function for a lossless system from the given transfer
function matrix of the system. We consider only lossless
positive real transfer functions. A transfer matrix G(s) ∈
R(s)m×m is called Lossless Positive Real if G(s) is positive
real and G(s)+ G(−s)T = 0. A lossless positive real transfer
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Algorithm 1 Two Variable Polynomial Matrix Factorization
Based Computation of Storage Function

Input: Lossless behavior B ∈ Lwcont, (w = 2m) with
a minimal kernel representation R( d

dt )w = 0,
R(s) ∈ R

m×w[s], R(s) is row-reduced and the permutation
matrix T corresponding to some proper input/output

partition Tw =
[

y
u

]
.

Output: Storage function K ∈ R
n×n such that

wT �w = 2uT y = d
dt xT K x .

1: Compute a first order representation for B using Proposition 5
and Lemma 1. Let N be the degree of R(s).

2: Define M(s) := T

[−Q(−s)T

P(−s)T

]
where R(s)T =: [

P(s) −Q(s)
]

is a proper input/output partition of the system.
3: Construct the minimal state map x := Xw( d

dt )w, Xw(s) ∈
R
n×w[s], by applying the shift-and-cut operation to R(s)

(Lemma 1) and X�(s) := Xw(s)M(s), X�(s) ∈ R
n×m[s].

4: Let �(ζ, η) := R(−ζ )−R(η)
ζ+η and factorize �(ζ, η) =:

Y (ζ )T Xw(η) where Y (s) ∈ R
n×m[s].

5: Expand X�(s) = X�
0 + X�

1s + X�
2s2 + · · · + X�

N−1sN−1 and
Y (s)T = Y T

0 + Y T
1 s + Y T

2 s2 + · · · + Y T
N−1sN−1

6: K ∈ R
n×n is K :=

⎡
⎢⎢⎢⎢⎣

(X�
0)T

(X�
1)T

...

(X�
N−1)T

⎤
⎥⎥⎥⎥⎦

† ⎡
⎢⎢⎣

Y T
0
...

Y T
N−1

⎤
⎥⎥⎦ where •†

denotes the pseudo-inverse.

matrix G(s) := ni, j (s)
di, j (s)

, i, j ∈ {1, 2, · · · ,m} is strictly proper8

and from the definition of a positive real transfer function
(see [1, P. 51]), we deduce that a necessary condition for G(s)
to be a lossless positive real transfer matrix is:

roots of di, j ⊆ roots of di,i ∩ d j, j

(counted with multiplicity). (10)

First we briefly go through the steps involved in computing the
storage function for a given lossless system B ∈ Lw

cont where
w = 2m from its transfer function representation. Suppose
G(s) = N(s)D(s)−1 where N(s), D(s) ∈ R

m×m[s] is a right
co-prime matrix fraction description (MFD) of G(s). Then,

w =
[

N( d
dt )

D( d
dt )

]
� becomes an observable image representation

for the given system. Since G(s) + G(−s)T = 0, we note
that

[
D(− d

dt )
T N(− d

dt )
T
]
w = 0 is a controllable kernel

representation for the given system. Assuming that M(s) :=[
N(s)
D(s)

]
(and hence9 D(s)) is column-reduced (see definition

in Footnote 5), by constructing two first order representations
using the kernel and image representations obtained from
the right co-prime MFD and then by applying Theorem 1,
we obtain the storage function for the system.

8The KYP lemma (see Proposition 1) requires the transfer matrix to be
proper. The lossless positive real transfer matrix G(s) is in fact strictly proper
as it has an LC realization and can be written as [1, P. 216]:

G(s) = �
( Z

s − jω
+ Z∗

s + jω

) + s−1C

where Z and C ∈ R
m×m are all Hermitian and positive semidefinite.

9Since G(s) is strictly proper, for each column of M, the highest degree
coefficients exist only in the block D(s).

For computing the right co-prime MFD
• Construct R̂(s) := [

P(s) −Q(s)
]
, R̂(s) ∈ R

m×w[s],
P(s), Q(s) ∈ R

m×m[s] where P(s) := diag {d1,1(s),
d2,2(s), · · · , dm,m(s)} and Q(s) = P(s)G(s), where
G(s) ∈ R(s)m×m is the given transfer function and di,i (s)
is the denominator of the (i, i)th element in G(s), i =
1, · · · ,m. Equation (10) ensures that Q(s) is a polynomial
matrix.

• Compute a minimal polynomial basis for R̂(s) using the
algorithm in [31].

• If M̂(s) :=
[

M1(s)
M2(s)

]
, M̂(s) ∈ R

w×m[s], M1(s), M2(s) ∈
R
m×m[s] is a minimal nullspace basis of R̂(s), then,

M1(s)M2(s)−1 is the desired right co-prime MFD.
Another advantage of using the algorithm in [31] is that
M̂(s) (and hence M2(s)) obtained is column-reduced since
the nullspace basis is a minimal polynomial basis. In case
of SISO systems, a kernel representation is constructed as
R(s) = [

d(s) −n(s)
]

where G(s) = n(s)
d(s) is the SISO transfer

function as n(s) and d(s) are co-prime (see [9, Sec. 5]).

