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a b s t r a c t

This paper deals with structural controllability of a linear time-invariant composite system consisting
of several heterogeneous subsystems. The interaction links through which the subsystems interact with
other subsystems are referred to as interconnections. We assume the composite system to be structurally
controllable if all possible interconnections are present. Our objective is to identify aminimum cardinality
set of interconnections required to retain the structural controllability of the composite system. We refer
to this problem as the optimal essential interconnection selection problem. We approach the problem in a
structured framework, where the zero/nonzero structure of the subsystems is used in the analysis instead
of the numerical matrices themselves. This analysis applies to an equivalence class of systems with the
same sparsity pattern. Firstly, we propose a polynomial time algorithm to solve the optimal essential
interconnection selection problem on a structured composite systemwhen each subsystem is irreducible
and no subsystem has a perfect matching in its state bipartite graph. Later, we consider the case where
one or more subsystems have perfect matching in their state bipartite graphs. For this case, we first
prove a lower bound on the number of minimum number of interconnections needed. Subsequently, we
provide a polynomial time algorithm based on a minimum weight perfect matching algorithm and a so-
called stub-matching algorithm that achieves this bound. We also discuss about how heterogeneity of the
subsystems poses different challenges to the homogeneous counterpart and demonstrate the algorithms
using illustrative examples.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years large-scale dynamical systems have become a
subject of intensive research in systems and control theory because
of its applications in diverse areas, including biological networks,
transportationnetworks,water distribution networks,multi-agent
systems, and internet (Liu, Slotine, & Barabási, 2011; Pequito, Pre-
ciado, Barabási, & Pappas, 2017). Most of the complex networks
consist of spatially distributed units interconnected to constitute
a large system. We refer to these entities as subsystems, the links
connecting these subsystems as interconnections and the full sys-
tem as the composite system.

The system-theoretic study of composite systems is of research
interest for many decades. Controllability and observability of
composite systems was introduced in Gilbert (1963), where it is

✩ Thematerial in this paperwas not presented at any conference .This paperwas
recommended for publication in revised form by Associate Editor Delin Chu under
the direction of Editor Ian R. Petersen.
∗ Corresponding author.

E-mail addresses: sm15@uw.edu (S. Moothedath), chaporkar@ee.iitb.ac.in
(P. Chaporkar), belur@ee.iitb.ac.in (M.N. Belur).

related to the controllability and observability of its subsystems.
Most of the earlier research in this area focuses on standard
interconnections, namely series and parallel connections (Chen &
Desoer, 1967; Davison & Wang, 1975; Wolovich & Hwang, 1974).
However, in practice the interconnections in large complex sys-
tems may not be of these standard nature but is complicated. In-
terconnections other than the standard ones are also considered in
the literature, for instance see Refs. Ikeda, Šiljak, and Yasuda (1983)
and Zhou (2015). There is a diverse class of physical networks
composed of subsystems interconnected in a complexmanner. For
example, in robotics a composite system consists of a swarm of
robots (we may refer each as an agent) that collectively operate
to perform a desired task. The agents in a swarm may not be
homogeneous. They can be heterogeneous also, say manufactured
by different companies. Although the agents must communicate
with each other to achieve the desired goal, it is preferred to keep
the interactions the least possible in regard of cost and privacy.
Given a set of agents, it is a legitimate question to askwhich agents
should communicate and what information has to be exchanged
so that the composite system achieves the intended performance
with minimum interaction.
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The desired performance focused in this paper is the controlla-
bility of a composite system. Complex networks consist of many
subsystems of large system dimension connected to each other.
On account of the large size of these systems, devising efficient
framework to design the interconnections of the subsystems in an
optimal fashion is indispensable. A set of interconnection edges
is referred as an essential interconnection set if breakage of any
one connection in the set results in the system losing the desired
property, i.e., controllability. We refer to the problem of finding a
minimum cardinality essential interconnection set as the optimal
essential interconnection selection problem.

For many complex networks the system parameters are not
known precisely. Also, in most of the cases, either it is not possible
to measure the link weights in a graph by knowing the graph
structure (for example in social communication network and bi-
ological systems) or the link weights are time-dependent (like
transportation networks,where the traffic in the lane changeswith
time (Liu & Barabási, 2016)). In such a case, the available system
information is the sparsity pattern or the graph structure. Our
approach in this paper uses the sparsity pattern, i.e., zero/nonzero
pattern, of the system matrices instead of the exact numerical
matrices. Given a set of subsystems (agents), our aim is to find
a minimum cardinality set of interconnections between them so
that the composite system is controllable. We provide an efficient
framework to address the optimal essential interconnection selec-
tion problem using structural systems theory (Reinschke, 1988).

Recently, we considered the problem for the homogeneous case
inMoothedath, Chaporkar, and Belur (2017).When subsystems are
homogeneous, size of maximum matching in the state bipartite
graph of all subsystems is the same. Hence some key issues and
certain profound graph theoretic challenges of the heterogeneous
case do not arise in the homogeneous case. For this reason, the
algorithm given in Moothedath et al. (2017) does not extend to
the heterogeneous case considered here. While optimizing the
interconnections for a given set of subsystems we also find out
which subsystems to be connected and what information to be
communicated such that the composite system is structurally con-
trollable.

We summarize this paper’s contribution below.
• We propose a polynomial time algorithm to solve the essential
interconnection selection problem (Problem 2.3) on structured
subsystems when no subsystem has a perfect matching in its
state bipartite graph (Algorithm 4.1). This algorithm is based on
a minimum cost perfect matching algorithmwith additional mod-
ifications.
• We provide a polynomial time algorithm to solve Problem 2.3
on structured subsystems when some subsystems have a perfect
matching in their state bipartite graphs (Algorithm 5.1). This al-
gorithm incorporates a minimum cost perfect matching algorithm
along with a so-called stub-matching algorithm.
•Weprove the optimality and the complexity results of both these
algorithms (Theorems 4.6, 4.7, 5.2, and 5.3).

The organization of this paper is as follows: Section 2 gives
the formulation of the problem and the related work. Section 3
contains few graph theoretic preliminaries and some existing re-
sults in the area of structural controllability. Section 4 presents a
polynomial time algorithm for solving the essential interconnec-
tion selection problemwhen no subsystem has a perfect matching
in its state bipartite graph. Section 5 gives an algorithm to solve
the essential interconnection selection problem when one more
subsystems have a perfect matching. Section 6 demonstrates the
proposed algorithms using illustrative examples and also discusses
possible extensions. Finally, Section 7 gives the concluding re-
marks.

2. Problem formulation and related work

In this section, we first present the formulation of the problem
and then briefly describe the related work.

2.1. Problem formulation

Structural representation of an LTI system with dynamics ẋ =
Ax + Bu, where A ∈ Rn×n and B ∈ Rn×m, is represented by
Ā ∈ {0, ⋆}n×n and B̄ ∈ {0, ⋆}n×m. Here R denotes the set of real
numbers and {0, ⋆}p×q denotes the set of p × q matrices whose
entries are ⋆’s and zeros, where ⋆ is a free independent parameter.
The pair (Ā, B̄) structurally represents a system (A, B) if it satisfies:

Āpq = 0 whenever Apq = 0, and

B̄pq = 0 whenever Bpq = 0. (1)

We refer to (Ā, B̄) that satisfies Eq. (1) as the structured system
corresponding to the numerical system (A, B). Note that (Ā, B̄) does
not have numerical values but only indicates locations of nonzero
entries using ⋆’s. (Ā, B̄) structurally represents a class of control
systems corresponding to all possible numerical realizations (A, B)
satisfying Eq. (1). The key idea in structural controllability is to
determine controllability of the class of systems represented by
(Ā, B̄). Specifically, the following definition holds.

Definition 2.1. The structured system (Ā, B̄) is said to be struc-
turally controllable if there exists at least one controllable numer-
ical realization (A, B).

Remark 2.2. Even though the definition of structural controllabil-
ity requires only one controllable realization, it is known that if a
system is structurally controllable, then ‘almost all’ numerical re-
alizations of the same structure are controllable (Reinschke, 1988).

Consider k structured subsystems (Āi, B̄i), for i = 1, . . . , k, with
Āi ∈ {0, ⋆}ni×ni and B̄i ∈ {0, ⋆}ni×mi . Let the ith subsystem (Āi, B̄i)
be denoted by Si. Then the dynamics of Si is

ẋi(t) = Āixi(t)+ B̄iui(t), for i = 1, . . . , k. (2)

Each subsystem is individually not structurally controllable. To
achieve structural controllability, one need to interconnect sub-
systems. Let Ēij ∈ {0, ⋆}ni×nj denote the structured connection
matrix from Sj to Si. After interconnecting, the composite structured
system of k subsystems has the following dynamics.

ẋ(t) =

⎡⎢⎢⎢⎣
Ā1 Ē12 · · · Ē1k
Ē21 Ā2 · · · Ē2k
...

. . .
. . .

...

Ēk1 Ēk2 · · · Āk

⎤⎥⎥⎥⎦
  

ĀT

x(t)+

⎡⎢⎢⎢⎣
B̄1 0 · · · 0
0 B̄2 · · · 0
...

. . .
. . .

...

