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Sparsest Feedback Selection for Structurally Cyclic Systems with
Dedicated Actuators and Sensors in Polynomial Time
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Abstract—This paper deals with optimal feedback selection
problem in linear time-invariant (LTI) structured systems for
arbitrary pole placement, an important open problem in struc-
tured systems. Specifically, we solve the sparsest feedback selection
problem for LTI structured systems. In this paper, we consider
structurally cyclic systems with dedicated inputs and outputs. For
this class of systems, we prove that the sparsest feedback selection
problem is equivalent to the strong connectivity augmentation
problem in graph theory. We present an O(n2) algorithm to find
a sparsest feedback matrix for structured systems when every
state is actuated by a dedicated input and every state is sensed
by a dedicated output, where n denotes the number of states in
the system. If the inputs and the outputs are such that not every
state is actuated by a dedicated input and/or not every state is
sensed by a dedicated output, then we provide an O(n3) algorithm
for the sparsest feedback selection problem. These results show
that sparsest feedback selection with dedicated i/o is a specific
case of the optimal feedback selection problem that is solvable
in polynomial time. We later analyze the sparsest feedback
selection problem for structurally cyclic systems when both the
input and the output are dedicated and the feedback pattern
is constrained. When some of the feedback links are forbidden,
we prove that the problem is NP-hard. The results in this paper
along with the previously known results conclude that the optimal
feedback selection problem is polynomial-time solvable only for
the dedicated input-output case without forbidden feedback links
and also without weights for the feedback links.

Index Terms—Linear structured systems, Arbitrary pole place-
ment, Linear output feedback, Sparsest feedback selection.

1. INTRODUCTION

Feedback selection for control systems that guarantees ar-
bitrary placement of the closed-loop poles is a fundamental
design problem in control theory. The challenging part of
the design problem is to accomplish an optimal design, for
example in the sense of number of connections or weight
of connections. We consider feedback selection in large scale
linear dynamical systems. The analysis done in this paper is
based on the zero/nonzero pattern (sparsity) of the system.
The rationale behind performing this analysis is, in most large
scale systems and real time systems, the numerical values of
the nonzero entries in the system description are either not
known at all, like social networks, biological systems, or they
are not known accurately, like electric networks, power grids
and multi-agent systems. To this end, various system properties
of these systems are studied using their sparsity pattern and
the framework used is referred to as structural analysis [1].

Structural analysis of linear control systems, namely struc-
tural controllability was introduced by Lin in [2]. Over last few
decades, this area has gained interest due to its applicability
in various complex systems: see [3] and references therein for
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details. Structural analysis of behavioral systems is addressed
in papers [4], [5]. This paper discusses sparsest feedback
selection that guarantees arbitrary pole placement. A necessary
and sufficient graph theoretic condition to guarantee arbitrary
pole placement in a closed-loop system is given in [6] using
the concept of fixed modes1 [7].

Given a large scale dynamical system, optimal feedback
selection problem consists of finding an optimal (in the
sense of cardinality or weight) set of feedback edges, i.e.,
which output should be fed to which input, such that one
has guaranteed arbitrary pole placement of the closed-loop
system. In other words, given the digraph representing the
state dynamics, the inputs, and the outputs of the system, the
objective is to find an optimal set of feedback connections
that ensures the desired design objective. There are different
settings of the optimal feedback selection problem depending
on whether the inputs and the outputs are dedicated2 or non-
dedicated and the feedback links are weighted3 or not. Further,
like most papers in this area, in this paper we consider a
subclass of systems referred as structurally cyclic systems. A
system is said to be structurally cyclic if all the vertices of
the state digraph (see Section 2-C) are spanned by disjoint
cycles. Before delving into the implication of the structurally
cyclic assumption, the algorithmic complexity results across
the literature and this paper of the optimal feedback selection
problem for structurally cyclic systems for different problem
settings are consolidated in the table below.

Table I: Algorithmic complexity results of the optimal feed-
back selection problem

Input
and Output

Feedback links
Non-weighted Weighted

Dedicated P (this paper) NP-hard [8]
Non-dedicated NP-hard [9] NP-hard [9]

The class of structurally cyclic systems is wide: for example,
self-damped systems (see [10]) including consensus dynamics
in multi-agent systems and epidemic equations. Further, for
systems whose state matrices are invertible, the state digraph is

1While absence of structurally fixed modes is necessary for arbitrary pole
placement to be possible, output feedback in general has to be dynamic to
achieve arbitrary pole placement.

2An input (output, resp.) is said to be dedicated if it can actuate (sense,
resp.) a single state only.

3If a feedback pattern consists of feedback edges without weights, then
it is understood that all outputs can possibly be fed back to all inputs, i.e.,
no feedback edge is ‘forbidden’. On the other hand, if some of the outputs
cannot be fed to some of the inputs and there is no weight associated with all
the possible feedback links, then we refer to this case as ‘sparsest feedback
with forbidden set’.
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structurally cyclic. For the class of structurally cyclic systems,
we prove that finding a sparsest feedback matrix has O(n2)
complexity, where n denotes the number of states in the
system, when each state is actuated by an input and each state
is sensed by an output. For this class of systems, we also
prove that when not every state is connected to an actuator
and not every state is connected from a sensor, then finding
a sparsest feedback matrix has O(n3) complexity. Note that
here the feedback matrix is unconstrained, i.e., it is possible to
connect any output to any input. Later we analyze the problem
after imposing a restriction that some of the feedback links
are forbidden. With this restriction, we show that the sparsest
feedback selection problem on structurally cyclic systems is
NP-hard when both the inputs and the outputs are dedicated.
This paper along with the previously known NP-hardness
results in [8], [9] concludes that the optimal feedback selection
problem is polynomially solvable only for the case where both
the inputs and the outputs are dedicated and the feedback
pattern is unconstrained without link weights.