Algorithm 2 Two Variable Polynomial Matrix Factorization
Based Computation of Storage Function (MFD Based)

Input: Behavior B ∈ Lwcont, (w = 2m), with a lossless
positive real transfer matrix G(s) ∈ R(s)m×m and
G(s) = N(s)D(s)−1, N(s), D(s) ∈ R

m×m[s] and are right
co-prime, D(s) is column-reduced.
Output: The storage function K ∈ R

n×n such that
2uT y = d

dt xT K x .

1: R(s) := [
D(−s)T N(−s)T

]
and M(s) :=

[
N(s)
D(s)

]
. Let N be the

highest degree in both R(s) and M(s).
2: Construct the state map x := Xw( d

dt )w, Xw(s) ∈ R
n×w[s],

by applying the shift-and-cut operation to R(s) (Lemma 1) and
X�(s) := Xw(s)M(s), X�(s) ∈ R

n×m[s].
3: Expand �(ζ, η) := R(−ζ )−R(η)

ζ+η and factorize �(ζ, η) =:
Y (ζ )T Xw(η) where Y (s) ∈ R

n×m[s].
4: Let X�(s) = X�

0 + X�
1s + X�

2s2 +· · ·+ X�
N−1sN−1 and Y (s)T =

Y T
0 + Y T

1 s + Y T
2 s2 + · · · + Y T

N−1sN−1.

5: K ∈ R
n×n is K :=

⎡
⎢⎢⎢⎢⎣

(X�
0)T

(X�
1)T

...

(X�
N−1)T

⎤
⎥⎥⎥⎥⎦

† ⎡
⎢⎢⎣

Y T
0
...

Y T
N−1

⎤
⎥⎥⎦ where •† denotes

the pseudo-inverse.

V. ALGORITHMS FOR STATIC RELATIONS EXTRACTION

As noted in Section II-C, the algorithms proposed in [5] for
the computation of the storage function requires computing
the minimal polynomial basis of R(s) (see Proposition 2).
In this section we propose faster algorithms to compute
the storage function. We find the intersection of the row
spaces of matrices R(λ1) and R(λ2), λ1, λ2 ∈ C in order
to compute the storage function. As noted in Proposition 2,[−K In 0

]
lies in the row space of the polynomial matrix

R(s). In order to extract K , we evaluate R(s) at various
λ ∈ C and compute the intersection of the row spaces of
R(λ)’s. A notion of interpolation frequencies has been studied
in [23], where spectral zeros are candidates for interpolation
of a suitable two-variable polynomial matrix. For the case of
lossless systems, the spectral zeros are, in fact, the whole
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complex plane. The precise link between the λi where we
evaluate R(s) and the interpolation frequencies in [23] needs
further investigation.

A. LU Zassenhaus Algorithm Implementation
In this section, we propose an algorithm for computing the

storage function based on LU factorization. We first evaluate
R(λi ) where λi ’s are the roots of the polynomial sk − 1 for
some value of k ∈ Z

+ and then extract the storage storage
function from the intersection of the row spans of all R(λi )’s,
i = 1, · · · , k. In order to extract [−K I 0] from the row
span of R(s) ∈ R

(2n+m)×(2n+m)[s] (Proposition 2) we propose
the following algorithm.

Algorithm 3 LU Based Computation of K

Input: R(s) := sE − H ∈ R
(2n+m)×(2n+m)[s], a rank 2n

polynomial matrix and tolerance � > 0.
Output: K ∈ R

n×n with xT K x the storage function.
Require: Evaluate R(λi ) ∈ R

(2n+m)×(2n+m) at

λi ∈ C, i = 1, 2, .., k which are the roots of sk − 1

for k suitably chosen depending on the accuracy �.

1: W :=
[

R(λ1) R(λ1)
R(λ2) 0

]
, [L , U, P] := lu(W )

2: D := U(2n+ m+ 1 : 4n+ 2m− �, 2n+ m+ 1 : 4n+ 2m)
3: where � as the largest integer such that

�U(4n + 2m − � + 1 : 4n+ 2m, :)�2 < �.

4: Let c be the number of rows of D. Note that c � n.
5: while c > n do

6: W :=
[

R(λd ) R(λd )
D 0

]
, [L , U, P] := LU(W )

7: D := U(2n+ m+ 1 : 2n+ m+ c − �, 2n+ m+ 1 : 4n+ 2m)
8: � is the largest integer such that:

�U(2n + m+ c − � + 1 : 2n+ m+ c, :)�2 < �.

9: Let c be the number of rows of D and d = 3, 4, . . . ., k.
10: end while
11: X := D(1 : n,n+ 1 : 2n), Y := D(1 : n, 1 : n).
12: K := −X−1Y .