0 0 · · · B̄k

⎤⎥⎥⎥⎦
  

B̄T

u(t),

(3)

where ĀT ∈ {0, ⋆}nT×nT with nT =
∑k

i=1 ni and B̄T ∈ {0, ⋆}nT×mT

withmT =
∑k

i=1 mi. Here, x = [xT1, . . . , x
T
k]

T with xi = [xi1, . . . , x
i
ni ]

T

and u = [uT
1, . . . , u

T
k]

T with ui = [ui
1, . . . , u

i
mi
]
T . The system

(ĀT , B̄T ) is said to be a structured composite system formed by
subsystems (Ā1, B̄1), . . . , (Āk, B̄k) interconnected through Ēij’s, for
i, j ∈ {1, . . . , k}.

Now we define the optimization problem considered in this
paper. Given a set of structured subsystems (Āi, B̄i), i = 1, . . . , k,
where Āi ∈ {0, ⋆}ni×ni and B̄i ∈ {0, ⋆}ni×mi , find a set of sparsest
connection matrices, Ēij ∈ {0, ⋆}ni×nj ’s, such that the composite
structured system, (ĀT , B̄T ), obtained corresponding to Eq. (3) is
structurally controllable. Note that there are exponential number
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of ways that one can connect the subsystems. Our objective is to
select the sparsest set of Ēij’s, for i, j = 1, . . . , k. Let K denote
the set of all structurally controllable composite systems that can
be formed by using subsystems (Āi, B̄i), for i = 1, . . . , k. In other
words,K consists of structuredmatrices Ā′, where Ā′ ∈ {0, ⋆}nT×nT ,
satisfying Ā′i = Āi for i = 1, . . . , k and Ē ′ij ∈ {0, ⋆}

ni×nj such that
the composite system obtained (Ā′, B̄T ) is structurally controllable.
Then, the optimization problem to be solved is as follows:

Problem 2.3. Given (Āi, B̄i), i = 1, . . . , k, find

Ā⋆
∈ argmin

Ā′∈K

Ā′0 .

Here ∥·∥0 denotes the zero matrix norm.1 The set K is non-
empty. This is because, if all entries in Ēij’s are ⋆’s, for i, j ∈
{1, . . . , k}, then the resulting structured system, (ĀT , B̄T ), is struc-
turally controllable. In other words, (ĀT , B̄T ) ∈ K. Notice that the
optimal essential interconnection selection problem is same as
finding the sparsest Ā′ ∈ K. Since the structured matrices in set
K are constrained to have Āi as their block diagonal matrices, for
i ∈ {1, . . . , k}, optimization is possible only from entries in Ēij’s. In
other words, optimization is possible only over interconnections.
Solving Problem 2.3 hence solves the optimal essential intercon-
nection selection problem.

2.2. Related work

Structural analysis was introduced by Lin in Lin (1974). Since
then a wide range of problems associated with structural control-
lability is studied (see Liu & Barabási, 2016 and references therein).
Papers (Liu et al., 2011; Pequito et al., 2017) are representatives
which show application of these concepts on diverse class of real
networks including electronic circuits, neural network, social com-
munication network, power grid and food web. Structural analysis
of composite systems is previously addressed in literature (see An-
derson & Hong, 1982; Carvalho, Pequito, Aguiar, Kar, & Johans-
son, 2017; Davison, 1977; Li, Xi, & Zhang, 1996; Rech & Perret,
1991; Yang & Zhang, 1995 and references therein). These papers
devised various conditions for checking structural controllability
of composite systems in terms of the subsystems given. More
recently, Carvalho et al. (2017) gave a distributed algorithm to
verify structural controllability of a composite system. This paper
deals with optimizing the set of interconnections for a system
composed of several heterogeneous subsystems. In other words,
our aim is to find a set of interconnections, whose cardinality is
the least possible, such that the composite system is structurally
controllable.

3. Review of essential graph theoretic results and graphical
representations

This section briefly describes few graph theoretic concepts (Di-
estel, 2000), some existing results associated with structural con-
trollability (Liu &Barabási, 2016) and fewgraph constructions used
in the sequel.

3.1. Review of essential graph theoretic results

A system is said to be controllable if it is possible to drive the
state of the system from arbitrary initial state to any desired state
in finite time by applying appropriate input. For a system to be
controllable, it is essential that every state is influenced by some
input. In order to represent the influences of states and inputs on

1 Although ∥·∥0 does not satisfy some of the norm axioms, the number of
nonzero entries in a matrix is conventionally referred to as the zero norm.

each state we analyze a structured system (Ā, B̄)2 using a digraph
D(Ā, B̄). Here Ā ∈ {0, ⋆}n×n and B̄ ∈ {0, ⋆}n×m. Now D(Ā, B̄)
is constructed as follows: firstly on account of the interactions
between states the digraph D(Ā) is constructed with vertex set VX
and edge set EX . Here, VX = {x1, . . . , xn} and (xj, xi) ∈ EX if Āij = ⋆.
If (xj, xi) ∈ EX , then we say that state xj directly influences state xi.
Similarly, on account of the interaction between inputs and states
we construct the digraphD(Ā, B̄), with vertex set VX ∪VU and edge
set EX ∪EU . Here VU = {u1, . . . , um} and edge (uj, xi) ∈ EU if B̄ij = ⋆.
If (uj, xi) ∈ EU , then we say that input uj directly influences state xi.

State xj is said to be accessible if there exists a directed path
in D(Ā, B̄) from some input node ui to xj. An alternate method
for checking if all states are accessible is by using a concept of
strong connectedness of the graph. A digraph is said to be strongly
connected if for each ordered pair of vertices (vi, vj) there exists a
path from vi to vj. Strongly connected component (SCC) is amaximal
strongly connected subgraph of a digraph that is strongly con-
nected and is not properly contained in any other subgraph that
is strongly connected. Thus all xi’s are accessible if and only if all
SCCs of D(Ā) are accessible.

For structural controllability, in addition to accessibility the
notion of no-dilation is also necessary. Digraph D(Ā, B̄) is said to
have dilation, if there exists a node set S ⊂ VX whose neighborhood
node set T (S) (where v ∈ T (S), if there exists a directed edge
from v to a node in S) satisfies |T (S)| < |S|. Here, S ⊂ VX and
T (S) ⊂ VX ∪ VU . Presence of dilations in D(Ā, B̄) can be checked
using a matching condition on the system bipartite graph denoted
as B(Ā, B̄). Define a bipartite graph GB := ((V , Ṽ ), E), where the
vertex set satisfies V ∩ Ṽ = ∅ and the edge set satisfies E ⊆ V × Ṽ .
Matching, perfect matching and minimum cost perfect matching
in GB are defined below.

Definition 3.1 (Diestel, 2000). A matching M in a bipartite graph
GB = ((V , Ṽ ), E) is a collection of edges M ⊆ E such that no two
edges in the collection share the same endpoint. In other words, if
{(i, j), (w, v)} ∈ M , then i ̸= w and j ̸= v, where i, w ∈ V and
j, v ∈ Ṽ . A matching M is said to be a perfect matching of GB if
|M| = min(|V |, |̃V |). Further, given GB and a cost function c from
the set E to the set of non-negative real numbers R+, the cost of a
matchingM is defined as, c(M) =

∑
e∈M c(e). Then aminimumcost

perfect matching is a perfect matching M such that c(M) ⩽ c(M ′),
where M ′ is any perfect matching of GB.

To establish the equivalent matching condition for the no-
dilation condition, now we explain the construction of B(Ā, B̄)
which includes two stages. In the first stage, we construct the state
bipartite graph B(Ā) with vertex set (VX ′ , VX ) and edge set EX . Here,
VX ′ = {x′1, x

′

2, . . . , x
′
n}, VX = {x1, x2, . . . , xn} and (x′j, xi) ∈ EX ⇔

(xi, xj) ∈ EX . We extend this to the system bipartite graph B(Ā, B̄)
with vertex set given by (VX ′ , VX∪VU ) and edge set given by EX∪EU .
Here, VU = {u1, u2, . . . , um} and (x′j, ui) ∈ EU ⇔ (ui, xj) ∈ EU .
Using B(Ā, B̄) the following result holds.

Proposition 3.2 (Olshevsky, 2015, Theorem 2). The digraphD(Ā, B̄) of
the structured system (Ā, B̄) has no dilation if and only if the bipartite
graph B(Ā, B̄) has a perfect matching.

Using accessibility condition and no-dilation conditions, Lin
proved the following result for structural controllability.

Proposition 3.3 (Lin, 1974, pp. 207). The structured system (Ā, B̄) is
structurally controllable if and only if the associated digraph D(Ā, B̄)
has no inaccessible states and has no dilations.

Alternatively, a structured system is said to be structurally
controllable if and only if all states are accessible by some input
and there exists a perfect matching in B(Ā, B̄).