The organization of this paper is as follows. In Section 2,
we formally define the sparsest feedback selection problem
and describe related work in this area. We also provide
some preliminaries and state some known results that we use
subsequently. In Section 3, we provide algorithms for solving
Problem 1 and prove their optimality. We also show that an
additional constraint of the feedback pattern, i.e., few feedback
links being forbidden, makes the problem NP-hard. Finally, we
conclude in Section 4.

2. PROBLEM FORMULATION, RELATED WORK AND
PRELIMINARIES

In this section, we formulate the sparsest feedback selection
problem and then describe related work in this area and few
preliminaries used in the sequel.

A. Problem Formulation

Consider a linear time-invariant system ẋ=Ax+Bu, y=Cx,
where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. Here R denotes
the set of real numbers. The structural representation of this
system referred to as structured system is denoted by (Ā, B̄,C̄),
where Ā ∈ {0,?}n×n, B̄ ∈ {0,?}n×m, and C̄ ∈ {0,?}p×n has the
same structure as that of A,B and C, respectively. Here 0
entries are fixed zeros while ? entries denote free independent
parameters. More precisely,

Ai j = 0 whenever Āi j = 0, and
Bi j = 0 whenever B̄i j = 0, and
Ci j = 0 whenever C̄i j = 0. (1)

Any (A,B,C) that satisfies (1) is referred to as a numerical re-
alization of the structured system (Ā, B̄,C̄). Let K̄ ∈ {0,?}m×p

denotes a feedback matrix, where K̄i j = ? if the jth output is
fed to the ith input. We define, [K] := {K : Ki j = 0, if K̄i j = 0}.

Definition 1. The structured system (Ā, B̄,C̄) and the feedback
matrix K̄ is said to have no structurally fixed modes (SFMs) if
there exists a numerical realization (A,B,C) of (Ā, B̄,C̄) such
that ∩K∈[K]σ(A+BKC) = /0, where σ(T ) denotes the set of
eigenvalues of a square matrix T .

Consider a given structured matrix K̄G ∈ {0,?}m×p. We
say K̄ � K̄G if K̄ satisfies the following conditions: (i) the
dimension of K̄ is same as that of K̄G, and (ii) K̄i j = ? only
if K̄G

i j = ?. Given a structured system (Ā, B̄,C̄) and a feedback
configuration K̄G, our aim in this paper is to find a feedback
pattern K̄ with minimum number of nonzero entries (i.e.,
sparsest) such that K̄ � K̄G and the closed-loop structured
system (Ā, B̄,C̄, K̄) has no SFMs. Let Ks := {K̄ ∈ {0,?}m×p :
K̄ � K̄G and (Ā, B̄,C̄, K̄) has no SFMs}. For a structured sys-
tem (Ā, B̄,C̄), without loss of generality, we assume that Ks
is non-empty. Specifically, K̄G ∈ Ks. Next, we describe the
problem addressed in this paper.

Problem 1. Given a structured system (Ā, B̄,C̄) and feedback
configuration K̄G, find

K̄? ∈ argmin
K̄∈Ks

‖K̄‖0 .

Here ‖·‖0 denotes the zero matrix norm4. We refer to
Problem 1 as the sparsest feedback selection problem.

B. Related Work
Finding sparsest feedback matrix for a given structured

system is considered in [11]. The approach given in [11]
requires a minimum cardinality input-output to be found,
which in itself is an NP-hard problem [12], [13]. The authors
in [14] discuss minimum weight feedback selection, which is
a more general problem. The approach given in [14] requires
solving a multi-commodity network flow problem: an NP-hard
problem. Thus neither [11] nor [14] yield a polynomial time
algorithm to the feedback selection problem, and hardness of
the sparsest feedback selection problem remained unsolved.
For a structured state matrix, the problem of finding jointly
sparsest input, output and feedback matrices is addressed
in [15]. In [15] there is no restriction on the structure of
the input and output matrices. The approach in [15] first
finds a minimum i/o set for accessibility and sensability and
then performs so-called mixed pairing between them to get
a sparsest feedback matrix. This approach is possible as the
i/o structure is unconstrained and non-dedicated. Finding a
minimum i/o set for accessibility and sensability itself is NP-
hard [12] when the i/o structure is constrained. Further, the
mixed pairing concept critically uses the non-dedicated nature
of the i/o set. Due to these two factors, the approach given in
[15] can not solve Problem 1. On the contrary, [16] considered
the problem when there is no flexibility in choosing the input
and output matrices. Given structured state, input and output
matrices and weights associated with each of them (i.e, each
input, output and feedback edge is associated with a weight),
finding a minimum weight input set, a minimum weight output
set, and a minimum weight feedback matrix is addressed in
[16]. This problem is known to be NP-hard [12] and hence [16]
considered a special class of systems where the state matrix
is irreducible5. For the case when the state, input and output
matrices are fixed, the problem of finding a sparsest feedback
matrix has been studied in [17].

4Although ‖·‖0 does not satisfy some of the norm axioms, the number of
nonzero entries in a matrix is conventionally referred to as the zero norm.

5A directed graph is said to be irreducible if there exists a directed path
between any two vertices, equivalently, the graph is strongly connected.
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In the context of the complexity of the optimal feedback
selection problem for structurally cyclic systems, we proved
the NP-hardness and the constant factor inapproximability
for the non-dedicated input-output case (when feedback links
are weighted and non-weighted) recently in [9]. Paper [9]
then considered a special graph topology called line graph
systems where an optimal solution is obtained using a dynamic
programming-based algorithm in polynomial time. We also
proved the NP-hardness and the constant factor inapprox-
imability for the dedicated input-output case with weighted
feedback links in [8]. Special graph topologies called back-
edge feedback structure and hierarchical networks are studied
in [8], where polynomial time solutions are obtained. This
paper addresses the case where both the inputs and the outputs
are dedicated and feedback links are non-weighted. The paper
[17] claim NP-hardness of this case for structurally cyclic
systems. We present a polynomial time algorithm to obtain an
optimal solution and prove that this case is in P. We describe
below briefly the error in the proof and the result given in
[17].