B. QR Based Subspace Intersection Method

In this section, we propose an algorithm for computing the
storage function based on a QR factorization. We first evaluate
R(λi ) where λi ’s are the roots of the polynomial sk − 1 for
some value of k ∈ Z

+ and then extract the storage function
from the intersection of the row spans of all R(λi )’s, i =
1, · · · , k. In order to extract [−K I 0] from the row span
of R(s) ∈ R

(2n+m)×(2n+m)[s] (Proposition 2) we propose the
following algorithm:

VI. COMPARISON OF ALGORITHMS

In this section, we compare the algorithms presented in the
paper with the existing algorithms in the literature. We com-
pare the steps taken to compute the storage function in the
algorithms presented in this paper and the existing algorithms
and argue that the algorithms presented in the paper are
computationally less intensive and are numerical more stable.
Using numerical experiments we next compare the time taken
and the numerical accuracy of the algorithms proposed in the
paper with the existing algorithms and show that the algo-
rithms presented in this paper are faster than the algorithms in

Algorithm 4 QR Based Computation of K

Input: R(s) := sE − H ∈ R
(2n+m)×(2n+m)[s], a rank 2n

polynomial matrix and tolerance � > 0.
Output: K ∈ R

n×n with xT K x the storage function.
Require: Evaluate R(λi ) ∈ R

(2n+m)×(2n+m), at

λi ∈ C, i =1, 2, .., k which are the roots of sk − 1

1: W := [
R(λ1)T −R(λ2)T

]
, [Q, R, P] := qr(W T )

2: Remove the last � columns of Q where � is the largest integer
such that:

�R(4n+ 2m− � + 1 : 4n+ 2m, :)�2 < �

Let the removed columns form the set U ∈ R
(4n+2m)×�.

3: Select the first (2n + m) rows of U (call them U1) and define
V := W (:, 1 : 2n+ m)U1, V ∈ R

(2n+m)×�.
4: [Q, R, P] := qr(V ). Let z be the largest integer such that:

�R(2n + m− z + 1 : 2n+ m, :)�2 < �

Let the first � − z columns of Q be denoted by Q̂ and c := � − z
and let d = 3. Note that c � n.

5: while c > n do
6: W := [

R(λd )T −Q̂
]
, [Q, R, P] := qr(W T )

7: Remove the last � columns of Q where � is the largest
integer such that:

�R(2n+ m+ c − � + 1 : 2n + m+ c, :)�2 < �

Let the removed columns form the set U ∈
R

(2n+m+c)×�.
8: Select the first (2n+ m) rows of U (call them U1) and

define V := W (:, 1 : 2n + m)U1, V ∈ R
(2n+m)×•.

9: [Q, R, P] := qr(V ). Let z be the largest integer such that:

�R(2n + m− z + 1 : 2n+ m, :)�2 < �

Let the first �−z columns of Q be denoted by Q̂ and c := �−z.
10: d = d + 1.
11: end while
12: D := Q̂T

13: X := D(1 : n,n+ 1 : 2n), Y := D(1 : n, 1 : n).
14: K := −X−1Y .

the literature and compute the storage function with relatively
same accuracy. To summarize, the rest of this section is a
comparison of proposed algorithms and the algorithms in the
literature with respect to the following criteria.

(a) Computational effort, in terms of flop count estimate:
Section VI-A

(b) Computational time (for randomly generated transfer
functions of various orders): Section VI-B

(c) Computational error, in particular, ErrLMI(K ) and
ErrSym(K ), formulated in equations (11) and (12):
Section VI-C

A. Computational Intensity Comparison
The existing algorithms in the literature to compute the stor-

age function for the lossless case are described in [1, P. 287]
and in [5], where four different algorithms, namely: partial
fraction expansion based method, Bezoutian based method,
balancing realization and the dual/adjoint method are pro-
posed. Below is a summary of key differences.

1) Balanced realization involves converting the given i/s/o
realization to a balanced realization (controllability and
observability Gramians are equal) whose storage func-
tion is In (n is the number of states).
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2) The dual adjoint method involves computing a minimal
polynomial basis (MPB) twice in order to compute
the storage function. Computing MPB twice is com-
putationally intensive and hence we proposed the LU
and QR based algorithms (Algorithms 3 and 4) which
not only avoid computing the MPB, but are also more
numerically stable.

3) In case of MIMO transfer functions, the partial fraction
based method involves computationally intensive steps
like computing the partial fraction expansion of the
transfer function. The partial fraction based method also
involves inverting a matrix of order n2, hence the flop
count of the partial fraction based method is relatively
large (see Remark 1 for more on this).

4) The Bezoutian based method is only proposed for the
SISO case. This involves computing the storage function
by performing Euclidean long division or by computing
the 2-D Fourier transform.

5) To compute the storage function from a given transfer
function using the algorithm given in [1, P. 287], first
a controllable i/s/o representation is obtained and then
the storage function K is computed by inverting the
controllability matrix. Using Algorithm 2, we simulta-
neously compute both the storage function as well as
the corresponding i/s/o realization.

6) In the co-prime MFD based method (Algorithm 2),
we compute a right co-prime MFD of the given trans-
fer function. This is done by computing the minimal
nullspace basis for the matrix R(s) := [

P(s) − Q(s)
]
,

R(s) ∈ R
m×w[s], P(s), Q(s) ∈ R

m×m[s] where
P(s) := diag {d1,1(s), d2,2(s), · · · , dm,m(s)} and Q(s) =
P(s)G(s), where G(s) ∈ R(s)m×m is the given transfer
function and di,i (s) is the denominator of the (i, i)th ele-
ment in G(s), i = 1, . . . ,m. For computing the nullspace
basis of R(s), stable algorithms like the one given in [31]
are employed. Also, the algorithm in [31] computes a
nullspace basis which is also column-reduced and hence
the state map (w.r.t. the manifest variables) and other
required polynomial matrices (Step 3 of Algorithm 2)
are computed without any effort.