2 Typical structured system is denoted by (Ā, B̄) and the related concepts can be
extended to specific system under consideration.
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3.2. Graphical representations in composite system

In this subsection, we describe few graphical constructions
and notations used in the sequel. For every subsystem Si with
structured state matrix Āi, we construct the state digraph D(Āi)
with vertex set VXi and edge set EXi . Here, VXi = {x

i
1, . . . , x

i
ni}

and (xiq, x
i
p) ∈ EXi if Āipq = ⋆. We assume that each subsystem

is irreducible, i.e., state digraph D(Āi) is an SCC, for i = 1, . . . , k.
Consequently, if one state in a subsystem is accessible, then the
whole subsystem is accessible. However, for many subsystems
B̄i’s will be a zero matrix, as in a multi-agent system where only
few agents receive input. Now we define system digraph of Si as
D(Āi, B̄i), with vertex set VXi ∪ VUi and edge set EXi ∪ EUi . Here,
VUi = {u

i
1, . . . , u

i
mi
} and (ui

q, x
i
p) ∈ EUi if B̄ipq = ⋆. The state

bipartite graph of subsystem Āi is denoted as B(Āi) with vertex set
(VX ′i

, VXi ) and edge set EXi . Here, VX ′i
= {x′ i1, . . . x

′ i
ni} and (x′ iq, x

i
p) ∈

EXi ⇔ (xip, x
i
q) ∈ EXi . Further, the bipartite graph B(Āi, B̄i) is defined

with vertex set (VX ′ i , VXi ∪ VUi ) and edge set EXi ∪ EUi , where
(x′ ip, u

i
q) ∈ EUi ⇔ (ui

q, x
i
p) ∈ EUi .

We assume that all states of the jth subsystem can connect to
all states of the ith subsystem, for i ̸= j. In other words, for any
subsystem Si, there is no restriction on the set of interconnections
through which Si can connect to other subsystems. The possible
set of interconnection edges, EI , consists of (xip, x

j
q) ∈ EI for all

i, j ∈ {1, . . . , k}, i ̸= j, xip ∈ VXi and xjq ∈ VXj . Now we define the
digraph D(ĀT ) with vertex set ∪k

i=1VXi and edge set ∪k
i=1EXi ∪ EI .

D(ĀT ) includes all k subsystems along with all possible intercon-
nections. The bipartite graph of the composite system B(ĀT , B̄T ) is
defined with vertex set (∪k

i=1VX ′i
,∪k

i=1VXi ∪ ∪
k
i=1 VUi ) and edge set

∪
k
i=1EXi ∪ ∪

k
i=1 EUi ∪ EI , where (x′ ip, x

j
q) ∈ EI ⇔ (xjq, xip) ∈ EI .

We describe briefly the graph theoretic reasons that cause
Problem 2.3 to not be straightforward. Notice that if there exists
a perfect matching in B(Āi, B̄i), for i = 1, . . . , k, then there exists
a perfect matching in B(ĀT , B̄T ) without using any interconnection
edge. In other words, the composite system has no dilation even
without using any interconnection edge. In that case, a minimum
cardinality set of interconnections that guarantees accessibility
can be obtained by running a minimum weight spanning tree
algorithm (Davison, 1977). On the other hand, if B̄i ̸= 0, for all
i = 1, . . . , k, then the composite system is accessiblewithout using
any interconnection edge (since all subsystems are irreducible).
In such a case a minimum cardinality set of interconnections that
guarantees the no-dilation condition can be obtained using a min-
imum cost perfect matching algorithm on B(ĀT , B̄T ) with nonzero
cost only on the interconnection edges. However, when some of
the subsystems are such that their bipartite graphs denoted by
B(Āi, B̄i) do not have a perfect matching and some subsystems are
such that their input matrix B̄j = 0, then solving Problem 2.3 is
not straightforward.We analyze the complexity of Problem2.3 and
describe our approach to solve Problem 2.3 in the next section.

4. Algorithmand resultswhenno subsystemhasperfectmatch-
ing in its state bipartite graph

In this section, we propose a polynomial time algorithm to
solve Problem 2.3 when every subsystem is irreducible and no
subsystem has a perfect matching in its state bipartite graph.
In other words, we give a polynomial time algorithm to solve
Problem 2.3 on a set of structured subsystems S1, . . . , Sk, where for
all i ∈ {1, . . . , k},D(Āi) is an SCC and B(Āi) has no perfectmatching.
If subsystems are irreducible and if B(Āi) has a perfect matching,
for all i ∈ {1, . . . , k}, and B̄i’s are nonzero matrices, for all i ∈
{1, . . . , k}, then the composite system is structurally controllable
without using any interconnections. However, in practice only few

subsystems receive input due to which B̄i is a zeromatrix for many
values of i ∈ {1, . . . , k}. Interconnections are essential for achiev-
ing accessibility. Further, B(Āi)’s for all i ∈ {1, . . . , k}may not have
a perfectmatching. However, some subsystemsmay have a perfect
matching and this case is considered in Section 5. The algorithm
proposed in this section is based on the bipartite graph denoted by
B(ĀT , B̄T ) constructed using the subsystems (Ā1, B̄1), . . . , (Āk, B̄k)
and the interconnection edge set EI defined above. Define cost
vector

cW (e) :=

⎧⎨⎩
1, for e ∈ ∪k

i=1EXi ,
0, for e ∈ ∪k

i=1EUi ,

2, for e ∈ EI .

(4)

We explain the algorithm and results for the single input case and
later explain how to extend these to the multi-input case (see
Section 6.2). Without loss of generality, we assume that this single
input corresponds to the first subsystem. Thus ∪k

i=1Ui = u1
1. For

notational brevity, we denote u1
1 as u1. For B(ĀT , B̄T ), using cost

vector cW the following results hold.

Lemma 4.1. Consider the composite structured system (ĀT , B̄T )
obtained by composing k irreducible subsystems with all possible
interconnections and let B̄T be a single input with input node u1. Let
M⋆

W be aminimumcost perfectmatching inB(ĀT , B̄T )under cost vector
cW given in Eq. (4). Then, (x′ji, u1) ∈ M⋆

W for some i ∈ {1, . . . , nj} and
some j ∈ {1, . . . , k}.

Proof. Given M⋆
W is an optimum perfect matching in B(ĀT , B̄T )

and B̄T is a single input. We prove the result using a contradiction
argument. Suppose (x′ji, u1) /∈ M⋆

W for all i ∈ {1, . . . , nj} and
j ∈ {1, . . . , k}. Since M⋆

W is a perfect matching, there exists an
edge (x′ji, x

t
r ) ∈ M⋆

W for some node xtr . Construct a new matching
M ′W by breaking the edge (x′ji, x

t
r ) and making the edge (x′ji, u1),

i.e.,M ′W = {M
⋆
W \(x

′j
i, x

t
r )}∪{x

′j
i, u1}. Notice that cW (M ′W ) < cW (M⋆

W ).
This contradicts the assumption that M⋆

W is an optimum perfect
matching in B(ĀT , B̄T ) and this implies (x′ji, u1) ∈ M⋆

W . □

Note that the above result holds for the multi-input case also.
In a multi-input case, any optimum matching in B(ĀT , B̄T ) has
all the input nodes matched. For any matching MW in B(ĀT , B̄T )
define D(MW ) := (VMW , EMW ), where VMW = {∪

k
i=1Ui, S1, . . . , Sk},

(ui
p, Si) ∈ EMW for all i ∈ {1, . . . , k} and for some p, and (Sj, Si) ∈

EMW if (x′ ip, x
j
q) ∈ MW . The vertices in D(MW ) are partitioned into

two sets: S̃(MW ) and S \ S̃(MW ), where S̃(MW ) = {Si : Si is
input accessible in D(MW )}∪{∪k

i=1Ui}. The following three results
crucially help in showing a certain cut is empty, which helps our
main result on optimality.

Lemma 4.2. Consider the composite structured system (ĀT , B̄T )
obtained by composing k irreducible subsystems with all possible
interconnections. Let MW be a perfect matching in B(ĀT , B̄T ). Then, for
any Si ∈ S̃(MW ) and for any Sj ∈ S \ S̃(MW ) the subsystem digraph
D(MW ) satisfies: (Si, Sj) /∈ EMW .

Proof. We prove the above claim using a contradiction argument.
Suppose there exists an edge (Si, Sj) ∈ EMW , where Si ∈ S̃(MW )
and Sj ∈ S \ S̃(MW ). Then, since Si ∈ S̃(MW ) and all subsystems
are irreducible, Sj ∈ S̃(MW ). This contradicts the assumption that
Sj ∈ S \ S̃(MW ) and hence proves the result. □

Lemma 4.3. Consider the composite structured system (ĀT , B̄T )
obtained by composing k irreducible subsystems with all possible
interconnections and let B̄T be a single input. Let M⋆

W be a minimum
cost perfect matching in B(ĀT , B̄T ) using cost vector cW . Then, (a) there
exists exactly one right unmatched node, say xtr of subsystem St , and
(b) further, St ∈ S̃(M⋆

W ).
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Proof. (a) part: Given M⋆
W is an optimum perfect matching in

B(ĀT , B̄T ). B(ĀT , B̄T ) is a bipartite graph with nT nodes on the left
side and nT + 1 nodes on the right side, one extra node being the
input node u1. Therefore, |M⋆

W | = nT . By definition u1 ∈ S̃(M⋆
W )

and by Lemma 4.1 input node u1 is matched in M⋆
W . Since every

subsystem has equal number of state nodes on both the sides of
B(ĀT , B̄T ), corresponding to some subsystem, say St , there exists a
right unmatched state node, say xtr , inM⋆

W .