Remark 1. Reference [17] shows that when K̄G
i j = ? for

all i, j (i.e., all feedback links allowed), an optimal solution
K̄? to Problem 1 which has two SCCs in D(Ā, B̄,C̄, K̄?)
gives a solution to a known NP-hard problem, the graph
decomposition problem. This does not answer the case where
an optimal solution K̄? results in a different number of SCCs
in D(Ā, B̄,C̄, K̄?), specifically one SCC. For the special case
considered in the NP-hardness proof in [17], there always
exists an optimal solution, K̄?, that results in a single SCC in
D(Ā, B̄,C̄, K̄?) (Corollary 1). The (modified) problem that is
shown to be indeed NP-hard in [17] can be stated as: given
a structured system (Ā, B̄,C̄), find K̄ such that D(Ā, B̄,C̄, K̄)
has two SCCs.

Paper [17] also claimed the NP-hardness of the non-
dedicated i/o case by the straightforward application of their
NP-hardness claim and proof for the dedicated i/o case. This
claim does not hold, since dedicated i/o case is not NP-hard.
The complexity result for the non-dedicated i/o case is given
in [9].

C. Preliminaries
Graph theory is a key tool in the analysis of structured

systems since a structured system can be represented as a
digraph and there exist necessary and sufficient graph theoretic
conditions for various structural properties of the system [1].
Given a structured system (Ā, B̄,C̄) we first construct the
system digraph denoted as D(Ā, B̄,C̄) which is constructed
as follows: we define the state digraph D(Ā) := (VX ,EX )
where VX = {x1, . . . ,xn} and an edge (x j,xi) ∈ EX if Āi j = ?.
A directed edge (x j,xi) exists if state x j can directly in-
fluence state xi. Define the system digraph D(Ā, B̄,C̄) :=
(VX ∪VU ∪VY ,EX ∪ EU ∪ EY ), where VU = {u1, . . . ,um} and
VY = {y1, . . . ,yp}. An edge (u j,xi) ∈ EU if B̄i j = ? and an
edge (x j,yi) ∈ EY if C̄i j = ?. A directed edge (u j,xi) exists if
input u j can actuate state xi and a directed edge (x j,yi) exists if
output yi can sense state x j and this completes the construction
of the system digraph. Given a structured system (Ā, B̄,C̄)
and a feedback matrix K̄, we define the closed-loop system

digraph D(Ā, B̄,C̄, K̄) := (VX ∪VU ∪VY ,EX ∪ EU ∪ EY ∪ EK),
where (y j,ui) ∈ EK if K̄i j = ?. Here a directed edge (y j,ui)
exists if output y j can be fed to input ui.

A set of vertices V̂ of a digraph is said to be strongly
connected if for each ordered pair of vertices (vi,vk), vi,vk ∈
V̂ , there exists an elementary directed path from vi to vk.
A strongly connected component (SCC) is a subgraph that
consists of a maximal set of strongly connected vertices.
Now, using the closed-loop system digraph D(Ā, B̄,C̄, K̄) the
following result has been shown in [6].

Proposition 1 ([6], Theorem 4). A structured system (Ā, B̄,C̄)
has no structurally fixed modes with respect to an information
pattern K̄ if and only if the following conditions hold:
a) in the digraph D(Ā, B̄,C̄, K̄), each state node xi is contained
in an SCC which includes an edge from EK , and
b) there exists a finite node disjoint union of cycles6 Cg =
(Vg,Eg) in D(Ā, B̄,C̄, K̄) for some positive integer g such that
VX ⊆ ∪gVg.

Given a closed-loop structured system (Ā, B̄,C̄, K̄), one can
check condition a) in Proposition 1 in O(n2) computations
[18] (by checking if all the SCCs in D(Ā, B̄,C̄, K̄) has at least
one feedback edge in it), and condition b) in Proposition 1
in O(n2.5) computations (using the information path concept
given in [19]). Verification of existence of SFMs in a structured
system has complexity O(n2.5) [18]. Our objective here is
to find a sparsest feedback matrix such that the resulting
closed-loop system has no SFMs. Note that, for designing
a feedback matrix that ensures no-SFMs criteria, all state
nodes in D(Ā) must be actuated and sensed by some input
and output, respectively. While for a structured system that is
structurally controllable and structurally observable connecting
all outputs to all inputs would guarantee the no-SFMs criteria,
this approach may not necessarily give a sparsest feedback
matrix. In this paper, we consider structurally cyclic systems
with dedicated inputs and outputs. A structurally cyclic system
is defined as follows.

Definition 2. A structured system Ā is said to be structurally
cyclic if all the vertices of the state digraph D(Ā) are spanned
by disjoint union of cycles.

In a structurally cyclic system, condition b) in Proposition 1
is satisfied. The feedback selection problem for a structurally
cyclic system only need to obtain a feedback matrix that
satisfies condition a) in Proposition 1. Henceforth, we consider
structurally cyclic systems with dedicated inputs and outputs.
The following assumption holds.

Assumption 1. The state digraph D(Ā) is structurally cyclic.

In the next section, we give our algorithms of polynomial
complexity for solving Problem 1 when Assumption 1 holds
and both the input and the output sets are dedicated.

3. SOLVING SPARSEST FEEDBACK SELECTION PROBLEM
WITH DEDICATED INPUT-OUTPUT

In this section, we solve the sparsest feedback selection
problem when both the input and the output sets are dedicated.