7) Since only lossless positive real transfer matrices are
considered, the storage function K is positive definite
(see [1, P. 221]). Note that computing K −1 requires
hardly any computation since, as described in Lemma 1,
the structure of the matrix

[
Y0 Y1 · · · YN−1 0

]T ,
consisting of just 0’s and 1’s, allows finding its pseudo-
inverse easily. If K is the storage function correspond-
ing to the i/s/o representation (A, B, C), then K −1 is
the storage function corresponding to the realization10

(−AT , CT , BT ).
8) For the SISO case, the computationally intensive steps

in the co-prime MFD based method are: a polynomial
matrix multiplication (see Step 2 of Algorithm 2) and
computing K (Step 6 of Algorithm 2) which again can
be done away with if one computes K −1.

A comparison of the flop count (for the SISO case) for
algorithms discussed in this paper and those in the literature is
done in Table I. The terms n, d and f in the table are defined
as follows.

10If the matrix K satisfies the LME (4) corresponding to the realization
(A, B, C), then K−1 satisfies the LME corresponding to the realization
(−AT , CT , BT ). Since G(s) is lossless, C(s In − A)−1 B = −BT (−s In −
AT )−1CT = BT (s In + AT )−1CT .

Fig. 3. Plot for time taken by algorithms versus system’s order.

Fig. 4. Plot for time taken by algorithms versus system’s order.

Fig. 5. Plot of ErrLMI(K ) For Partial Fraction based method and Co-prime
based method (see equation (11)) versus system order.

1) n degree of the denominator of the SISO transfer func-
tion and also the number of states in the system.

2) d is the number times the loop (steps 2 and 4 in
Algorithms 3 and 4 respectively) runs.

3) f is the highest degree in the nullspace of R(s)
(equation (5)).

B. Time Comparison

The plot in Figures 3 and 4 show the time taken by both
the static relations extraction methods elaborated in Section V
(Algorithms 3 and 4) and by the co-prime MFD based method
(Algorithm 2) to calculate the storage function. Their time is
compared with the time taken by the partial fraction based
algorithm given in [5, Algorithm 7.1] for SISO systems of
different orders. The experiments were carried out on an
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TABLE I

COMPARISON OF FLOP COUNT

Fig. 6. Plot of ErrLMI(K ) (see equation (11)) versus system order.

Intel Core i3 computer at 3.40 GHz with 4 GB RAM using
Ubuntu 16.04 LTS operating system. The relative machine
error precision is � ≈ 2.22 × 10−16. Open source numerical
computational package Scilab 5.5 has been used to implement
the algorithms. The numerical experiments for both time and
computational error was computed as follows. For each system
order, 10 transfer functions were generated randomly. For each
of these transfer functions, the time was averaged over 20 runs
to minimize effects due to other system operations. The
average time/error over the 10 randomly generated transfer
functions for the five algorithms (three proposed in this paper,
and two from the literature) are plotted in Figures 3 and 4
for time and Figures 5-8 for computational error. It can be
seen from the plot that the LU and QR based methods take
approximately the same time for computing K while co-prime
MFD based method requires the least amount of time to
compute the storage function and is about 8 times faster than
the partial fraction based method. It has been elaborated in [12]
that the adjoint method in [5, Algorithm 7.4] performs slower
than the LU based method and is less suitable for systems of
higher orders.

We observe that the time by the partial fractions method is
more than the time taken by the co-prime factorization, though
the flop count (for the SISO case) partial fraction method is
less. The partial fraction method involves the inversion of a
matrix of size n2. But in the SISO case, the matrix of size n2

is diagonal and this significantly reduces the number of flops.
The MIMO case would need further system parameters for
an accurate analysis and this is described in the remark
below where we compare the flop counts for the co-prime
factorization and partial fraction based methods.

Remark 1: If we consider a system with a MIMO transfer
function G(s), computation of the storage function using
the partial fractions would require O(n6) flop, where n is

Fig. 7. Plot of ErrSym(K ) For Partial Fraction based method and Co-prime
based method (see equation (12)) versus system order.

Fig. 8. Plot of ErrSym(K ) (see equation (12)) versus system order.

the number of states in the given system. This is because the
partial fraction method involves inverting a matrix of size n2.
Computing a co-prime factorization G(s) = N(s)D(s)−1 of
the transfer function would require O(w3f3d) flop counts,
where w is the size of the square transfer function (and is
also the number of input/outputs), f is the degree the matrix
D(s) and d is the highest degree amongst all the denominator
terms of G(s). The next computationally intensive step in
the co-prime factorization based method is multiplication
of polynomial matrix (Step 2 of Algorithm 2). Computing
X�(s) = X (s)M(s) (see Algorithm 2) and computing X̃� =
X̃(s)M(s), where X̃(s) is constructed using shift and cut
map (see Lemma 1), would requires the same number of
operations. The flop count for computing X̃�(s) is w3f3. Thus,
for the MIMO case, the flop count required for the co-prime
Factorization based method would be less than that of the
partial fractions based method. The flop counts of both the
algorithms are comparable only when the w and f are equal
to n, which does not happen for most of the cases as examples
of large scale systems where the number to states is equal the
number of inputs/outputs are rare.