(b) part: Now we need to show that St ∈ S̃(M⋆
W ). In other

words, the subsystem to which the unmatched node belongs to
is accessible in the digraph D(M⋆

W ). By Lemma 4.1, all optimum
perfect matchings in B(ĀT , B̄T ) consist of an edge (x′ji , u1) for some
node x′ji . Let (x′ji , u1) ∈ M⋆

W and the node xji is accessible in the
specified digraph. Now in the matching M⋆

W , the node xji satisfies
one of the following: (a) xji is unmatched, or (b) xji is matched. In
case (a), xji = xtr , St = Sj and proof follows. In case (b), let (x′pq , xji) ∈
M⋆

W . Then the node xpq is accessible. Note that all subsystems are
irreducible and hence Sp ∈ S̃(M⋆

W ). Now recursively using the same
argument as before, we can say that the subsystem to which the
unmatched node inM⋆

W belongs to is input accessible inD(M⋆
W ). □

For the multi-input case, along similar lines, one can show that
there are mT right unmatched nodes in B(ĀT , B̄T ) with respect to
any optimum matching and all those mT state nodes are input
accessible, wheremT is the total number of inputs.

Lemma 4.4. Consider a set of irreducible structured subsystems
(Ā1, B̄1), . . . , (Āk, B̄k). Let MW be any perfect matching in B(ĀT , B̄T )
and let D(MW ) be the corresponding subsystem digraph with parti-
tions S̃(MW ) and S \ S̃(MW ) respectively. Then, Sj ∈ S \ S̃(MW ), implies
B̄j = 0.

Proof. We assume Sj ∈ S \ S̃(MW ). This implies subsystem Sj is
inaccessible. Assume to the contrary, B̄j ̸= 0. Then, since D(Āj) is
irreducible, Sj is accessible and hence Sj ∈ S̃(MW ). Thus Sj ∈ S \
S̃(MW ) implies B̄j = 0. This is a contradiction and proof follows. □

Lemmas 4.2, 4.4, and 4.5 together prove that corresponding
to a perfect matching MW in B(ĀT , B̄T ), the cut of sets S̃(MW ) and
S \ S̃(MW ) of the subsystem digraph D(MW ) is empty.

Lemma 4.5. Consider the composite structured system (ĀT , B̄T )
obtained by composing k irreducible subsystems with all possible
interconnections. Let MW be a perfect matching in B(ĀT , B̄T ). Then, for
any Si ∈ S̃(MW ) and for any Sj ∈ S \ S̃(MW ), the subsystem digraph
D(MW ) satisfies: (Sj, Si) /∈ EMW .

Proof. We prove the above claim using a contradiction argument.
Suppose there exists an edge (Sj, Si) ∈ EMW , where Si ∈ S̃(MW )
and Sj ∈ S \ S̃(MW ). Note that by Lemma 4.4 the number of nodes
in the bipartite graph B(ĀT , B̄T ) corresponding to subsystems in
S \ S̃(MW ) is equal on both the sides. By Lemma 4.2, there exists no
edge from some Sp ∈ S̃(MW ) to some Sq ∈ S \ S̃(MW ). As a result, if
(Sj, Si) ∈ EMW , where Si ∈ S̃(MW ) and Sj ∈ S\ S̃(MW ), at least one left
node of B(ĀT , B̄T ) corresponding to some subsystem Sv ∈ S \ S̃(MW )
is unmatched in MW . This contradicts the assumption that MW is a
perfect matching in B(ĀT , B̄T ) and hence (Sj, Si) /∈ EMW . □

From Lemmas 4.2 and 4.5 we conclude that corresponding to
a perfect matching MW in B(ĀT , B̄T ), there are no edges between
the vertex sets S̃(MW ) and S \ S̃(MW ) in D(MW ). Algorithm 4.1
solves Problem 2.3 for composite system composed of irreducible
subsystemswith no perfectmatching in B(Āi), for all i ∈ {1, . . . , k}.

Algorithm 4.1 Pseudo-code for solving Problem 2.3 on structured
subsystemswhen all subsystems are irreducible and no subsystem
has perfect matching in its state bipartite graph

Input: Structured subsystems (Ā1, B̄1), . . . , (Āk, B̄k)
Output: Interconnections EIA

1: Define the bipartite graphB(ĀT , B̄T ) as ((∪k
i=1VX ′i

,∪k
i=1VXi ∪∪

k
i=1

VUi ),∪
k
i=1EXi ∪ ∪

k
i=1 EUi ∪ EI )

2: Find minimum cost maximum matching in B(ĀT , B̄T ) using cW
given in Eq. (4), sayM⋆

W

3: For any matching MW in B(ĀT , B̄T ), D(MW ) := (VMW , EMW ),
where VMW = {∪

k
i=1Ui, S1, . . . , Sk}, (ui

p, Si) ∈ EMW for all i ∈
{1, . . . , k} and some p and (Sj, Si) ∈ EMW if (x′ ip, x

j
q) ∈ MW

4: S̃(MW )← {Si : Si is input accessible in D(MW )} ∪ {∪k
i=1Ui}

5: for S \ S̃(M⋆
W ) ̸= ∅ do

6: Find a right unmatched node inM⋆
W , say xtr

7: For Si, Sj ∈ S \ S̃(M⋆
W ) and (Sj, Si) ∈ EM⋆

W
, find edge (x′ ip, x

j
q) ∈

M⋆
W

8: M ′W ← {M
⋆
W \ (x

′ i
p, x

j
q)} ∪ {(x′

i
p, x

t
r )}

9: Snew ← Si ∪ {Sg : Sg is reachable from Si in D(M⋆
W )}

10: M⋆
W ← M ′W

11: S̃(M⋆
W )← S̃(M⋆

W ) ∪ Snew
12: end for
13: EIA ← {(x

i
p, x

j
q) : (x′

j
q, x

i
p) ∈ M⋆

W and i ̸= j}

We provide description of why the steps in Algorithm 4.1 indeed
solve Problem 2.3. The optimality aspect is proved in Theorem 4.6.

Steps 1–2: Given a set of structured subsystems we first construct
the bipartite graph B(ĀT , B̄T ) (Step 1) and subsequently solve the
minimum cost perfect matching on it using the cost vector cW de-
fined in Eq. (4). LetM⋆

W be an optimummatching obtained (Step 2).
Notice thatM⋆

W ∩ EI consists of the minimum number of intercon-
nection edges to satisfy the ‘no-dilation’ condition. However, these
interconnection edges may not make all subsystems accessible.
Hence the idea is to reconstruct the matching M⋆

W , keeping the
cardinality ofM⋆

W ∩ EI same, to obtain a final matching such that it
is a perfect matching in B(ĀT , B̄T ) and all subsystems become input
accessible.

Steps 3–6: Let S = {S1, . . . , Sk}. Corresponding to a matching MW

we define the subsystem digraphD(MW ) := (VMW , EMW ). Note that
here ∪k

i=1Ui = u1. This implies VMW = {u1, S1, . . . , Sk}, (u1, S1) ∈
EMW and (Sj, Si) ∈ EMW if (x′ ip, x

j
q) ∈ MW for some p ∈ {1, . . . , ni}

and q ∈ {1, . . . , nj} (Step 3). The vertex set VMW is now partitioned
into two sets S̃(MW ) and S \ S̃(MW ). Here S̃(MW ) consists of input
node u1 and all subsystems that are input accessible in D(MW )
(Step 4). Notice that S1 ∈ S̃(MW ). SinceM⋆

W is an optimummatching
in B(ĀT , B̄T ), by Lemma 4.3 there exists a unique right unmatched
vertex xtr in M⋆

W (Step 6). Also, by Lemma 4.3 the node xtr is input
accessible. Thus, St ∈ S̃(M⋆

W ).
Consider the digraph D(M⋆

W ) = (VM⋆
W

, EM⋆
W
), corresponding to

the matching M⋆
W . By Lemmas 4.2 and 4.5 there exists no edge in

EM⋆
W

from a vertex in S̃(M⋆
W ) to a vertex in S \ S̃(M⋆

W ) and vice-versa.
The cut corresponding to the partitioning S̃(M⋆

W ) and S \ S̃(M⋆
W )

of the digraph D(M⋆
W ) is empty. Further, by Lemma 4.4, for all

Si ∈ S̃(M⋆
W ), the input matrix B̄i = 0. Hence Si ∈ S \ S̃(M⋆

W ) satisfies
one of the following: (a) Si is an isolated vertex in D(M⋆

W ), or (b) Si
connects to some Sj ∈ S \ S̃(M⋆

W ) in D(M⋆
W ). Case (a) does not exist

since by assumption B(Āi) does not have a perfect matching, for
i ∈ {1, . . . , k}. Hence we consider only case (b). By Lemma 4.4, all
subsystems in S \ S̃(M⋆

W ) have equal number of nodes on both the
sides of the bipartite graph B(ĀT , B̄T ) (since their inputmatrices are
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zero matrices) and by assumption no B(Āi) has a perfect matching.
Therefore, each Si ∈ S \ S̃(M⋆

W ) has both incoming and outgoing
edges inD(M⋆

W ). In other words, for every Si ∈ S \ S̃(M⋆
W ) there exist

(Sj, Si) ∈ EM⋆
W
and (Si, Sr ) ∈ EM⋆

W
, where Sj, Sr ∈ S\̃S(M⋆

W ). However,
for (Sj, Si) ∈ EM⋆

W
, the corresponding interconnection edge caters

only no-dilation condition and not accessibility.