6In a digraph, a cycle is a directed path whose starting and ending vertices
are the same such that there are no node repetitions.
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In the context of dedicated inputs and/or outputs, B̄ or C̄
are structured diagonal matrices with a specific number of
nonzero entries. Let In be an n× n diagonal matrix with all
diagonal entries nonzero and Zr be an n× n diagonal matrix
with exactly r diagonal entries nonzero. We address two cases
here: (i) complete-dedicated input-output, i.e., B̄ = C̄ = In, and
(ii) dedicated input-output, i.e., B̄ = Zm and C̄ = Zp for some
m, p 6 n.

The feedback configuration K̄G satisfies the following as-
sumption.

Assumption 2. Given a structured system (Ā, B̄,C̄), the
feedback configuration K̄G satisfies {K̄G

i j = ? if B̄ii = ? and
C̄ j j = ?}. Then, K̄G is said to be complete.

A feedback configuration satisfying Assumption 2 has no
constraint on the feedback connections and it permits feedback
of any output to any input. In this section, we show that
Problem 1 has polynomial time solution if Assumption 2
holds. Later in Theorem 4, we relax Assumption 2 and show
that the sparsest feedback selection problem is NP-hard when
some of the feedback links are forbidden. Note that, with
respect to B̄ = C̄ = In, a complete K̄G satisfies K̄G

i j = ? for
all i, j. On the other hand, with respect to B̄ = Zm and C̄ = Zp,
a complete K̄G consists of zero entries, where K̄G

i j = 0 when
B̄ii = 0 or C̄ j j = 0 or both.

In the context of structurally cyclic systems satisfying
Assumption 2, for case (i) (B̄ = C̄ = In) we propose an
O(n2) algorithm and for case (ii) (B̄ = Zm and C̄ = Zp) we
propose an O(n3) algorithm. The proposed solutions are the
consequence of an important observation that there exists an
optimal solution K̄? to Problem 1 such that all state nodes lie in
a single SCC in D(Ā, B̄,C̄, K̄?). This is illustrated in Figure 1
and proved using Lemma 1. Note that in Figure 1a, the optimal
solution K̄′ results in three SCCs. However, there is another
optimal solution, K̄′′, given in Figure 1b which results in two
SCCs. On the other hand, the optimal solution K̄? given in
Figure 1c results in a single SCC. Note that in this example,
many optimal feedback configurations are possible and there
exists one which results in a single SCC in D(Ā, B̄,C̄, K̄?).
Formally, we prove the following result.

Lemma 1. Consider a structured system (Ā, B̄,C̄) satisfying
Assumption 1 and a feedback configuration K̄G satisfying
Assumption 2. Let K̄? be an optimal solution to Problem 1 such
that all state nodes lie in β number of SCCs in D(Ā, B̄,C̄, K̄?),
where β > 1. Then, there exists another optimal solution K̄?

new
such that ‖K̄?‖0 = ‖K̄?

new‖0 and all state nodes lie in β − 1
number of SCCs in D(Ā, B̄,C̄, K̄?

new).

Proof. Given K̄? is an optimal solution to Problem 1 and all
state nodes lie in the β number of SCCs in D(Ā, B̄,C̄, K̄?),
say C1, . . . ,Cβ . Pick two SCCs, say Ci,C j. Since K̄? satisfies
condition a) in Proposition 1, both Ci and C j have at least one
feedback edge in them. Let (ya,ub) ∈ Ci and (yc,ud) ∈ C j.
Now, break the edges (ya,ub),(yc,ud) and make the edges
(ya,ud),(yc,ub). The inclusion of edges (ya,ud),(yc,ub) is
allowed as K̄G satisfies Assumption 2. We claim that now all
the nodes in Ci and C j lie in a single SCC with feedback edges
(ya,ud),(yc,ub). To prove this we need to show that there
exists a directed path between two arbitrary vertices in them.

Consider any four arbitrary vertices vr,vq ∈Ci and vζ ,vδ ∈C j.
Since Ci is an SCC, notice that there exists a directed path from
ub to vr. Similarly, there exists a directed path from vr to ya
also. Thus there exists a directed path from ub to ya passing
through vr. Similarly, we can show a directed path from ub
to ya passing through vq. Further, using the same argument
on C j we can show that there exists a directed path from ud
to yc passing through vζ and from ud to yc passing through
vδ . These paths are shown using dotted lines in Figure 2.
Now, on adding edges (ya,ud),(yc,ub), there exists directed
paths between all these vertices vr,vq,vζ and vδ as shown
in Figure 2. Therefore, there exists a path between any two
arbitrary vertices in Ci, any two arbitrary vertices in C j, and
any two arbitrary vertices in Ci,C j. As a result, by breaking
edges (ya,ub),(yc,ud) and making edges (ya,ud),(yc,ub) all
the vertices in Ci and C j lie in a single SCC. Thus given an
optimal feedback matrix, there exists another feedback matrix
with the same number of edges, hence optimal, such that all
the state nodes are spanned by one less number of SCCs in
the closed-loop system digraph. This completes the proof.

ya

vr

vq

ub

ud

vζ

vδ

yc

Figure 2: Schematic diagram depicting the construction used
in the proof of Lemma 1. Dotted lines between two vertices
denote existence of a directed path between them.

As a consequence of Lemma 1, we have the following
corollary.

Corollary 1. Consider a structured system (Ā, B̄,C̄) satisfying
Assumption 1 and a feedback configuration K̄G satisfying
Assumption 2. Then, there exists an optimal solution K̄? to
Problem 1 such that all state nodes lie in a single SCC in
D(Ā, B̄,C̄, K̄?).