C. Comparison of the Computational Error
We compare the computational error of the algorithms

presented in the paper and the algorithms in the literature.
We compare how accurately the storage function K is com-
puted using the co-prime MFD based method (Algorithm 2),
the LU and QR based methods, the minimal polynomial basis-
based method and the partial fraction based method. As dis-
cussed in Section II-C, the symmetric matrix K calculated
for the lossless case satisfies the LMI given in equation (4)
with equality. Thus, the symmetric K satisfies the following
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equation: [
AT K + K A K B − CT

BT K − C 0

]
= 0.

Thus we consider the following errors associated with com-
putation of K .

ErrLMI(K ) := ∥∥ [
AT K + K A K B − CT

BT K − C 0

] ∥∥
2. (11)

ErrSym(K ) := �K − K T �2. (12)

We calculate the errors ErrLMI(K ) and ErrSym(K ) for
randomly generated lossless systems. From Figures 5, 7, 6
and 8, we see that for all the five algorithms (i.e. three
proposed, and two from the literature), the computational
error as measured by equations (12) and (11) are comparable.
The advantage remains in the computational effort as reflected
by the time plots.

VII. CONCLUDING REMARKS

We noted that computing the storage function by finding
the solutions to the LME using conventional LMI solvers is
not possible in the case of lossless systems. In this paper
we formulated four non-iterative and numerically stable algo-
rithms for the computation of the storage function for lossless
(and in general, energy conservative) systems. The algorithms
proposed in this paper perform faster than similar algorithms
available in the literature. We formulated algorithms using
different starting points, Algorithm 1 uses a row-reduced
minimal kernel representation of the given lossless system,
Algorithm 2, uses a transfer function representation of the loss-
less system and Algorithms 3 and 4 start with an i/s/o represen-
tation of the given lossless system. The algorithms presented
in the paper are stable, perform well in speed and accuracy and
have a lower (or comparable) flop count when compared with
similar algorithms present in the literature (see Table I and
Remark 1). Our algorithms use standard numerical techniques
like LU and QR (with permutation for proven numerical sta-
bility) which have established LAPACK/LINPACK routines,
unlike polynomial/rational matrix algorithms whose numerical
stability guarantees are a matter of current research.

Of independent interest are the results formulated and
proved in Section III-A, i.e. the procedure to obtain a minimal
output-nulling representation for any system B from a given
row-reduced minimal kernel representation of B and the
properties of all permutation matrices that yield a proper
input/output partition for a given lossless system (Lemma 2).
Some numerical examples for Algorithms 2, 3 and 4 are listed
in Appendix C.

A direction of further investigation is how these algorithms
perform when a system is close to uncontrollable. Further,
when the system is uncontrollable, the algorithms would need
significant modification. These are areas of future work.

APPENDIX A
In this appendix, we describe the two first order representa-

tions used in the algorithm proposed in Section III for the com-
putation of the storage function. Consider a lossless system
B ∈ Lw

cont, (w = 2m), lossless with respect to the supply rate

induced by � =
[

0 Im
Im 0

]
∈ R

w×w and with a minimal kernel

representation R( d
dt ) = 0, R(s) ∈ R

m×w[s]. Let the degree
of R(s) be N . Define a two variable polynomial �(ζ, η) :=

R(−ζ )−R(η)
ζ+η and suppose �(ζ, η) = Y (ζ )T X (η) is a minimal

factorization11 where X (s) ∈ R
n×w[s] is a minimal state map

x := X ( d
dt )w and Y (s) ∈ R

n×m[s]. Following result gives us
one of the representation of B required in Algorithm 1.

Proposition 5: [20, Sec. 2.5] For a system B ∈ Lw
cont,

(w = 2m), with a minimal kernel representation R( d
dt ) = 0,

R(s) ∈ R
m×w[s], let �(ζ, η) = Y (ζ )T X (η) is a minimal

factorization of �(ζ, η). Then a state space representation
Eẋ + Fx + Gw = 0 of B is given by:⎡

⎢⎢⎢⎣
Y T

0
...

Y T
N−1
0

⎤
⎥⎥⎥⎦ ẋ +

⎡
⎢⎢⎢⎣

0
Y T

0
...

Y T
N−1

⎤
⎥⎥⎥⎦ x +

⎡
⎢⎢⎣

−R0
R1
...

(−1)N+1 RN

⎤
⎥⎥⎦w = 0 (13)

where Y (s) = Y0 + Y1s + · · · + YN−1sN−1 and R(s) =
R0 + R1s +· · ·+ RN sN . Also, premultiplying equation (13) by

the matrix T :=
[

L 0n×m
0m×mN Im

]
, T ∈ R

(n+m)×m(N+1), where

L ∈ R
n×mN is a left inverse of the matrix [ Y0 Y1 ... YN−1 ]T , one

obtains an output-nulling representation:

ẋ = −L

⎡
⎢⎢⎢⎣

0
Y T

0
...