Steps 7–13: Our focus is to reconstruct these interconnections by
breaking them and making new ones such that the new intercon-
nections cater both the no-dilation condition and the accessibility
condition. For achieving this, we first identify sets Sj, Si ∈ S\ S̃(M⋆

W )
that have interconnection edge (x′ ip, x

j
q) ∈ M⋆

W (Step 7). Now we
construct a matching M ′W = {M

⋆
W \ (x

′ i
p, x

j
q)} ∪ {(x′

i
p, x

t
r )}, where

St ∈ S̃(M⋆
W ) (Step 8). Notice that M ′W is also an optimum matching

in B(ĀT , B̄T ) with cW (M ′W ) = cW (M⋆
W ) and the number of intercon-

nections remains the same as inM⋆
W . By this reconstruction process

subsystem Si becomes accessible. Moreover, all subsystems that
are reachable from Si in D(M⋆

W ) are also accessible. We update the
matchingM⋆

W and the set S̃(M⋆
W ) (Steps 10 and 11). We recursively

do this until S \ S̃(M⋆
W ) = ∅. The interconnection edges of the

final optimum matching M⋆
W are then given by EIA (Step 13 of

Algorithm 4.1).
Let EI⋆ denote the optimumset of interconnections correspond-

ing to an optimum solution Ā⋆ of Problem 2.3. With slight abuse of
notation, we refer to EI⋆ as an optimum solution to Problem 2.3.
Now we prove the optimality of Algorithm 4.1.

Theorem 4.6. Output of Algorithm 4.1, which takes as input a set of
irreducible structured subsystems (Āi, B̄i), i = 1, . . . , k, is an optimal
solution to Problem 2.3, i.e., |EIA | = |EI⋆ |, where |EI⋆ | denotes the
optimum number of interconnections that solves Problem 2.3.

Proof. The optimum matching M⋆
W obtained by solving the min-

imum cost perfect matching on B(ĀT , B̄T ) using cost vector cW in
Step 2 of Algorithm 4.1 consists of the least number of feedback
edges to satisfy the no-dilation condition in the composite struc-
tured system. Let EI(M⋆

W ) be the interconnection edges correspond-
ing to matchingM⋆

W , i.e., (xip, x
j
q) ∈ EI(M⋆

W ) if (x′jq, x
i
p) ∈ M⋆

W and i ̸=
j. |EI(M⋆

W )| is theminimumnumber of interconnections required to
achieve the no-dilation condition and |EI⋆ | ⩾ |EI(M⋆

W )|. However,
EI(M⋆

W )maynot satisfy the accessibility of all the subsystems. Then,

S \ S̃(M⋆
W ) ̸= ∅. Hence in Step 10 of Algorithm 4.1 we obtain

a new matching M ′W by breaking an interconnection edge and
making another interconnection edge. The new interconnection
made connects the unique unmatched node xtr in M⋆

W to a state
in some subsystem Si ∈ S \ S̃(M⋆

W ). By Lemma 4.3, xtr lies in a
subsystem that is accessible and hence subsystem Si also becomes
accessible. Moreover, cW (M ′W ) = cW (M⋆

W ) and the number of
interconnections in M ′W and M⋆

W are both equal. However, more
number of subsystems are accessible in D(M ′W ) when compared to
D(M⋆

W ). In every iteration of the algorithm, cardinality of the set of
accessible subsystems increases.

Now we show that Algorithm 4.1 terminates in a finite number
of iterations. Notice that at the start of the iterations themaximum
cardinality of the set S \ S̃(M⋆

W ) is at most k − 1 (since S1 ∈
S̃(M⋆

W )). Also, indexed by the iteration count of Algorithm 4.1, the
sequence of cardinality of the set S \ S̃(M⋆

W ) is a monotonically
strictly decreasing sequence.More precisely,we prove that the size
decreases by two or more. By Lemmas 4.2 and 4.5 there are no
edges between subsystems in S̃(M⋆

W ) and S \ S̃(M⋆
W ) in D(M⋆

W ). Also
by Lemma 4.3, the unique right unmatched node in B(ĀT , B̄T ) lies in
S̃(M⋆

W ). Hence if a subsystem in S \ S̃(M⋆
W ) has an incoming edge it

must have an outgoing edge as well. Moreover, since no B(Āi) has
a perfect matching and B̄j = 0 for all Sj ∈ S̃(M⋆

W ), every subsystem
in S \ S̃(M⋆

W ) has an incoming and an outgoing edge in D(M⋆
W ). In

every iteration the cardinality of the set S \̃S(M⋆
W ) decreases at least

by 2. Algorithm 4.1 terminates in finite number of iterations with
the same number of interconnections. Also, these interconnections
correspond to an optimum perfect matching in B(ĀT , B̄T ) and all
subsystems are accessible and |EI⋆ | ⩽ |EIA |. Since |EI⋆ | ⩾ |EIA |
and |EI⋆ | ⩽ |EIA |, combining both, we get |EI⋆ | = |EIA | and this
completes the proof. □

Now we give the complexity result of Algorithm 4.1.

Theorem 4.7. Algorithm 4.1 which takes as input irreducible struc-
tured subsystems (Ā1, B̄1), . . . , (Āk, B̄k) of state dimensions n1, . . . , nk
respectively and gives as output an optimum set of interconnection
edges, EIA , has complexity O(n3

T ), where nT =
∑k

i=1 ni.

Proof. Constructing the bipartite graph B(ĀT , B̄T ) and solving the
minimum cost perfect matching problem has complexity O(n3

T ),
where nT =

∑k
i=1 ni. Construction of D(M⋆

W ) and finding partitions

S̃(M⋆
W ) and S \ S̃(M⋆

W ) has O(nT ) complexity. Also each iteration

is of linear complexity and there are at most ⌊
k− 1
2
⌋ iterations.

Since k = O(nT ), the total complexity of the iterations is O(n2
T ).

Finally finding the interconnections EIA is linear in nT . Complexity
of Algorithm 4.1 is O(n3

T ). □

This concludes the discussion on solving Problem 2.3 on irre-
ducible subsystems when no subsystem has a perfect matching
in its state bipartite graph. However, if some subsystems have a
perfect matching in their state bipartite graph, then the analysis is
more involved. We discuss this case in the next section.

5. Algorithm and results when some subsystems have perfect
matching in their state bipartite graphs

In this section, we discuss the case where every subsystem is
irreducible and some subsystems have a perfect matching in their
state bipartite graphs. Algorithm 4.1may not terminate in this case
and then may not give an optimal solution to Problem 2.3. The key
idea in Algorithm 4.1 is the reconstruction of the interconnections
in an optimal matching M⋆

W of B(ĀT , B̄T ), by keeping the number
of interconnections unaltered, such that all subsystems become
accessible. Note that in D(M⋆

W ) all subsystems Si ∈ S \ S̃(M⋆
W ) have

corresponding input matrix B̄i = 0. Otherwise, since all subsys-
tems are irreducible Si ∈ S̃(M⋆

W ). Also note that in Algorithm 4.1
we assume that no subsystem has a perfect matching in its state
bipartite graph and based on this assumption the reconstruction
process crucially uses the fact that in D(M⋆

W ) all subsystems in
S \ S̃(M⋆

W ) have at least one incoming edge (Step 7). However, when
some subsystems have a perfect matching in their B(Āi)’s, it is not
necessary that the optimummatchingM⋆

W obtained has at least one
interconnection edge for every Si ∈ S \ S̃(M⋆

W ). In other words,
D(M⋆

W ) can contain isolated nodes. In this case, Algorithm 4.1
cannot be used.

We illustrate this through an example in Fig. 1a. For the struc-
tured subsystems considered, S2 and S3 have perfect matchings
in B(Ā2) and B(Ā3) respectively. Fig. 1 illustrates two optimum
matchingsM⋆

W and M̂⋆ in B(ĀT , B̄T ) for the example given in Fig. 1a.
Note that, cW (M⋆

W ) = cW (M̂⋆). However, notice that in their
respective subsystem digraphs given in Fig. 2, D(M⋆

W ) has S3 as
an isolated node, but D(M̂⋆) has no isolated nodes. Hence, when
subsystems have perfect matching in their B(Āi), it is not always
possible to arrive at an optimal solution to Problem 2.3 using
Algorithm 4.1. To this end, we propose another polynomial time
algorithm to solve Problem 2.3 on irreducible subsystems when
oneormore subsystemshave a perfectmatching in their respective
state bipartite graphs.
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Fig. 1. Figs. 1b and 1c demonstrate two different optimummatchings correspond-
ing to the same subsystems given in Fig. 1a.

Fig. 2. Illustrative figure demonstrating limitation of Algorithm 4.1 when some of
the subsystems have perfect matching in their state bipartite graphs.