The above corollary is true, since given any optimal solution
K̄′ to Problem 1 (recall that the set Ks is nonempty), one
can apply Lemma 1 recursively and obtain another optimal
solution K̄? such that D(Ā, B̄,C̄, K̄?) is a single SCC. Conse-
quently, solving Problem 1 on a structured system (Ā, B̄,C̄)
is same as finding a set of minimum number of feedback
edges to add in the digraph D(Ā, B̄,C̄) such that in the
resulting digraph all state nodes lie in an SCC. We relate
Problem 1 to a known problem in graph theory, namely the
strong connectivity augmentation problem [20]. The problem
of finding the minimum number of edges to add in a digraph
such that the resulting digraph is strongly connected is referred
to as the strong connectivity augmentation problem. Next, we
formally state the strong connectivity augmentation problem
for the sake of completeness.

Problem 2 (Strong connectivity augmentation problem [20]).
Given a directed graph D = (VD,ED), the strong connectivity
augmentation problem aims at finding the minimum cardinality
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(a) Digraph D(Ā,In,In, K̄′),
where K̄′13 = K̄′46 = K̄′79 =
? and zero otherwise, has
three SCCs.
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y3 y6 y9
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(b) Digraph D(Ā,In,In, K̄′′),
where K̄′′16 = K̄′′43 = K̄′′79 = ?
and zero otherwise, has two
SCCs.

u1 u4 u7

y3 y6 y9

x1

x2

x3

x4

x5

x6

x7

x8
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(c) Digraph D(Ā,In,In, K̄?),
where K̄?

19 = K̄?
43 = K̄?

76 = ?
and zero otherwise, is a sin-
gle SCC.

Figure 1: Illustrative figure demonstrating the existence of an optimal solution to Problem 1 with a single SCC in D(Ā, B̄,C̄, K̄?).
For simplicity, self-loop of each state vertex xk is not shown in all the figure. Also, each state vertex xk has input uk and output
yk connected which are omitted for many xk’s for the sake of clarity.

set of edges E ′D such that D′ = (VD,ED ∪ E ′D) is strongly
connected.

First note that if D(Ā) is irreducible, then E ′D = /0 and any K̄
with a single nonzero entry is optimal. Hence, from now on we
only focus on the non-trivial cases such that D(Ā) has at least
two SCCs. There exists an algorithm for solving Problem 2
optimally with complexity linear in (|VD|+ |ED|) [21]. Given
a directed graph D, the algorithm proposed in [21] outputs
a minimum set of edges E ′D such that D′ is a single SCC.
In the subsections below, we present algorithms for solving
Problem 1 in cases (i) and (ii) using the strong connectivity
augmentation algorithm given in [21].

A. Algorithm for B̄ = C̄ = In

In this subsection, we show that if the structured system
satisfies Assumption 1 and B̄ = C̄ = In, then Problem 1 can be
solved in O(n2) time. The feedback pattern K̄G here satisfies
Assumption 2, i.e., K̄G

i j = ? for all i, j. Using Corollary 1 now
we give the polynomial time algorithm to solve Problem 1 on
structured systems that satisfy Assumption 1:
Step 1: Given a structured system (Ā, B̄ = In,C̄ = In), solve
the strong connectivity augmentation problem on the digraph
D(Ā). Let EX denotes the optimal solution obtained.
Step 2: Define K̄S = {K̄S

i j = ? : (x j,xi) ∈ EX }.
Note that defining K̄S as given in Step 2 is possible since

B̄ = C̄ = In. Now we prove that K̄S obtained in Step 2 is an
optimal solution to Problem 1.

Theorem 1. Consider a structured system (Ā, B̄,C̄) satisfying
Assumption 1 and a feedback configuration K̄G satisfying
Assumption 2. Then, solving Problem 1 has O(n2) complexity,
where n denotes the number of states in the structured system.

Proof. Here we prove that solving strong connectivity aug-
mentation problem on D(Ā) gives an optimal solution to
Problem 1. As Assumption 1 holds, condition b) in Propo-
sition 1 is satisfied without using any feedback edge and
our aim is to only satisfy condition a) in Proposition 1. The

structured system given satisfies one of the following cases:
i) D(Ā) is irreducible; ii) D(Ā) is reducible. In case i),
solution to the strong connectivity augmentation problem,
EX = /0. Then, an optimal solution to Problem 1 is given by
{K̄S : K̄S

11 = ? and 0 otherwise}. In case ii), we now prove
that K̄S obtained in Step 2 corresponding to EX is an optimal
solution to Problem 1. We first show that K̄S is a feasible
solution, i.e., K̄S ∈ Ks. By the construction of K̄S given in
Step 2 notice that all state nodes lie in a single SCC in
D(Ā, B̄,C̄, K̄S). Also, D(Ā) is not irreducible. Thus condi-
tion a) in Proposition 1 is satisfied for all states and hence
K̄S ∈ Ks. Now we prove that K̄S is an optimal solution to
Problem 1, i.e., ‖K̄S‖0 = ‖K̄?‖0. Suppose not. Then there exists
K̄′′ ∈Ks such that ‖K̄′′‖0 < ‖K̄S‖0 and all state nodes lie in a
single SCC in D(Ā, B̄,C̄, K̄′′) (by Corollary 1). Consider edges
E ′X , where (x j,xi) ∈ E ′X if K̄′′i j = ?. Notice that |E ′X | < |EX |
and D′ = (VX ,EX ∪E ′X ) is an SCC. This is a contradiction
to the assumption that EX is an optimal solution to the
strong connectivity augmentation problem. This proves that the
feedback matrix obtained by solving the strong connectivity
augmentation problem on D(Ā), K̄S = {K̄S

i j = ? : (x j,xi)∈EX },
is an optimal solution to Problem 1.