Y T
N−2

⎤
⎥⎥⎥⎦ x − L

⎡
⎢⎢⎣

−R0
R1
...

(−1)N RN−1

⎤
⎥⎥⎦ w

0 = −Y T
N−1x + (−1)N RN w. (14)

Now let M( d
dt )� = 0, M(s) ∈ R

w×m[s] be an observable
image representation of B and let the unique symmetric
storage function matrix corresponding to the minimal state
map x := X�(

d
dt )�, X�(s) ∈ R

n×m[s] be K ∈ R
n×n. Following

result provides us with the second first order representation
required in Algorithm 1.

Proposition 6: [17] Consider a lossless behavior B ∈
Lw

cont, with an observable image representation M( d
dt )� = 0,

M(s) ∈ R
w×m[s] and lossless with respect to the supply rate

�. Suppose, the degree of the matrix polynomial M(s) is equal
to N and let X�(s) = X�

0 + X�
1s + X�

2s2 + · · · + X�
N−1sN−1

and M(s) = M0 + M1s + · · · MN sN . Then matrices E, F ∈
R

(N+1)m×n, G ∈ R
(N+1)m×w defined below form a state space

representation Eẋ + Fx + Gw = 0:

E :=

⎡
⎢⎢⎢⎢⎢⎣

(X�
0)

T

(X�
1)

T

...

(X�
N−1)

T

0

⎤
⎥⎥⎥⎥⎥⎦

K , F :=

⎡
⎢⎢⎢⎢⎢⎣

0
(X�

0)
T

(X�
1)

T

...
(X�

N−1)
T

⎤
⎥⎥⎥⎥⎥⎦

K (15)

and

G := −

⎡
⎢⎢⎢⎣

MT
0

MT
1
...

MT
N

⎤
⎥⎥⎥⎦�. (16)

11Let Y (s) = Ỹ

⎡
⎢⎣

Im
Ims
.
.
.

⎤
⎥⎦ and X (s) = X̃

⎡
⎢⎣

Iw
Iws
.
.
.

⎤
⎥⎦ where Ỹ and X̃ are

the coefficient matrices of Y (s) and X (s). The factorization �(ζ, η) =:
Y (ζ )T X (η) is called a minimal factorization if Ỹ and X̃ are each of full
row rank [20, Sec. 2.3].
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APPENDIX B

In this appendix we provide a proof of Lemma 3
Proof of Lemma 3: First we note that R(s)M(s) = 0. This

is due to G(s) = P(s)−1 Q(s) and G(s) = −G(−s)T .
Statement 1: Let the highest degree in the polynomial matrix

X�(s) = Xw(s)M(s) be Ñ . Since, X�(s) = Xw(s)M(s), using
degree arguments about Xw(s) and M(s), we conclude that
Ñ � 2N − 1. Now we show that in fact Ñ = N − 1. Consider
the polynomial matrix X̃�(s) = X̃w(s)M(s), where the matrix
X̃w(s) ∈ R

Nm×w[s] is:

X̃w(s) =

⎡
⎢⎢⎢⎢⎣

R1 + R2s + . . . + RN sN−1

R2 + R3s + . . . + RN sN−2

...
RN−1 + RN s

RN

⎤
⎥⎥⎥⎥⎦. (17)

The matrix X�(s) can be constructed by removing the zero
rows from X̃�(s). We first concentrate on the multiplication
of the first m rows of X̃�(s) and M(s). Define

X1(s) := [
R1 + R2s + . . . + RN sN−1

]
M(s).

The coefficient matrices corresponding to degrees greater than
N − 1 of X1(s) are the same as the coefficient matrices corre-
sponding to degrees greater than N for the matrix polynomial
matrix R(s)M(s). Next consider the following polynomial
matrix multiplication:

X2(s) := [
R2 + R3s + . . . + RN sN−2

]
M(s).

Here again, the coefficient matrices corresponding to degrees
greater than N − 1 of X2(s) are the same as the coefficient
matrices corresponding to degrees greater than N − 1
for the matrix polynomial matrix R(s)M(s). In a similar
manner we show that for polynomial matrices X3(s) :=[
R3 + R4s + . . . + RN sN−3

]
M(s), . . . , X N−1(s) :=[

RN−1 + RN s
]

M(s) and X N (s) := RN M(s) coefficient
matrices for degrees greater than N − 1 are same as the
coefficients corresponding to degree greater than N in
the polynomial matrix R(s)M(s). Since R(s)M(s) = 0,
for the polynomial matrix X̃�(s) (and also for X�(s)) all
coefficient matrices of terms with degree greater than N − 1
are zero. This proves Statement 1.