The proposed algorithm, Algorithm 5.1, consists of three stages.
In Stage 1, we run Algorithm 4.1. Note that, for subsystems with
no perfect matching Algorithm 4.1 terminates when S \ S̃(M⋆

W ) is
empty. In this case (when few subsystems have perfect matching
in their state bipartite graph) we terminate Stage 1 when the
optimum matching obtained in Algorithm 4.1, i.e., M⋆

W , in two
consecutive iterations are the same. At the end of Stage 1 we get
a partitioning of subsystems S̃(M⋆

W ) and S \ S̃(M⋆
W ), where every

subsystem Si ∈ S \ S̃(M⋆
W ) is an isolated node in D(M⋆

W ) and B(Āi)
has a perfect matching. Notice that at the end of this stage it is not
possible to make an Si ∈ S \ S̃(M⋆

W ) accessible by reconstructing
the interconnections as done before in Algorithm 4.1. In Stage
2 we run a ‘stub-matching’ algorithm. At the end of Stage 2 we
update M⋆

W . Stage 2 is also executed without increasing the num-
ber of interconnections and it results in more subsystems being
accessible. However, even after completing Stage 2 there can be
some subsystems that are inaccessible. In Stage 3, we add extra
interconnection edges, one each to every Si ∈ S \ S̃(M⋆

W ) from some
Sj ∈ S̃(M⋆

W ).
The pseudo-code of the proposed algorithm is presented in

Algorithm 5.1. It involves three stages as elaborated below.

Stage 1 (Steps 1–2): In Stage 1, we run Algorithm 4.1 on the
given system (Step 1). We terminate Stage 1 when Algorithm 4.1
gives the sameM⋆

W for two consecutive iterations. Note that at the
instant of termination of Stage 1 the partition S̃(M⋆

W ) and S \ S̃(M⋆
W )

with respect to the matching M⋆
W is such that S \ S̃(M⋆

W ) consists
of subsystems that has no interconnection edge connected to it
(Step 2). In otherwords, subsystems in S\ S̃(M⋆

W ) are isolated nodes
in D(M⋆

W ). We denote the number of isolated nodes in D(M⋆
W ) by

tM⋆
W
. In other words, the number of non-accessible subsystems is

tM⋆
W
. Our aim in Stage 2 is to reconstruct the interconnections in

M⋆
W , in a differentway than in Algorithm 4.1, to get a newmatching

Mnew such that the number of interconnections are the same inM⋆
W

and Mnew and more subsystems are accessible. More precisely, we

achieve tMnew < tM⋆
W

using the same number of interconnections
as before. Finally we updateM⋆

W as Mnew.

Algorithm 5.1 Pseudo-code for solving Problem 2.3 on structured
subsystems when all subsystems are irreducible and some subsys-
tems have perfect matching in their state bipartite graphs

Input: Structured subsystems (Ā1, B̄1), . . . , (Āk, B̄k)
Output: Interconnections EIB

St
ag

e
1

{

St
ag

e
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St
ag

e
3

⎧⎪⎨⎪⎩

1: Run Algorithm 4.1 on the structured system and terminate
whenM⋆

W in two iterations are the same
2: Find the partition S̃(M⋆

W ) and S \ S̃(M⋆
W )

3: For i ∈ {1, . . . , k}, find max matching in B(Āi, B̄i), sayMi
4: Let di ← |Mi|

5: Define J ← {j : B̄j = 0}
6: βi ← |{(x′

i
p, x

j
q) ∈ M⋆

W : i ̸= j}|

7: for S \ S̃(M⋆
W ) ̸= ∅ and βi >

{
max{ni − di, 1}, for i ∈ J ,

(ni − di), otherwise.
do

8: Find Si ∈ S̃(M⋆
W ) s.t βi >

{
max{ni − di, 1}, i ∈ J ,

(ni − di), otherwise.
9: M̌i ← {(x′ it , x

i
r ), (x

′ i
h, u

i
g ) : (x′ it , x

i
r ) ∈ M⋆

W , (x′ ih, u
i
g ) ∈

M⋆
W }

10: γi ← |M̌i|

11: M̂i ← {(x′ it , x
j
r ), (x′

j
v, x

i
w), (x

′ i
h, u

i
g ) ∈ M⋆

W : j ∈
{1, . . . , k}}

12: Sℓ ← {(x′
j
q, ·)(x

′ j
q, x

i
p) ∈ M⋆

W and i ̸= j}
13: Sr ← {(·, x

j
q) : (x′

i
p, x

j
q) ∈ M⋆

W and i ̸= j}
14: Select M̃i ⊂ Mi : |M̃i|= γi + 1, where Mi is a perfect

matching in B(Āi, B̄i)
15: M̃ = {M⋆

W \ M̂i} ∪ {M̃i}

16: Li ← {x′
i
p : x

′ i
p is unmatched in M̃}

17: Ri ← {xip : x
i
p is unmatched in M̃}

18: while Li ̸= ∅ and Sr ̸= ∅ do
19: Ledges ← {(x′

i
p, x

j
q) : x′

i
p ∈ Li and xjq ∈ Sr }

20: Li ← Li \ x′
i
p

21: Sr ← Sr \ x
j
q

22: end while
23: while Ri ̸= ∅ and Sℓ ̸= ∅ do
24: Redges ← {(x′

j
q, x

i
p) : x

i
p ∈ Ri and x′ jq ∈ Sℓ}

25: Ri ← Ri \ xip
26: Sℓ ← Sℓ \ x′

j
q

27: end while
28: Choose an edge (x′ha, x

h
b) ∈ M̃ , where Sh ∈ S \ S̃(M⋆

W )
29: Let xrc ∈ Sr
30: if Sℓ ̸= ∅ then
31: Let x′td ∈ Sℓ

32: MW ← {M̃ \ (x′
h
a, x

h
b)} ∪ {(x

′h
a, x

r
c ), (x

′t
d, x

h
b)}

33: else
34: MW ← {M̃ \ (x′

h
a, x

h
b)} ∪ {(x

′h
a, x

r
c )}

35: end if
36: Mnew ← {MW } ∪ {Ledges} ∪ {Redges}

37: M⋆
W ← Mnew

38: βi ← |{(x′
i
p, x

j
q) ∈ M⋆

W : i ̸= j}|
39: end for
40: if S \ S̃(M⋆

W ) = ∅ then
41: EIB ← {(x

i
p, x

j
q) : (x′

j
q, x

i
p) ∈ M⋆

W and i ̸= j}
42: else
43: EIB ← {(x

i
p, x

j
q) : (x′

j
q, x

i
p) ∈ M⋆

W and i ̸= j} ∪ {(xip, x
r
t ) :

Sr ∈ S \ S̃(M⋆
W ) and Si ∈ S̃(M⋆

W )}
44: end if

Stage 2 (Steps 3–8): Now we begin Stage 2, i.e., the stub-matching
algorithm. For all Si’s in S̃(M⋆

W ), we find a maximum matching in
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B(Āi, B̄i) for i = 1, . . . , k, say Mi. Let |Mi| = di (Steps 3 and 4). The
number of unmatched nodes inMi for Si ∈ S̃(M⋆

W ) equals ni−di. The
bipartite graphB(Āi, B̄i) has a perfectmatching if andonly if di = ni.
Since M⋆

W is a perfect matching in B(ĀT , B̄T ), in M⋆
W the number of

left side nodes of Si that are matched to right side nodes of some
Sj’s, i ̸= j, is at least ni − di. This is because in M⋆

W few subsystems
may end upwithmore than ni−di left side nodesmatched to other
subsystems, so as to form a perfect matching in B(ĀT , B̄T ).

Let βi be the number of incoming interconnection edges corre-
sponding to Si in M⋆

W (Step 6). The procedure is to appropriately
choose those subsystems that have more number of incoming
interconnections than ni − di and reconstruct the matching such
that the number of interconnections in Si decreases but new inter-
connections are added to the isolated subsystems. However, note
that if i ∈ J , where J := {j ∈ J : B̄j = 0}, then at least one
interconnection is needed for the accessibility of subsystem Si. For
i ∈ J , the condition is βi > max{ni − di, 1}. Stage 2 is relevant
if there exists one or more isolated subsystem in D(M⋆

W ), i.e., a
not accessible subsystem, and there exists one or more accessible
subsystem that has βi > max{ni − di, 1}, when i ∈ J and βi >
(ni − di), otherwise (Step 7).

The reconstruction in Stage 2 is donewithout altering the num-
ber of interconnections of Stage 1. We first identify a subsystem
Si ∈ S̃(M⋆

W ) that satisfies the condition given in Step 8. There are
two possible cases. In case (a), i ∈ J . Note that for i ∈ J , the
condition is βi > max{ni − di, 1}. Here, max{ni − di, 1} ⩾ 1 and
hence βi > 1. In this case, if βi = 1, there is only one incoming
interconnection edge and so breaking this edge will make Si inac-
cessible (since i ∈ J ). Such subsystems do not participate in the
reconstruction process. On the other hand, if βi > max{ni − di, 1}
we construct a newmatching M̃ fromM⋆

W . In case (b): i /∈ J . Then,
the condition isβi > (ni−di). Since accessibility is already achieved
through input, if the number of interconnections is greater than
(ni − di), we perform edge reconstruction.