Now the complexity of the strong connectivity augmentation
algorithm is linear in the number of nodes and edges in the
digraph. Since |VX |= n and |EX |= O(n2), the result follows.

In the next subsection, we consider the case where both the
inputs and the outputs are dedicated but not In.

B. Algorithm for B̄ = Zm and C̄ = Zp

In this subsection, we solve Problem 1 on structured systems
that have dedicated input and output matrices with B̄ = Zm
and C̄ = Zp. Zm and Zp are n× n diagonal matrices with m
and p nonzero entries, respectively. Here not every state is
influenced (sensed, resp.) directly by an input (output, resp.)
and B̄ (C̄, resp.) consists of n−m zero columns (n− p zero
rows, resp.) and our aim is to solve Problem 1. We assume that
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Algorithm 1 Pseudo-code for solving Problem 1 on struc-
turally cyclic systems when both the input and the output sets
are dedicated

Input: Structured system (Ā, B̄ = Zm,C̄ = Zp)
Output: Feedback matrix K̄S′

1: Solve strong connectivity augmentation problem on D(Ā),
say EX is the solution obtained

2: Find EF ⊂ EX , where (x j,xi) ∈ EF if either B̄ii = 0 or
C̄ j j = 0 or both

3: while EF 6= /0 do
4: Let (x j,xi) ∈ EF
5: Find xb,xt such that there exist directed paths from xt

to xi and x j to xb and B̄bb = C̄tt = ?
6: E ′X ←{EX \ (x j,xi)}∪ (xb,xt)}
7: Let E ′F ⊂ E ′X be the infeasible edges in E ′X
8: EX ← E ′X
9: EF ← E ′F

10: end while
11: K̄S′ ← K̄S′

i j = ? if (x j,xi) ∈ E ′X

the feedback pattern K̄G satisfies Assumption 2, i.e., K̄G
i j = ?

whenever B̄ii = C̄ j j = ?.
We propose an O(n3) complexity algorithm for solving

Problem 1 on structured systems with both the input and
the output sets are dedicated. The proposed method solves
Problem 2, the strong connectivity augmentation, on D(Ā).
However, the optimal solution obtained for Problem 2 does not
immediately translate to an optimal solution to Problem 1. This
is because the resulting K̄S may consist of infeasible feedback
links. So the obtained K̄S is updated to get another feedback
matrix K̄S′ . The pseudo-code for the proposed solution proce-
dure is presented in Algorithm 1.

Theorem 2. Consider a structurally cyclic system Ā with
dedicated input and output sets B̄ = Zm and C̄ = Zp, respec-
tively. Let EX be an optimal solution to the strong connectivity
augmentation problem on the digraph D(Ā) and EF ⊂ EX be
the infeasible set of edges. Then, (i) there exists an edge set
E ′X and infeasible edge set E ′F ⊂ E ′X with |E ′F | < |EF | such
that (ii) K̄S′ = {K̄S′

i j = ? : (x j,xi) ∈ E ′X } is an optimal solution
to Problem 1.

Proof. Given EX is an optimal solution to the strong con-
nectivity augmentation problem on the digraph D(Ā). For
K̄S := {K̄S

i j = ? : (x j,xi) ∈ EX } all state nodes lie in a single
SCC in D(Ā, B̄,C̄, K̄S). However, it may happen that there
exists an infeasible edge set EF ⊂ EX , EF 6= /0 (see Step 2).
Note that if (x j,xi) ∈ EF then at least one of the following
has to happen: 1) B̄ii = 0, 2) C̄ j j = 0. Then, the feedback
edge K̄S

i j is not feasible. Without loss of generality, let us
assume that both 1) and 2) hold. Then state xi has no input
connecting to it and state x j has no output sensing it. However,
the set Ks is nonempty as K̄G ∈ Ks. This implies that all
states are actuated by some input and sensed by some output.
Therefore, there exists some state xt which has input ut
connected to it and there is a directed path from xt to xi.
Similarly, there exists some state xb which has output yb
connected and there is a directed path from x j to xb. Now

consider E ′X = {EX \ (x j,xi)}∪{(xb,xt)}. The feedback edge
is (xb,xt) is feasible as Assumption 2 holds. Let the infeasible
edge set in E ′X be E ′F . Notice that edge (xb,xt) is feasible and
hence E ′F ⊂ EF . Therefore, |E ′F |< |EF |. This proves (i).

Now we prove (ii), i.e., the feedback matrix K̄S′ , where
{K̄S′

i j = ? : (x j,xi) ∈ E ′X }, is an optimal solution to Problem 1.
First, we prove that K̄S′ is a feasible solution and then we
prove that it is minimal. Since the system is structurally
cyclic condition b) in Proposition 1 is satisfied without any
feedback edges. To prove K̄S′ ∈ Ks one need to show that
condition a) in Proposition 1 is satisfied in D(Ā, B̄,C̄, K̄S′).
With feedback matrix K̄S all state nodes in D(Ā, B̄,C̄, K̄S)
satisfy condition a) in Proposition 1. However, K̄S may consist
of infeasible feedback links. We need to show that breaking
edge (y j,ui) and making edge (yb,ut) do not result in any state
vertex not satisfying condition a) in Proposition 1. Let xk be
an arbitrary state that satisfies condition a) in Proposition 1
using the feedback edge (y j,ui). Since all state nodes lie in a
single SCC in D(Ā, B̄,C̄, K̄S) there exist directed paths from xi
to xk and from xk to x j that do not use feedback edge (y j,ui).
This implies that there exist directed paths from xt to xk and
xk to xb. Hence xk lies in an SCC with xt , xb, ut and yb in it.
Further, xk continues to satisfy condition a) in Proposition 1
even after breaking (y j,ui) and making (yb,ut). Since xk is
arbitrary K̄S′ ∈Ks.