Statement 2: Referring to the construction of Y (s) in
Lemma 1, we conclude that the left nullspace of Ŷ consists
of certain rows of the identity matrix ImN . Also, from the
construction of Y (s), we conclude that the left nullspace of Ŷ
is also the left nullspace of X̃w(s) (equation (17)) because
the zeros rows of X̃w(s) correspond to the rows of Ŷ (s)
(see Lemma 1) that are removed in order to construct Y (s).
Also note that since B is lossless, the row degree structure
of R(s) and the column degree structure of M(s) are the
same. Expand X̃�(s) := X̃w(s)M(s) as X̃�(s) = X̃�

0 + X̃�
1s +

· · · + X̃�
N−1sN−1. X̂ can be constructed by removing the zero

columns of X̂� := [
X̃�

0 X̃�
1 . . . X̃�

N−1

]T
. Also, by rewriting

certain elements in matrix X̂� in terms of higher degree
coefficients of the matrix M(s), one can show that X̂�, X̂
and Ŷ all have the same left nullspace. This requires a lot of
book keeping, hence due to the paucity of space, we prove
Statement 2 only for a specific case: R(s) ∈ R

3×6[s] and w =[
y
u

]
is a proper input/output partition. Further assume that the

degree of row 1 of R(s) has degree equal to 1, row 2 of R(s)
has degree equal to 2 and the third row has degree equal to 4.
Consider the polynomial matrix X̃�(s) = X̃w(s)M(s), where
the matrix X̃�(s) ∈ R

12×3[s] and the X̃w(s) ∈ R
12×6[s] equals:

X̃w(s) =
⎡
⎢⎣

R1 + R2s + R3s2 + R4s3

R2 + R3s + R4s2

R3 + R4s
R4

⎤
⎥⎦.

The right nullspace basis of Ŷ T (constructed in
accordance with the procedure described in Lemma 1)
is

[
e4 e7 e8 e10 e11

]
where ei is the i th column of

I12. Now, consider the matrix X̃�(s) and let X̃�(s) =
X̃�

0 + X̃�
1s + X̃�

2s2 + X̃�
3s3. The matrix X̂ can be obtained by

removing the zero columns from the matrix
[
X̃�

0 X̃�
1 X̃�

2 X̃�
3

]T
.

We now show that the fourth, seventh, eighth, tenth and the
eleventh row of the matrix L̃ := [

X̃�
0 X̃�

1 X̃�
2 X̃�

3

]T
are zero.

The fourth, fifth and the sixth rows of L̃ are:[
MT

0 RT
2 + MT

1 RT
1 MT

0 RT
3 + MT

1 RT
2

MT
0 RT

4 + MT
1 RT

3 MT
1 RT

4

]
Note that for this example (and for the general case also),
the structure of Ri and MT

i are the same upto signs, i =
0, 1, 2, 3, 4 (i = 0, 1, · · · , N for the general case). To show
that the fourth row is zero, we rewrite the expressions for the
fourth, fifth and the sixth rows of L̃ in terms of M2,M3 and
M4 as for these matrices, the first row is zero (as the first row
of R(s) has the degree equal to 1). Hence, MT

0 RT
2 + MT

1 RT
1 =

−MT
2 RT

0 (as MT
0 RT

2 + MT
1 RT

1 + MT
2 RT

0 is a coefficient matrix
of R(s)M(s)). Similarly, MT

0 RT
3 + MT

1 RT
3 = −MT

2 RT
2 −

MT
3 RT

0 , MT
0 RT

4 + MT
1 RT

3 = −MT
2 RT

2 − MT
3 RT

1 − MT
4 RT

0
and MT

1 RT
4 = −MT

2 RT
3 − MT

3 RT
2 − MT

4 RT
1 . Since, the fourth

fifth and the sixth rows of L̃ can be expressed in terms of MT
2 ,

MT
3 and MT

4 , the fourth row becomes equal to zero.
In a similar manner, we show that the seventh and eighth

row of L̃ are also zero. The seventh, eighth and the ninth row
of L̃ are:[

MT
0 RT

3 + MT
1 RT

2 + MT
2 RT

1 MT
0 RT

4 + MT
1 RT

3 + MT
2 RT

2

MT
1 RT

4 + MT
2 RT

3 MT
2 RT

4

]
Now, rewriting the seventh, eighth and the ninth row of L̃
in terms of M3 and M4 as: MT

0 RT
3 + MT

1 RT
2 + MT

2 RT
1 =

−MT
3 RT

3 , MT
0 RT

4 + MT
1 RT

3 + MT
2 RT

2 = −MT
3 RT

1 − MT
4 RT

0 ,
MT

1 RT
4 + MT

2 RT
3 = −MT

3 RT
2 − MT

4 RT
1 and MT

2 RT
4 =

−MT
3 RT

3 − MT
4 RT

1 . Since, the first two rows of MT
3 and MT

4
are zero, the seventh and eight row of L̃ are zero. Again,
we can show that the tenth and eleventh row of L̃ are also
zero by writing the tenth, eleventh and the twelfth row of
L̃ in terms of MT

4 . Hence the fourth, seventh, eighth, tenth
and the eleventh row of L̃ and hence X̂ are zero. Hence
the left nullspaces of X̂ and Ŷ are the same. This proves
Statement 2 and thus completes the proof of Lemma 3. �

APPENDIX C

In this appendix we consider two systems, one with
a 3 × 3 transfer matrix, and the other being SISO, and obtain
the storage function matrix using Algorithms of this paper.
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N(s) :=
⎡
⎣0 22.4923 + 7.2779s + 4.5685s2 19.5237 + 5.7745s − 0.0829s2

0 −14.0438 + 19.9290s + 0.4655s2 34.6521 + 0.5622s − 0.5810s2

0 −5.5953 + 47.1359s + 5.4996s2 88.8279 + 6.8989s − 1.2448s2

⎤
⎦ × 10−3

d1(s) :=
⎡
⎣−0.4082483

−0.8164966
0.4082483

⎤
⎦

d2(s) :=
⎡
⎣−105.1437 + 859.3938s − 1.0514s2 + 8.5939s3

−70.4042 − 425.8174s − 0.704 s2 − 4.2582s3

−245.9521 + 7.7590s − 2.4595s2 + 0.0776s3

⎤
⎦ × 10−3

d3(s) :=
⎡
⎣ 884.6167 + 51.2074s + 8.8462s2 + 0.5121s3

−451.4649 − 30.4451s − 4.5146s2 − 0.3045s3

−18.3132 − 9.6827s − 0.1831s2 − 0.0968s3

⎤
⎦ × 10−3.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

156.13439 −87.488013 100 0 1.5613439 −0.8748801
−2415.0119 −259.24 0 100 −24.150119 −2.5924

⎤
⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0

−190.4385 −158.76031 −507.95913
1568.6849 3315.3579 8199.4006

⎤
⎥⎥⎥⎥⎥⎥⎦

C =
⎡
⎣−22.4923 −19.5237 7.2779 5.7745 −4.5685 0.0829

14.0438 −34.6521 19.929 0.5622 −0.4655 0.5810
5.5953 −88.8279 47.1359 6.8989 −5.4996 1.2448

⎤
⎦ × 10−3

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

115.050 −7.100 18.658 −6.192 2.527 0.163
−7.100 38.128 −34.671 −2.118 0.271 −0.092
18.658 −34.671 33.803 1.160 0.187 0.069
−6.192 −2.118 1.160 0.819 −0.478 −0.021
2.527 0.271 0.187 −0.478 0.377 0.017
0.163 −0.092 0.069 −0.021 0.017 0.003

⎤
⎥⎥⎥⎥⎥⎥⎦

× 10−4.

Example 1: This is an example for the two variable poly-
nomial matrix factorization based method (Algorithm 2). For
the system having the following transfer matrix:

G =

⎡
⎢⎢⎢⎢⎢⎣

s

100 + s2

−4 + s

100 + s2

−8 + 3s

100 + s2
4 + s

100 + s2

2s

100 + s2

4 + 5s

100 + s2
8 + 3s

100 + s2

−4 + 5s

100 + s2

13s

100 + s2

⎤
⎥⎥⎥⎥⎥⎦

Co-prime factorization for the transfer function matrix12 of
the form G(s) = N(s)D(s)−1 , as shown at the top of this

12 An obvious but non-co-prime factorization of the transfer matrix G is
G(s) = N(s)D(s)−1 = D(s)−1 N(s) with D(s) = (s2 + 100)I3 and N(s)
consists of all the numerator terms of G . The non-co-primness is due to ±10i
being a root of det N(s) = 0. In order to compute a co-prime factorization
of G , we find a MPB for the right nullspace of R(s) := [

D(s) −N(s)
]
. This

fact causes the less-simple co-prime factorization given. Further, due to the
column-reducedness of col(N, D), the first column of the obtained D(s) being
zero-degree causes the first column of the obtained N(s) to be identically zero.
Further, this is a situation where results of [20] are not directly applicable:
the modification proposed in Section III-A is needed.

page, and D(s) := [
d1(s) d2(s) d3(s)

]
with d1(s), d2(s) and

d3(s), as shown at the top of this page, all column vectors
with polynomial entries.
Consider the state space representation for G, see A–C,
as shown at the top of this page, and D = 0, with
respect to which we obtain the storage function K, as
shown at the top of this page. As mentioned in Foot-
note 12, this is an example where results of Section III-A are
relevant.

Example 2: This is an example for the static relation
extraction method (Algorithms 3 and 4). For the system with
the state space matrices:

A =
⎡
⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1

−0.0011262 0 −0.0878753 0

⎤
⎥⎦, B =

⎡
⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎦ ,

C = [
0 14.074 0 479.695

] × 10−4 and D = 0.
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The storage function using LU factorization:

KLU =
⎡
⎢⎣

0.016 0 0.540 0
0 0.697 0 14.074

0.540 0 28.079 0
0 14.074 0 479.695

⎤
⎥⎦ × 10−4.

The storage function using QR:

KQ R =
⎡
⎢⎣

0.016 0 0.540 0
0 0.697 0 14.074

0.540 0 28.079 0
0 14.074 0 479.695

⎤
⎥⎦ × 10−4

This example demonstrates the working of the algorithms
based on LU/QR with partial pivoting and the errors (com-
puted using the error metrics proposed in Section VI-C) are
of the order shown in Figures 6 and 8.
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