Steps 9–13: The reconstruction of matching in Stage 2 is done as
follows: let M̌i be the set of edges between nodes of Si themselves
inM⋆

W and γi be its cardinality (Steps 9 and 10). If βi > ni−di, then
γi < di. Hence, even though the size of maximum matching in Si
is di, some nodes in Si are matched to nodes in some Sj for i ̸= j so
that B(ĀT , B̄T ) has a perfect matching. Note that the identity of the
nodes in the interconnections does not matter and hence one can
reconstruct M⋆

W into another perfect matching Mnew in B(ĀT , B̄T )
without changing the number of interconnections.

For this we first construct a new matching M̃ , where M̃ is not a
perfect matching in B(ĀT , B̄T ), such that M̃ has γi + 1 edges whose
both end points are nodes of Si. For constructing M̃ , we first break
all the edges in M⋆

W associated with Si (both interconnections and
edges within), defined by M̂i (Step 11). For i ̸= j, let (x′ ip, x

j
q) ∈ M⋆

W .
After breaking the edge (x′ ip, x

j
q), we retain a ‘stub’ (this is used in

similar context in literature), i.e., a half-edge stemming from node
xjq, denoted as (·, xjq). The set of right side stubs is defined by set
Sr (Step 13). Similarly, if (x′jq, x

i
p) ∈ M⋆

W , we break it and retain a
stub from node x′jq, (x

′j
q, ·). The set of left side stubs is defined by

set Sℓ (Step 12). On the other hand, for edges within Si in M̂i, we
break them resulting in unmatched nodes and there are no stubs
resulting from this breakage.

Steps 14–17: Our approach is to increase the number of edges
between nodes in Si by one. For this we select γi + 1 number of
edges from a perfect matchingMi, in B(Āi, B̄i), to form M̃i (Step 14).
Using M̃i we constructmatching M̃ as shown in Step 15. Notice that
previously there were only γi edges between nodes of Si inM⋆

W , but
M̃ has γi + 1. We denote the set of left (right, resp.) unmatched
nodes of Si in M̃ as Li (Ri, resp.) (Steps 16 and 17). Here |Li| < |Sr |

and |Ri| ⩽ |Sℓ|. More precisely, |Sr | = |Li| + 1, and |Ri| = |Sℓ| if

the unique right unmatched vertex of thematchingM⋆
W obtained in

Step 1 of Algorithm 5.1 belongs to subsystem Si and |Sℓ| = |Li|+1,
otherwise.

Steps 18–39: The left and right unmatched nodes of Si in M̃ are
matched to the right and left stubs to form edges Ledges and Redges
respectively (Steps 19 and 24). Now the sets Sr and Sℓ are updated
as shown in Steps 21 and 26. Notice that this will certainly result
in one stub node in Sr unmatched, i.e., |Sr | = 1 (since M̃i ⊂

M̃ , where |M̃i| = γi + 1). However, |Sℓ| can be either 1 or 0.
Now we select a subsystem, say Sh ∈ S \ S̃(M⋆

W ). Notice that
corresponding to Sh there exists a perfect matching Mh and Mh ⊂

M̃ . Select an edge (x′ha, x
h
b) ∈ M̃ ∩Mh (Step 28). Now we break this

edge and connect the unmatched stubs appropriately as shown in
Steps 32 and 34 to get Mnew (Step 36). Note that Mnew is a perfect
matching in B(ĀT , B̄T ). Now M⋆

W is updated with Mnew and this
completes Stage 2.

Stage 3 (Steps 40–43): At the end of Stage 2, if S \ S̃(M⋆
W ) = ∅,

then the interconnection edges are given by EIB as given in Step 41.
At this stage, the number of interconnections is the same as the
number of interconnections in thematchingM⋆

W obtained in Step 1.
If S \ S̃(M⋆

W ) is not empty in Step 42, then in addition to the al-
ready existing interconnections we add one extra interconnection
to each subsystem in S \ S̃(M⋆

W ) from some subsystem in S̃(M⋆
W )

(Step 43). This completes Stage 3. The output of Algorithm 5.1 is
denoted by EIB .

Lemma 5.1. Consider a set of irreducible structured subsystems
(Ā1, B̄1), . . . , (Āk, B̄k). For i = 1, . . . , k, define the setJ ⊆ {1, . . . , k},
as J := {j ∈ J : B̄j = 0}. Let ρ be the minimum number of
interconnections required by the composite system to satisfy the no-
dilation condition and let di be the size of the maximum matching
in B(Āi, B̄i). Let Ā⋆ be an optimal solution to Problem 2.3 with the
set of interconnections E⋆

I . Then, |E
⋆
I | ⩾ max

(
ρ,

∑k
i=1(ni − di) +

|i ∈ J : ni = di|
)
.

Proof. A solution Ā′ to Problem 2.3 must satisfy two conditions:
(a) B(Ā′, B̄T ) must have a perfect matching, and (b) all subsystems
should be accessible. Given ρ is the minimum number of intercon-
nections required to satisfy the no-dilation condition in the com-
posite system. Note that Stage 1 of Algorithm 5.1 is Algorithm 4.1.
Hence the number of interconnections at the end of Stage 1 is ρ.
Also, by Theorem 4.6, ρ number of interconnections are essential
to guarantee condition (a). Thus |E⋆

I | ⩾ ρ.
Let Mi, for i = 1, . . . , k, be a maximum matching in B(Āi, B̄i)

such that |Mi| = di.∪k
i=1Mi is a matching in B(ĀT , B̄T ). Further, with

respect to thismatching inB(ĀT , B̄T ) there are
∑k

i=1(ni−di) number
of left side unmatched nodes and at least

∑k
i=1(ni − di) number of

right side unmatched nodes. For satisfying condition (a) at least∑k
i=1(ni − di) number of interconnections are needed. Also, for

satisfying condition (b) at least |i ∈ J : ni = di| interconnections
are needed. This is because for i /∈ J the subsystems are accessible
without using any interconnection edge since the subsystems are
irreducible. We prove |E⋆

I | ⩾
∑k

i=1(ni − di) + |i ∈ J : ni = di|
using a contradiction argument. To the contrary, assume that there
exists a solution to Problem 2.3, say Ā′′, such that the number of
interconnections in Ā′′ is less than

∑k
i=1(ni−di)+|i ∈ J : ni = di|.

Without loss of generality, assume Ā′′ consists of
∑k

i=1(ni − di) +
|i ∈ J : ni = di| − 1 interconnections. This implies that one in-
terconnection edge connects a subsystem Sj with nj ̸= dj to a
subsystem Si with i ∈ J and ni = di. Note that this edge is from
Sj to Si and hence this edge does not match any of the nj − dj
left unmatched nodes of Sj and thereby does not contribute to
matching any left node in Sj. This contradicts the assumption that
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Fig. 3. Illustrative figure demonstrating Algorithm 4.1. Blue colored node denotes the unmatched accessible node . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

this edge serves both the purposes. Hence |E⋆
I | ⩾

∑k
i=1(ni − di) +

|i ∈ J : ni = di|.
Since |E⋆

I | ⩾ ρ and |E⋆
I | ⩾ (

∑k
i=1(ni− di)+|i ∈ J : ni = di|), we

get |E⋆
I | ⩾ max

(
ρ,

∑k
i=1(ni − di)+ |i ∈ J : ni = di|

)
. □

We next show that Algorithm 5.1 achieves the lower bound
given in Lemma 5.1.

Theorem 5.2. Output of Algorithm 5.1, which takes as input a set
of irreducible structured subsystems A1, . . . , Ak and structured input
matrices B̄1, . . . , B̄k, is an optimal solution to Problem 2.3, i.e., |EIB | =
|E⋆

I |.

Proof. Let Ā⋆ be an optimal solution to Problem2.3 and let E⋆
I be the

set of interconnection edges corresponding to Ā⋆. From Lemma 5.1
we know that |E⋆

I | ⩾ max
(
ρ,

∑k
i=1(ni−di)+|i ∈ J : ni = di|

)
. Us-

ing the interconnection edges obtained as output in Algorithm 5.1,
all states are accessible and there exists a perfect matching in
B(ĀT , B̄T ). Now if we show that Algorithm 5.1 attains this bound,
then optimality follows. Recall that Algorithm 5.1 consists of three
stages and at the end of each stage the succeeding stage is executed
if the partition S \̃S(M⋆

W ) is non-empty. Note that at the end of Stage
1 and Stage 2 the number of interconnections used, which is equal
to ρ, is the minimum number of interconnections to achieve the
no-dilation condition. At the end of Stage 2 there are two possible
cases: (i) S\ S̃(M⋆

W ) = ∅, and (ii) S\ S̃(M⋆
W ) ̸= ∅. In case (i) algorithm

terminates at Stage 2 with |EIB | = ρ.
In case (ii), Algorithm 5.1 proceeds to Stage 3. Notice that at

the end of Stage 2, all subsystems with ni ̸= di have exactly
ni − di interconnections. However, there are few subsystems with
ni = di that have one interconnection edge each at the end of
Stage 2. Note that these subsystems have B̄i = 0, where i ∈ J ,
J ⊆ {1, . . . , k} defined as J := {j ∈ J : B̄j = 0} (see
definition of βi and condition on βi in Steps 6, 8 respectively of
Algorithm 5.1). In Stage 3, extra interconnections are added to only
those subsystems with ni = di and i ∈ J and that subsystem
which has no interconnection edge connected at the end of Stage
2. The number of interconnections used in Algorithm 5.1 is exactly∑k

i=1(ni − di) + |i ∈ J : ni = di|. Hence |EIB | =
∑k

i=1(ni − di) +
|i ∈ J : ni = di| and Algorithm 5.1 attains the lower bound given
in Lemma 5.1 and optimality holds. □

Theorem 5.3. Algorithm 5.1 which takes as input irreducible struc-
tured subsystems (Ā1, B̄1), . . . , (Āk, B̄k) of state dimensions n1, . . . , nk
respectively and gives as output an optimum set of interconnection
edges EIB has complexity O(n3

T ), where nT =
∑k

i=1 ni.