Now for proving minimality, we argue that no lesser set
of edges satisfies condition a) in Proposition 1. This is true
because EX is an optimal solution to the strong connectivity
augmentation problem. By Theorem 1 the resulting K̄S is an
optimal solution to Problem 1 if all feedback links are feasible.
When B̄ = Zm and C̄ = Zp, no lesser set of edges can keep
all state nodes in SCCs with a feedback edge in it. Con-
sequently, an optimal solution K̄S′ satisfies

∥∥K̄S′
∥∥

0 > ‖K̄S‖0.
Since

∥∥K̄S′
∥∥

0 = ‖K̄
S‖0, minimality follows and this completes

the proof.

Theorem 3. Consider a structurally cyclic system Ā with
dedicated input and output sets B̄ = Zm,C̄ = Zp, respectively.
Then, Algorithm 1 gives an optimal solution to Problem 1 in
O(n3) computations, where n denotes the number of states.

Proof. Let EX be a solution to the strong connectivity aug-
mentation problem on the digraph D(Ā). Let EF ⊂ EX be the
infeasible set of edges in EX . Recursively applying Theorem 2
on EX , as shown in Algorithm 1, we get edge set E ′X where
infeasible edge set E ′F ⊂ E ′X is empty and K̄S′ = {K̄S′

i j =
? : (x j,xi) ∈ E ′X } is an optimal solution to Problem 1. The
algorithm will terminate in finite steps since the infeasible edge
set is finite and on termination, it gives an optimal solution to
Problem 1.

Strong connectivity augmentation problem has complex-
ity O(n2). For each infeasible edge present in the solution
obtained, EX , finding xt ,xb has O(n) complexity each. At
most, there can be n2 infeasible edges. Finding set E ′X from
EX involves O(n3) computations. The remaining steps in
the algorithm are of linear complexity. Combining together,
solving Problem 1 has complexity O(n3).

Theorem 3 concludes that if inputs and outputs are dedicated
and feedback links are non-weighted, then optimal feedback
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selection problem is in P for structurally cyclic systems.

Remark 2. If the structured system is not structurally cyclic,
then a 2-optimal solution can be obtained for Problem 1
by combining the algorithms proposed in this paper with
a minimum weight perfect matching algorithm (to satisfy
condition b) in Proposition 1) using the approach given in
[9].

In the next subsection, we analyze the sparsest feedback
selection problem under an additional constraint that some of
the feedback links are forbidden.

C. Sparsest Feedback Selection: with Forbidden Feedback
Links

In this subsection, we consider Problem 1 with dedicated
input and output matrices and a constrained feedback matrix.
Unlike the cases considered previously in subsections 3-A
and 3-B, here Assumption 2 does not hold and feedback
configuration K̄G consists of forbidden feedback links. We
show that with this restriction the sparsest feedback selection
problem on structurally cyclic systems with dedicated input-
output is NP-hard. We obtain the hardness result by reducing
a well known NP-hard problem, the minimum hitting set
problem [22], to an instance of Problem 1 with forbidden
feedback connections. The minimum hitting set problem is
described as follows: given a universe U consisting of N
elements and a collection of sets H = {S1, . . . ,Sr}, where
each Si ⊆ U , a minimum hitting set for H consists of finding
a set U ′ ⊆ U such that U ′ contains at least one element from
each set in H and cardinality of U ′ is minimum.

The pseudo-code showing a reduction of the minimum
hitting set problem to an instance of Problem 1 along with a set
of forbidden feedback connections is given in Algorithm 2. An
illustrative example showing the construction of a structured
system (Ā, B̄,C̄) and forbidden set F from a hitting set problem
is given in Figure 3. The result below proves that Problem 1 is
NP-hard for structurally cyclic systems with dedicated input-
output when Assumption 2 does not hold.

Theorem 4. Consider a structurally cyclic structured system
(Ā, B̄,C̄) with dedicated input and output matrices Zm and Zp,
respectively, constructed using Algorithm 2 corresponding to
the minimum hitting set problem. Also, consider the feedback
configuration K̄G obtained in Algorithm 2. Then, finding an
optimal solution to Problem 1 is NP-hard.

Proof. We prove the NP-hardness of the problem using re-
duction from the minimum hitting set problem. Consider a
general instance of the hitting set problem, with universe
U = {1, . . . ,N} and sets H = {S1, . . . ,Sr}. We construct a
structured system corresponding to the hitting set problem
(U ,H) as follows: define states {x1, . . . ,x3N+r+2}, inputs
{u1, . . . ,u2N}, outputs {y1, . . . ,yN+1} interconnected by ma-
trices Ā, B̄ and C̄ as shown in Steps 3, 4 and 5, respectively,
of Algorithm 2. Let K̄ be an optimal solution to Problem 1
for the structured system (Ā, B̄,C̄) constructed and feedback
configuration K̄G (defined in Step 7 of Algorithm 2). Since the
system is structurally cyclic, condition b) in Proposition 1 is
satisfied without using any feedback edge. However, K̄ satis-
fies condition a) in Proposition 1. We first show that the hitting

Algorithm 2 Pseudo-code for reducing the minimum hitting
set problem to an instance of Problem 1

Input: Minimum hitting set problem with universe U =
{1, . . . ,N} and sets H = {S1, . . . ,Sr}
Output: Structured system (Ā, B̄,C̄) and forbidden set F

1: Define x1, . . . ,x3N+r+2 and y1, . . . ,yN+1 and u1, . . . ,u2N to
be interconnected by the following definition of Ā, B̄,C̄

2: Define a structured system (Ā, B̄,C̄) as follows:

3: Āi j←



?, for i = j, for i ∈ {1, . . . ,3N + r+2},
?, for i ∈ {N +1, . . . ,N + r}, j ∈ {1, . . . ,N}

and j ∈ Si−N ,

?, for i = N + r+1, j ∈ {N +1, . . . ,N + r},
?, for i = N + r+2, j = N + r+1,
?, for i ∈ {1, . . . ,N}, j = N + r+2+ i,
?, for i ∈ {2N + r+3, . . . ,3N + r+2},

j = i− (2N + r+2),
0, otherwise.