Proof. Construction of B(ĀT , B̄T ) and solving the minimum cost
perfect matching problem has complexity O(n3

T ), where nT =∑k
i=1 ni. Construction of D(M⋆

W ) and finding partitions S̃(M⋆
W ) and

S \ S̃(M⋆
W ) has O(nT ) complexity. Complexity of Stage 1 is O(n3

T ). In
Stage 2, finding maximum matchings Mi’s have O(ni

3) complexity
for each subsystem; there are k subsystems and nT =

∑k
i=1 ni.

Fig. 4. Bipartite matchings obtained at different stages of Algorithm 4.1 for the
example given in Fig. 3a.

Further, the stub-matching algorithm has linear complexity there
by giving total complexity of Stage 2 O(n3

T ). Stage 3 has linear
complexity. Combining, the overall complexity of Algorithm 5.1
is O(n3

T ). □

This concludes the case of solving Problem 2.3 on irreducible
subsystems when some of the subsystems have perfect matching
in their state bipartite graph. Nowwe demonstrate Algorithms 4.1
and 5.1 using illustrative examples.

6. Illustrative examples and multi-input case

In this section, we first illustrate the two algorithms given in
the paper, Algorithms 4.1 and 5.1, through examples and then give
a brief outline on the extension to the multi-input case.

6.1. Illustrative example

In this subsection, we consider an example and apply results
of this paper. Red colored edges in Figs. 3 and 6 are the intercon-
nection edges. Initially, we demonstrate Algorithm 4.1 through an
example given in Fig. 3a. The minimum cost perfect matching M⋆

W
obtained in Step 2 of Algorithm 4.1, shown in Fig. 4a, consists of
two interconnection edges. Fig. 3b shows the resulting composite
system corresponding to the interconnections established in M⋆

W
shown in Fig. 4a. The resulting partitioning is S̃(M⋆

W ) = {u, S1} and
S \ S̃(M⋆

W ) = {S2, S3}. Here xtr = x13. This gives M ′W = {M
⋆
W \

(x′23, x
3
1)} ∪ {(x

′2
3, x

1
3)}. At the end of the first iteration M⋆

W = M ′W
as shown in Fig. 4b. Fig. 3c shows the resulting composite system
corresponding to the interconnections established in M⋆

W shown
in Fig. 4b. S \ S̃(M⋆

W ) = ∅ and this completes Algorithm 4.1. The
solution obtained is EIA = {(x

1
3, x

2
3), (x

2
3, x

3
1)}.

Now we demonstrate Algorithm 5.1 through an example given
in Fig. 6. Fig. 5a is the perfect matching M⋆

W obtained in Step 1 of
Algorithm 5.1. The resulting interconnections in the subsystems
are shown in red edges in Fig. 6a. Note that the number of intercon-
nections is four. Here S̃(M⋆

W ) = {u, S1, S2} and S \ S̃(M⋆
W ) = {S3, S4}.
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Fig. 5. Bipartite matchings obtained at different stages of Algorithm 5.1 for the
example given in Fig. 6.

Also, J = {2, 3, 4}. Note that S2 ∈ S̃(M⋆
W ) has a perfect matching

in B(Ā2, B̄2). Here d2 = n2 = 2 and hence n2 − d2 = 0. Further,
2 ∈ J and β2 = 2. Here M̌2 = ∅ and hence γ2 = 0. M̂2 = {(x′

1
4, x

2
1),

(x′15, x
2
2), (x

′2
1, x

1
4), (x

′2
2, x

1
5)} and Sℓ = {x′

1
4, x
′1
5} and Sr = {x14, x

1
5}.

Now M̃i = (x′21, x
2
2). The matching M̃ = {(x′11, u), (x

′1
2, x

1
1), (x

′1
3, x

1
2),

(x′21, x
2
2), (x

′3
1, x

3
2), (x

′3
2, x

3
1), (x

′4
1, x

4
1)}. L2 = {x

′2
2} and R2 = {x21}. This

gives Ledges = {(x′
2
2, x

1
4)} and Redges = {(x′

1
4, x

2
1)}. At the end of

Steps 22 and 27, Sr = x15 and Sℓ = x′15 respectively.
Nowwe select (x′32, x

3
1) in Step 28. ThematchingMW = {(x′

1
1, u),

(x′12, x
1
1), (x

′1
3, x

1
2), (x

′2
1, x

2
2), (x

′3
1, x

3
2), (x

′3
2, x

1
5), (x

′1
5, x

3
1), (x

′4
1, x

4
1)}. Now

Mnew is obtained as in Step 36 andM⋆
W is updated asMnew. TheM⋆

W
obtained is shown in Fig. 5b. Here β2 = 1. At the end of iteration 1
of Stage 2 S \ S̃(M⋆

W ) = S4. Also β1 = 2, β2 = β3 = 1 and β4 = 0.
Condition βi > {maxi∈J {ni − di, 1}, (ni − di)} is not satisfied. This
completes Stage 2 and the number of interconnections remains as
four. The corresponding subsystem graph is shown in Fig. 6b.

Since S \ S̃(M⋆
W ) ̸= ∅, we enter Stage 3, where an extra edge

(x′41, x
3
2) is added as shown in Fig. 6c. The solution to Problem 2.3,

EIB = {(x
2
1, x

1
4), (x

3
2, x

4
1), (x

3
1, x

1
5), (x

1
4, x

2
2), (x

1
5, x

3
2)}.

6.2. Multi-input case

In this subsection, we briefly give an outline for extending the
algorithms and results given in this paper for the multi-input case.
Firstly, we analyze Algorithm 4.1. Note that in Algorithm 4.1, the
reconstruction process relies on two ideas: (i) in any optimum
matching M⋆

W in B(ĀT , B̄T ), there is an unmatched accessible node,
and (ii) in D(M⋆

W ) all subsystems in S \ S̃(M⋆
W ) have an incoming

and an outgoing interconnection. In the multi-input case, there
exists at least one unmatched accessible node, and (i) continues to
hold. Further, by Lemma 4.4 all subsystems in S \ S̃(M⋆

W ) have equal
number of nodes on the left and right sides of B(ĀT , B̄T ). Therefore,
(ii) also holds and the results in Section 4 and Algorithm 4.1 extend
to the multi-input case.

Now we analyze Algorithm 5.1. The key idea in Algorithm 5.1
is the stub-matching algorithm. It is based on the observation that,
using a properly defined stub-matching scheme, from any opti-
mum matching of the bipartite graph B(ĀT , B̄T ), one can carefully
reconstruct the interconnections in such a way that no subsystem
has more number of interconnections than that are needed to
achieve the no-dilation condition and the accessibility condition.
The stub-matching scheme removes the redundancy in the in-
terconnections, while making more subsystems accessible. This is

Fig. 6. Structured subsystems S1 , S2 and S3 considered for demonstrating Algorithm
5.1. Red colored edges correspond to the interconnections and black colored edges
are connections within the subsystems . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

how our scheme, results and algorithms extend to the multi-input
case.

7. Conclusion

This paper dealt with structural controllability of linear time-
invariant (LTI) composite system. Thoughwe focused on structural
controllability of systems, because of duality between controllabil-
ity and observability in LTI systems, all results and algorithms of
this paper directly follow in the structural observability problem
as well. Considering structural controllability, the primary focus
of this paper is to identify a minimum cardinality set of intercon-
nection edges the subsystems should establish amongst each other
such that the composite system is structurally controllable, i.e., the
optimal essential interconnection selection problem. We approach
the problem froma structured framework,where the zero/nonzero
entries of the matrices are used instead of the numerical matrices
themselves. Under the assumption that all subsystems are irre-
ducible, we tackle the problem in two different settings: (i) when
no subsystem has a perfect matching in its state bipartite graph,
and (ii) when one or more subsystems have a perfect matching in
their state bipartite graphs. For case (i), we proposed a polynomial
time algorithm for solving the optimal essential interconnection
selection problem. The proposed algorithm based on a minimum
weight perfect matching algorithm followed by an edge recon-
struction process gives as output an optimal solution in O(nT

3)
computations. In case (ii), we first identified a lower bound on the
cardinality of theminimumnumber of interconnections needed for
a given set of subsystems. Subsequently,we proposed an algorithm
based on minimum weight perfect matching and a stub-matching
algorithm that achieves this lower bound while satisfying the ac-
cessibility and no-dilation conditions. We proved the optimality of
the algorithm and also showed that the computational complexity
is O(nT

3).
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