4: B̄ii←

{
?, for i ∈ {1, . . . ,N,N + r+3, . . . ,2N + r+2},
0, otherwise.

5: C̄ j j←

{
?, for j ∈ {N + r+2,2N + r+3, . . . ,3N + r+2},
0, otherwise.

6: Define forbidden set F as: F ← {(i, j) : i ∈ {N +
r + 3, . . . ,2N + r + 2}, j = N + r + 2} ∪ {(p,q) : p ∈
{1, . . . ,N},q ∈ {2N+ r+3, . . . ,3N+ r+2}}∪{(g,h) : g ∈
{N + r+ 3, . . . ,2N + r+ 2},h ∈ {2N + r+ 3, . . . ,3N + r+
2} and h 6= g+N}.

7: Define K̄G := {K̄G
i j = ? : (i, j) /∈ F}

8: Given a solution K̄ to Problem 1 on (Ā, B̄,C̄) and K̄G

define: hitting set selected under K̄, U ′(K̄)← {i : K̄i j =
? and j = N + r+2}

set selected corresponding to K̄, i.e., U ′(K̄), is a feasible solu-
tion to the minimum hitting set problem. Note that an optimal
solution to Problem 1 consists of feedback connections {(i, j) :
i ∈ {N + r+ 3, . . . ,2N + r+ 2} and j = i+N}, since there is
no other way that the state nodes {xN+r+3, . . . ,x3N+r+2} can
satisfy condition a) in Proposition 1. These feedback links
also result in state nodes x1, . . . ,xN satisfying condition a) in
Proposition 1. Thus, optimal selection of feedback edges has
to be done such that nodes xN+1, . . . ,xN+r satisfy condition a)
in Proposition 1.

Note that U ′(K̄) := {i : K̄i j = ? and j = N + r + 2}. Since
K̄ is a feasible solution to the feedback selection problem,
all states satisfy condition a) in Proposition 1. Consider an
arbitrary node xN+ j ∈ {xN+1, . . . ,xN+r}. Then xN+ j satisfies
condition a) in Proposition 1 using some feedback link from
output node yN+r+2 to some input node, say ui ∈ {u1, . . . ,uN},
that has a directed path to it. Based on the construction of
Ā, this is possible only if i ∈ S j. Thus U ′(K̄)∩S j 6= /0. Since
xN+ j is an arbitrary node in {xN+1, . . . ,xN+r}, for all Sg ∈H,
Sg ∩ U ′(K̄) 6= /0. Hence U ′(K̄) is a feasible solution to the
minimum hitting set problem.

Now we show that U ′(K̄) is an optimal solution to the
minimum hitting set problem. To the contrary assume that
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Figure 3: Illustrative example demonstrating construction of
D(Ā, B̄,C̄) along with all non-forbidden feedback edges (shown in
red colour) given in Algorithm 2 for a hitting set problem with
U = {1, . . . ,5}, H = {S1,S2,S3}, where S1 = {1,2,3}, S2 = {3,4}
and S3 = {4,5}. For simplicity, self-loop of each state vertex xk is
not shown in the figure.

U ′(K̄) is not a minimum hitting set. Then there exists a set
U ′′ ⊂ U such that U ′′ ∩Si 6= /0 for all Si’s in H and |U ′′| <
|U ′(K̄)|. Then K̄′′ := {{K̄′′i j = ? : i∈ {N+r+3, . . . ,2N+r+2}
and j = i+N} and {K̄′′pq = ? : p ∈ U ′′ and q = N + r + 2}}
is a feasible solution to Problem 1. Also, ‖K̄′′‖0 < ‖K̄‖0.
This contradicts the assumption that K̄ is an optimal solution
to Problem 1. Therefore, U ′(K̄) is an optimal solution to
Problem 1. This completes the proof.

Theorem 4 concludes that Problem 1 is NP-hard with
dedicated input-output if the set of feedback connections are
constrained. Combining this with results in [9] and [8], we
conclude that the optimal feedback selection problem is NP-
hard for all other cases, except when both the input and the
output sets are dedicated, feedback links are non-weighted and
unconstrained feedback pattern. This paper thus identifies the
only possible instance of optimal feedback selection problem
that is polynomially solvable without imposing any additional
assumption on the state digraph other than being structurally
cyclic.

4. CONCLUSION

This paper dealt with sparsest feedback selection for struc-
tured systems with dedicated inputs and outputs. The objective
here is to obtain a sparsest feedback matrix such that the
resulting closed-loop system has no structurally fixed modes.
This problem was considered earlier in [11] and later in [17].
We have shown recently in [9] that this problem is NP-
hard when considering structurally cyclic systems with non-
dedicated input-output. In this paper, we proved that solving
this problem is not NP-hard on structurally cyclic systems
with dedicated inputs and outputs, but in fact of polynomial
complexity (Theorem 1). For the case B̄= C̄ = In, we provided
an algorithm that has O(n2) complexity. When B̄ and C̄ are
Zm and Zp, respectively, we provided an O(n3) algorithm
(Theorem 3). We also show that for structurally cyclic sys-
tems with dedicated input-output and a constrained feedback

pattern, Problem 1 is NP-hard (Theorem 4). This concludes
that for structurally cyclic systems, optimal feedback selection
problem has polynomial time complexity only when both the
input and the output sets are dedicated and the feedback edges
are unconstrained and without weights (Table I).
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